Articles | Volume 14, issue 2
https://doi.org/10.5194/bg-14-285-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-285-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study
Stefano Bonaglia
CORRESPONDING AUTHOR
Department of Geological Sciences and Bolin Centre for Climate
Research, Stockholm University, Stockholm, Sweden
current address:
Department of Geology, Lund University, Lund, Sweden
Astrid Hylén
Department of Marine Sciences, University of Gothenburg, Gothenburg,
Sweden
Jayne E. Rattray
Department of Geological Sciences and Bolin Centre for Climate
Research, Stockholm University, Stockholm, Sweden
Mikhail Y. Kononets
Department of Marine Sciences, University of Gothenburg, Gothenburg,
Sweden
Nils Ekeroth
Department of Marine Sciences, University of Gothenburg, Gothenburg,
Sweden
Calluna AB, Nacka, Sweden
Per Roos
Center for Nuclear Technologies, Technical University of Denmark,
Roskilde, Denmark
Bo Thamdrup
Department of Biology and Nordic Center for Earth Evolution,
University of Southern Denmark, Odense M, Denmark
Volker Brüchert
Department of Geological Sciences and Bolin Centre for Climate
Research, Stockholm University, Stockholm, Sweden
Per O. J. Hall
Department of Marine Sciences, University of Gothenburg, Gothenburg,
Sweden
Related authors
Albin Eriksson, Birgit Wild, Wei-Li Hong, Henry Holmstrand, Francisco Jardim de Almada Nascimento, Stefano Bonaglia, Denis Kosmach, Igor Semiletov, Natalia Shakhova, and Örjan Gustafsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-4756, https://doi.org/10.5194/egusphere-2025-4756, 2025
Short summary
Short summary
Thawing subsea permafrost in the East Siberian Arctic Seas releases methane, a potent greenhouse gas. Using molecular fossils in sediments, we traced past methane oxidation to reveal widespread methane release across the Laptev Sea, including regions once thought low in emissions. This approach captures long-term patterns, overcoming limits of short-term seawater measurements and highlights the importance of the Laptev Sea in Arctic methane cycling.
Mindaugas Žilius, Rūta Barisevičiūtė, Stefano Bonaglia, Isabell Klawonn, Elise Lorre, Tobia Politi, Irma Vybernaite-Lubiene, Maren Voss, and Paul Bukaveckas
EGUsphere, https://doi.org/10.5194/egusphere-2023-3054, https://doi.org/10.5194/egusphere-2023-3054, 2024
Preprint archived
Short summary
Short summary
This study analyzes the mechanisms driving nitrate retention and elimination within a large estuarine system. Simultaneous measurements of pelagic and benthic processes provide insight into how nitrates are transformed. Finally, our findings are consistent with the paradigm that eutrophication favors a shift from benthic to pelagic-dominated processes.
Silvia Placitu, Sebastiaan J. van de Velde, Astrid Hylén, Mats Eriksson, Per O. J. Hall, and Steeve Bonneville
Biogeosciences, 22, 8065–8076, https://doi.org/10.5194/bg-22-8065-2025, https://doi.org/10.5194/bg-22-8065-2025, 2025
Short summary
Short summary
Marine sediments store organic carbon and help regulate climate. Oxygen-depleted waters are thought to enhance this, however Western Gotland Basin sediments show low carbon despite such conditions. We studied the role of mineral protection, which can shield carbon from microbes, and found it limited. This suggests that without physical protection, carbon remains accessible and gets degraded, making mineral protection a key factor in carbon preservation.
Astrid Hylén, Nils Ekeroth, Hannah Berk, Andy W. Dale, Mikhail Kononets, Wytze K. Lenstra, Aada Palo, Anders Tengberg, Sebastiaan J. van de Velde, Stefan Sommer, Caroline P. Slomp, and Per O. J. Hall
Earth Syst. Sci. Data, 17, 6423–6443, https://doi.org/10.5194/essd-17-6423-2025, https://doi.org/10.5194/essd-17-6423-2025, 2025
Short summary
Short summary
Phosphorus is an essential element for life and its cycling strongly impact primary production. Here, we present a dataset of sediment-water fluxes of dissolved inorganic phosphorus from the Baltic Sea, an area with a long history of eutrophication. The fluxes were measured in situ with three types of benthic chamber landers at 59 stations over 20 years. The data show clear spatial patterns and will be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Albin Eriksson, Birgit Wild, Wei-Li Hong, Henry Holmstrand, Francisco Jardim de Almada Nascimento, Stefano Bonaglia, Denis Kosmach, Igor Semiletov, Natalia Shakhova, and Örjan Gustafsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-4756, https://doi.org/10.5194/egusphere-2025-4756, 2025
Short summary
Short summary
Thawing subsea permafrost in the East Siberian Arctic Seas releases methane, a potent greenhouse gas. Using molecular fossils in sediments, we traced past methane oxidation to reveal widespread methane release across the Laptev Sea, including regions once thought low in emissions. This approach captures long-term patterns, overcoming limits of short-term seawater measurements and highlights the importance of the Laptev Sea in Arctic methane cycling.
Thea Bisander, John Prytherch, and Volker Brüchert
Biogeosciences, 22, 4779–4796, https://doi.org/10.5194/bg-22-4779-2025, https://doi.org/10.5194/bg-22-4779-2025, 2025
Short summary
Short summary
Coastal waters exchange greenhouse gases with the atmosphere, but their exact contributions are not well understood. This study measured carbon dioxide and methane emissions in different Baltic Sea habitats using floating chambers. The results show that methane emissions, especially from bubbling, play a dominant role in the total exchange of many habitats. When scaled up over the Stockholm archipelago, the coastal emissions add significantly to the regional greenhouse gas budget.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Mindaugas Žilius, Rūta Barisevičiūtė, Stefano Bonaglia, Isabell Klawonn, Elise Lorre, Tobia Politi, Irma Vybernaite-Lubiene, Maren Voss, and Paul Bukaveckas
EGUsphere, https://doi.org/10.5194/egusphere-2023-3054, https://doi.org/10.5194/egusphere-2023-3054, 2024
Preprint archived
Short summary
Short summary
This study analyzes the mechanisms driving nitrate retention and elimination within a large estuarine system. Simultaneous measurements of pelagic and benthic processes provide insight into how nitrates are transformed. Finally, our findings are consistent with the paradigm that eutrophication favors a shift from benthic to pelagic-dominated processes.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Astrid Hylén, Sebastiaan J. van de Velde, Mikhail Kononets, Mingyue Luo, Elin Almroth-Rosell, and Per O. J. Hall
Biogeosciences, 18, 2981–3004, https://doi.org/10.5194/bg-18-2981-2021, https://doi.org/10.5194/bg-18-2981-2021, 2021
Short summary
Short summary
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that consume oxygen upon degradation, leading to further phosphorus release. Oxygenation is thought to trap phosphorus in the sediment and break this feedback. We studied the sediment phosphorus cycle in a previously anoxic area after an inflow of oxic water. Surprisingly, the sediment phosphorus release increased, showing that feedbacks between phosphorus release and oxygen depletion can be hard to break.
Cited articles
Algesten, G., Wikner, J., Sobek, S., Tranvik, L. J., and Jansson, M.: Seasonal variation of CO2 saturation in the Gulf of Bothnia: Indications of marine net heterotrophy, Global Biogeochem. Cy., 18, GB4021, https://doi.org/10.1029/2004GB002232, 2004.
An, S. and Gardner, W. S.: Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas), Mar. Ecol. Prog. Ser., 237, 41–50, https://doi.org/10.3354/meps237041, 2002.
Bale, N. J., Villanueva, L., Fan, H., Stal, L. J., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea, FEMS Microbiol. Ecol., 89, 99–110, https://doi.org/10.1111/1574-6941.12338, 2014.
Billen, G.: A budget of nitrogen recycling in North Sea sediments off the Belgian coast, Estuar. Coast. Mar. Sci., 7, 127–146, https://doi.org/10.1016/0302-3524(78)90070-1, 1978.
Billen, G., Silvestre, M., Grizzetti, B., Leip, A., Garnier, J., Voss, M., Howarth, R., Bouraoui, F., Lepisto, A., Kortelainen, P., Johnes, P., Curtis, C., Humborg, C., Smedberg, E., Kaste, Ø., Ganeshram, R. S., Beusen, A., and Lancelot, C.: Nitrogen flows from European watersheds to coastal marine waters, in: The European Nitrogen Assessment, Cambridge University Press, 2011.
Blackburn, T. H., Hall, P. O. J., Hulth, S., and Landén, A.: Organic-N loss by efflux and burial associated with a low efflux of inorganic N and with nitrate assimilation in Arctic sediments (Svalbard, Norway), Mar. Ecol. Prog. Ser., 141, 283–293, https://doi.org/10.3354/meps141283, 1996.
Blomqvist, S., Ekeroth, N., Elmgren, R., and Hall, P. O. J.: Long overdue improvement of box corer sampling, Mar. Ecol. Prog. Ser., 538, 13–21, https://doi.org/10.3354/meps11405, 2015.
Bonaglia, S., Deutsch, B., Bartoli, M., Marchant, H. K., and Brüchert, V.: Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns, Biogeochemistry, 119, 139–160, https://doi.org/10.1007/s10533-014-9953-6, 2014a.
Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I., and Brüchert, V.: Meiofauna increases bacterial denitrification in marine sediments, Nat. Commun., 5, 5133, https://doi.org/10.1038/ncomms6133, 2014b.
Boumann, H. A., Hopmans, E. C., Van De Leemput, I., Op den Camp, H. J. M., Van De Vossenberg, J., Strous, M., Jetten, M. S. M., Sinninghe Damsté, J. S., and Schouten, S.: Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups, FEMS Microbiol. Lett., 258, 297–304, https://doi.org/10.1111/j.1574-6968.2006.00233.x, 2006.
Brandsma, J., van de Vossenberg, J., Risgaard-Petersen, N., Schmid, M. C., Engström, P., Eurenius, K., Hulth, S., Jaeschke, A., Abbas, B., Hopmans, E. C., Strous, M., Schouten, S., Jetten, M. S. M., and Damsté, J. S. S.: A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden, Environ. Microbiol. Rep., 3, 360–366, https://doi.org/10.1111/j.1758-2229.2010.00233.x, 2011.
Brunnegård, J., Grandel, S., Ståhl, H., Tengberg, A., and Hall, P. O. J.: Nitrogen cycling in deep-sea sediments of the Porcupine Abyssal Plain, NE Atlantic, Prog. Oceanogr., 63, 159–181, https://doi.org/10.1016/j.pocean.2004.09.004, 2004.
Burgin, A. J. and Hamilton, S. K.: Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways, Front. Ecol. Environ., 5, 89–96, https://doi.org/10.1890/1540-9295(2007)5[89:hwotro]2.0.co;2, 2007.
Canfield, D. E., Kristensen, E., and Thamdrup, B.: The nitrogen cycle, in: Aquatic Geomicrobiology, edited by: Canfield, D. E., Kristensen, E., and Thamdrup, B., Academic Press, 205–267, 2005.
Canion, A., Prakash, O., Green, S. J., Jahnke, L., Kuypers, M. M. M., and Kostka, J. E.: Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway), Environ. Microbiol., 15, 1606–1618, https://doi.org/10.1111/1462-2920.12110, 2013.
Christensen, P. B., Rysgaard, S., Sloth, N. P., Dalsgaard, T., and Schwærter, S.: Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms, Aquat. Microbiol. Ecol., 21, 73–84, https://doi.org/10.3354/ame021073, 2000.
Coby, A. J., Picardal, F., Shelobolina, E., Xu, H., and Roden, E. E.: Repeated Anaerobic Microbial Redox Cycling of Iron, Appl. Environ. Microbiol., 77, 6036–6042, https://doi.org/10.1128/aem.00276-11, 2011.
Crowe, S. A., Canfield, D. E., Mucci, A., Sundby, B., and Maranger, R.: Anammox, denitrification and fixed-nitrogen removal in sediments from the Lower St. Lawrence Estuary, Biogeosciences, 9, 4309–4321, https://doi.org/10.5194/bg-9-4309-2012, 2012.
Cutshall, N. H., Larsen, I. L., and Olsen, C. R.: Direct analysis of 210Pb in sediment samples: self-absorption corrections, Nucl. Instrum. Methods, 206, 309–312, https://doi.org/10.1016/0167-5087(83)91273-5, 1983.
De Brabandere, L., Bonaglia, S., Kononets, M., Viktorsson, L., Stigebrandt, A., Thamdrup, B., and Hall, P. O. J.: Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA, Biogeochemistry, 126, 131–152, https://doi.org/10.1007/s10533-015-0148-6, 2015.
Deng, F., Hou, L., Liu, M., Zheng, Y., Yin, G., Li, X., Lin, X., Chen, F., Gao, J., and Jiang, X.: Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary, J. Geophys. Res.-Biogeo., 120, 1521–1531, https://doi.org/10.1002/2015JG003007, 2015.
Deutsch, B., Forster, S., Wilhelm, M., Dippner, J. W., and Voss, M.: Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics, Biogeosciences, 7, 3259–3271, https://doi.org/10.5194/bg-7-3259-2010, 2010.
Dong, L. F., Sobey, M. N., Smith, C. J., Rusmana, I., Phillips, W., Stott, A., Osborn, A. M., and Nedwell, D. B.: Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries, Limnol. Oceanogr., 56, 279–291, https://doi.org/10.4319/lo.2011.56.1.0279, 2011.
Ekeroth, N., Kononets, M., Walve, J., Blomqvist, S., and Hall, P. O. J.: Effects of oxygen on recycling of biogenic elements from sediments of a stratified coastal Baltic Sea basin, J. Mar. Syst., 154, 206–219, https://doi.org/10.1016/j.jmarsys.2015.10.005, 2016.
Elmgren, R.: Understanding human impact on the Baltic ecosystem: Changing views in recent decades, Ambio, 30, 222–231, https://doi.org/10.1579/0044-7447-30.4.222, 2001.
Engström, P., Dalsgaard, T., Hulth, S., and Aller, R. C.: Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments, Geochim. Cosmochim. Ac., 69, 2057–2065, https://doi.org/10.1016/j.gca.2004.09.032, 2005.
Gihring, T. M., Lavik, G., Kuypers, M. M. M., and Kostka, J. E.: Direct determination of nitrogen cycling rates and pathways in Arctic fjord sediments (Svalbard, Norway), Limnol. Oceanogr., 55, 740–752, https://doi.org/10.4319/lo.2009.55.2.0740, 2010.
Glud, R. N. and Blackburn, N.: The effects of chamber size on benthic oxygen uptake measurements: A simulation study, Ophelia, 56, 23–31, https://doi.org/10.1080/00785236.2002.10409486, 2002.
Håkansson, B., Alenius, P., and Brydsten, L.: Physical environment in the Gulf of Bothnia, Ambio, 8, 5–12, 1996.
Hardison, A. K., Algar, C. K., Giblin, A. E., and Rich, J. J.: Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production, Geochim. Cosmochim. Ac., 164, 146–160, https://doi.org/10.1016/j.gca.2015.04.049, 2015.
Hietanen, S. and Kuparinen, J.: Seasonal and short-term variation in denitrification and anammox at a coastal station on the Gulf of Finland, Baltic Sea, Hydrobiologia, 596, 67–77, https://doi.org/10.1007/s10750-007-9058-5, 2008.
Howarth, R. W. and Marino, R.: Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades, Limnol. Oceanogr., 51, 364–376, https://doi.org/10.4319/lo.2006.51.1_part_2.0364, 2006.
Jaeschke, A., Rooks, C., Trimmer, M., Nicholls, J. C., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments, Geochim. Cosmochim. Ac., 73, 2077–2088, https://doi.org/10.1016/j.gca.2009.01.013, 2009.
Jaeschke, A., Abbas, B., Zabel, M., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental shelf and slope sediments off northwest Africa, Limnol. Oceanogr., 55, 365–376, https://doi.org/10.4319/lo.2010.55.1.0365, 2010.
Jäntti, H., Stange, F., Leskinen, E., and Hietanen, S.: Seasonal variation in nitrification and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea, Aquat. Microbiol. Ecol., 63, 171–181, https://doi.org/10.3354/ame01492, 2011.
Jørgensen, B. B. and Nelson, D. C.: Sulfide oxidation in marine sediments: Geochemistry meets microbiology, Geol. Soc. Am. Special Papers, 379, 63–81, https://doi.org/10.1130/0-8137-2379-5.63, 2004.
Klais, R., Tamminen, T., Kremp, A., Spilling, K., and Olli, K.: Decadal-Scale Changes of Dinoflagellates and Diatoms in the Anomalous Baltic Sea Spring Bloom, PLoS ONE, 6, e21567, https://doi.org/10.1371/journal.pone.0021567, 2011.
Kraft, B., Tegetmeyer, H. E., Sharma, R., Klotz, M. G., Ferdelman, T. G., Hettich, R. L., Geelhoed, J. S., and Strous, M.: The environmental controls that govern the end product of bacterial nitrate respiration, Science, 345, 676–679, https://doi.org/10.1126/science.1254070, 2014.
Lanekoff, I. and Karlsson, R.: Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS, Anal. Bioanal. Chem., 397, 3543–3551, https://doi.org/10.1007/s00216-010-3913-3, 2010.
Leppäranta, M. and Myrberg, K.: Topography and hydrography of the Baltic Sea, in: Physical Oceanography of the Baltic Sea, Springer Praxis Books, Springer Berlin Heidelberg, 41–88, 2009.
Lipsewers, Y. A., Bale, N. J., Hopmans, E. C., Schouten, S., Damsté, J. S. S., and Villanueva, L.: Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea), Front Microbiol., 5, 472, https://doi.org/10.3389/fmicb.2014.00472, 2014.
Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A., and Schwudke, D.: Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics, J. Lipid Res., 49, 1137–1146, https://doi.org/10.1194/jlr.D700041-JLR200, 2008.
Nielsen, L. P.: Denitrification in sediment determined from nitrogen isotope pairing, FEMS Microbiol. Ecol., 86, 357–362, https://doi.org/10.1111/j.1574-6968.1992.tb04828.x, 1992.
Pettersson, C., Allard, B., and Borén, H.: River discharge of humic substances and humic-bound metals to the Gulf of Bothnia, Estuar. Coast. Shelf S., 44, 533–541, https://doi.org/10.1006/ecss.1996.0159, 1997.
Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., and Meyer, R. L.: Application of the isotope pairing technique in sediments where anammox and denitrification coexist, Limnol. Oceanogr.-Meth., 1, 63–73, https://doi.org/10.4319/lom.2003.1.63, 2003.
Robertson, E. K., Roberts, K. L., Burdorf, L. D. W., Cook, P., and Thamdrup, B.: Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary, Limnol. Oceanogr., 61, 365–381, https://doi.org/10.1002/lno.10220, 2016.
Rolff, C. and Elfwing, T.: Increasing nitrogen limitation in the Bothnian Sea, potentially caused by inflow of phosphate-rich water from the Baltic Proper, Ambio, 44, 601–611, https://doi.org/10.1007/s13280-015-0675-3, 2015.
Rysgaard, S., Risgaard-Petersen, N., and Sloth, N. P.: Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in Southern France, Hydrobiologia, 329, 133–141, https://doi.org/10.1007/bf00034553, 1996.
Rysgaard, S., Glud, R. N., Risgaard-Petersen, N., and Dalsgaard, T.: Denitrification and anammox activity in arctic marine sediments, Limnol. Oceanogr., 49, 1493–1502, 2004.
Savchuk, O. P.: Resolving the Baltic Sea into seven subbasins: N and P budgets for 1991–1999, J. Mar. Syst., 56, 1–15, https://doi.org/10.1016/j.jmarsys.2004.08.005, 2005.
Savchuk, O. P.: Large-Scale Dynamics of Hypoxia in the Baltic Sea, in: Chemical Structure of Pelagic Redox Interfaces, edited by: Yakushev, E. V., The Handbook of Environmental Chemistry, Springer Berlin Heidelberg, 137–160, 2013.
Seitzinger, S., Harrison, J. A., Bohlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., and Van Drecht, G.: Denitrification across landscapes and waterscapes: A synthesis, Ecol. Appl., 16, 2064–2090, https://doi.org/10.1890/1051-0761(2006)016[2064:dalawa]2.0.co;2, 2006.
Seitzinger, S. P. and Giblin, A. E.: Estimating denitrification in North Atlantic continental shelf sediments, Biogeochemistry, 35, 235–260, https://doi.org/10.1007/bf02179829, 1996.
Sinninghe Damsté, J. S., Strous, M., Rijpstra, W. I. C., Hopmans, E. C., Geenevasen, J. A. J., van Duin, A. C. T., van Niftrik, L. A., and Jetten, M. S. M.: Linearly concatenated cyclobutane lipids form a dense bacterial membrane, Nature, 419, 708–712, https://doi.org/10.1038/nature01128, 2002.
Song, G. D., Liu, S. M., Marchant, H., Kuypers, M. M. M., and Lavik, G.: Anammox, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment, Biogeosciences, 10, 6851–6864, https://doi.org/10.5194/bg-10-6851-2013, 2013.
Song, G. D., Liu, S. M., Kuypers, M. M. M., and Lavik, G.: Application of the isotope pairing technique in sediments where anammox, denitrification, and dissimilatory nitrate reduction to ammonium coexist, Limnol. Oceanogr.-Meth., 14, 801–815, https://doi.org/10.1002/lom3.10127, 2016.
Ståhl, H., Tengberg, A., Brunnegård, J., and Hall, P. O. J.: Recycling and burial of organic carbon in sediments of the Porcupine Abyssal Plain, NE Atlantic, Deep-Sea Res. Pt. I, 51, 777–791, https://doi.org/10.1016/j.dsr.2004.02.007, 2004.
Stockenberg, A. and Johnstone, R. W.: Benthic denitrification in the Gulf of Bothnia, Estuar. Coast. Shelf S., 45, 835–843, https://doi.org/10.1006/ecss.1997.0271, 1997.
Tamminen, T. and Andersen, T.: Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication, Mar. Ecol. Prog. Ser., 340, 121–138, https://doi.org/10.3354/meps340121, 2007.
Tengberg, A., De Bovee, F., Hall, P. O. J., Berelson, W., Chadwick, D., Ciceri, G., Crassous, P., Devol, A., Emerson, S., Gage, J., Glud, R., Graziottini, F., Gundersen, J., Hammond, D., Helder, W., Hinga, K., Holby, O., Jahnke, R., Khripounoff, A., Lieberman, S., Nuppenau, V., Pfannkuche, O., Reimers, C., Rowe, G., Sahami, A., Sayles, F., Schurter, M., Smallman, D., Wehrli, B., and De Wilde, P.: Benthic chamber and profiling landers in oceanography – A review of design, technical solutions and functioning, Prog. Oceanogr., 35, 253–294, https://doi.org/10.1016/0079-6611(95)00009-6, 1995.
Tengberg, A., Stahl, H., Gust, G., Müller, V., Arning, U., Andersson, H., and Hall, P. O. J.: Intercalibration of benthic flux chambers I. Accuracy of flux measurements and influence of chamber hydrodynamics, Prog. Oceanogr., 60, 1–28, https://doi.org/10.1016/j.pocean.2003.12.001, 2004.
Thamdrup, B.: New pathways and processes in the global nitrogen cycle, Annu. Rev. Ecol. Evol. S., 43, 407–428, https://doi.org/10.1146/annurev-ecolsys-102710-145048, 2012.
Thamdrup, B. and Dalsgaard, T.: Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments, Appl. Environ. Microbiol., 68, 1312–1318, https://doi.org/10.1128/aem.68.3.1312-1318.2002, 2002.
Trimmer, M., Engström, P., and Thamdrup, B.: Stark contrast in denitrification and anammox across the deep Norwegian trench in the Skagerrak, Appl. Environ. Microbiol., 79, 7381–7389, https://doi.org/10.1128/AEM.01970-13, 2013.
Tuominen, L., Heinanen, A., Kuparinen, J., and Nielsen, L. P.: Spatial and temporal variability of denitrification in the sediments of the northern Baltic Proper, Mar. Ecol. Prog. Ser., 172, 13–24, https://doi.org/10.3354/meps172013, 1998.
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine biodiversity, P. Natl. Acad. Sci. USA, 105, 15452–15457, https://doi.org/10.1073/pnas.0803833105, 2008.
Verardo, D. J., Froelich, P. N., and McIntyre, A.: Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer, Deep-Sea Res. Pt. I, 37, 157–165, https://doi.org/10.1016/0198-0149(90)90034-S, 1990.
Warembourg, F. R.: Nitrogen fixation in soil and plant systems, in: Nitrogen isotope techniques, edited by: Knowles, R. and Blackburn, T. H., Academic Press San Diego, USA, 127–156, 1993.
Zhu, C., Lipp, J. S., Wörmer, L., Becker, K. W., Schröder, J., and Hinrichs, K.-U.: Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol, Org. Geochem., 65, 53–62, https://doi.org/10.1016/j.orggeochem.2013.09.012, 2013.
Short summary
Understanding nitrogen (N) cycling mechanisms in the ocean is crucial for improving ecosystem management. Here we study N processes by in situ lander and isotope tracer techniques in – so far overlooked – sediments with low organic loads. Denitrification and anammox are the main N transformation processes. However, we demonstrate high contribution of dissimilatory nitrate reduction to ammonium, which recycles a major portion of fixed N to the water column and sustains primary production.
Understanding nitrogen (N) cycling mechanisms in the ocean is crucial for improving ecosystem...
Altmetrics
Final-revised paper
Preprint