Articles | Volume 14, issue 13
https://doi.org/10.5194/bg-14-3191-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-3191-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Biogenic sediments from coastal ecosystems to beach–dune systems: implications for the adaptation of mixed and carbonate beaches to future sea level rise
Giovanni De Falco
CORRESPONDING AUTHOR
Istituto per l'ambiente Marino Costiero CNR, Oristano, Italy
Emanuela Molinaroli
Dipartimento di Scienze Ambientali, Informatica e Statistica,
Università Ca' Foscari, Venice, Italy
Alessandro Conforti
Istituto per l'ambiente Marino Costiero CNR, Oristano, Italy
Simone Simeone
Istituto per l'ambiente Marino Costiero CNR, Oristano, Italy
Renato Tonielli
Istituto per l'ambiente Marino Costiero CNR, Naples, Italy
Related authors
Walter Brambilla, Alessandro Conforti, Simone Simeone, Paola Carrara, Simone Lanucara, and Giovanni De Falco
Earth Syst. Sci. Data, 11, 515–527, https://doi.org/10.5194/essd-11-515-2019, https://doi.org/10.5194/essd-11-515-2019, 2019
Short summary
Short summary
The expected sea level rise by the year 2100 will determine an adaptation of the whole coastal system and the land retreat of the shoreline. Future scenarios coupled with the improvement of mining technologies will favour increased exploitation of sand deposits for nourishment. This work summarises a large data set of geophysical and sedimentological data that maps the spatial features of submerged sand deposits and is a useful tool in future climate change scenarios.
Federica Foglini, Marzia Rovere, Renato Tonielli, Giorgio Castellan, Mariacristina Prampolini, Francesca Budillon, Marco Cuffaro, Gabriella Di Martino, Valentina Grande, Sara Innangi, Maria Filomena Loreto, Leonardo Langone, Fantina Madricardo, Alessandra Mercorella, Paolo Montagna, Camilla Palmiotto, Claudio Pellegrini, Antonio Petrizzo, Lorenzo Petracchini, Alessandro Remia, Marco Sacchi, Daphnie Sanchez Galvez, Anna Nora Tassetti, and Fabio Trincardi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-135, https://doi.org/10.5194/essd-2024-135, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In 2022, the new CNR Research Vessel GAIA BLU explored the seafloor of the Naples and Pozzuoli Gulfs, and the Amalfi coastal area (Tyrrhenian Sea, Italy) from 50 to 2000 m water depth, covering 5000 m2 of seafloor. This paper describes data acquisition and processing and provides maps in unprecedented detail of this area abrupt to geological changes and human impacts. These findings support future geological and geomorphological investigations and mapping and monitoring seafloor and habitats.
Walter Brambilla, Alessandro Conforti, Simone Simeone, Paola Carrara, Simone Lanucara, and Giovanni De Falco
Earth Syst. Sci. Data, 11, 515–527, https://doi.org/10.5194/essd-11-515-2019, https://doi.org/10.5194/essd-11-515-2019, 2019
Short summary
Short summary
The expected sea level rise by the year 2100 will determine an adaptation of the whole coastal system and the land retreat of the shoreline. Future scenarios coupled with the improvement of mining technologies will favour increased exploitation of sand deposits for nourishment. This work summarises a large data set of geophysical and sedimentological data that maps the spatial features of submerged sand deposits and is a useful tool in future climate change scenarios.
Related subject area
Earth System Science/Response to Global Change: Models, Holocene/Anthropocene
Frost matters: incorporating late-spring frost into a dynamic vegetation model regulates regional productivity dynamics in European beech forests
Coupling numerical models of deltaic wetlands with AirSWOT, UAVSAR, and AVIRIS-NG remote sensing data
Meteorological history of low-forest-greenness events in Europe in 2002–2022
Modelling long-term alluvial-peatland dynamics in temperate river floodplains
Variable particle size distributions reduce the sensitivity of global export flux to climate change
Climate change will cause non-analog vegetation states in Africa and commit vegetation to long-term change
Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC-based global gridded crop model
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections
The capacity of northern peatlands for long-term carbon sequestration
Towards a more complete quantification of the global carbon cycle
Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale
An enhanced forest classification scheme for modeling vegetation–climate interactions based on national forest inventory data
Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests
Modelling past, present and future peatland carbon accumulation across the pan-Arctic region
Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model
Effects of climate change and land management on soil organic carbon dynamics and carbon leaching in northwestern Europe
Quantifying regional, time-varying effects of cropland and pasture on vegetation fire
HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
Impact of human population density on fire frequency at the global scale
Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art
A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe
Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions
A new concept for simulation of vegetated land surface dynamics – Part 1: The event driven phenology model
Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology – Part 2: The event driven phenology model
The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate
Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model
Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization
Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model
Projected 21st century decrease in marine productivity: a multi-model analysis
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
Luca Cortese, Carmine Donatelli, Xiaohe Zhang, Justin A. Nghiem, Marc Simard, Cathleen E. Jones, Michael Denbina, Cédric G. Fichot, Joshua P. Harringmeyer, and Sergio Fagherazzi
Biogeosciences, 21, 241–260, https://doi.org/10.5194/bg-21-241-2024, https://doi.org/10.5194/bg-21-241-2024, 2024
Short summary
Short summary
This study shows that numerical models in coastal areas can greatly benefit from the spatial information provided by remote sensing. Three Delft3D numerical models in coastal Louisiana are calibrated using airborne SAR and hyperspectral remote sensing products from the recent NASA Delta-X mission. The comparison with the remote sensing allows areas where the models perform better to be spatially verified and yields more representative parameters for the entire area.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Short summary
This study examines the multi-annual meteorological history of low-forest-greenness events in Europe's temperate and Mediterranean biome in 2002–2022. We systematically identify anomalies in temperature, precipitation, and weather systems as event precursors, with noteworthy differences between the two biomes. We also quantify the impact of the most extensive event in 2022 (37 % coverage), underlining the importance of understanding the forest–meteorology interaction in a changing climate.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 18, 6181–6212, https://doi.org/10.5194/bg-18-6181-2021, https://doi.org/10.5194/bg-18-6181-2021, 2021
Short summary
Short summary
Here we present a new modelling framework specifically designed to simulate alluvial peat growth, taking into account the river dynamics. The results indicate that alluvial peat growth is strongly determined by the number, spacing and movement of the river channels in the floodplain, rather than by environmental changes or peat properties. As such, the amount of peat that can develop in a floodplain is strongly determined by the characteristics and dynamics of the local river network.
Shirley W. Leung, Thomas Weber, Jacob A. Cram, and Curtis Deutsch
Biogeosciences, 18, 229–250, https://doi.org/10.5194/bg-18-229-2021, https://doi.org/10.5194/bg-18-229-2021, 2021
Short summary
Short summary
A global model is constrained with empirical relationships to quantify how shifts in sinking-particle sizes modulate particulate organic carbon export production changes in a warming ocean. Including the effect of dynamic particle sizes on remineralization reduces the magnitude of predicted 100-year changes in export production by ~14 %. Projections of future export could thus be improved by considering dynamic phytoplankton and particle-size-dependent remineralization depths.
Mirjam Pfeiffer, Dushyant Kumar, Carola Martens, and Simon Scheiter
Biogeosciences, 17, 5829–5847, https://doi.org/10.5194/bg-17-5829-2020, https://doi.org/10.5194/bg-17-5829-2020, 2020
Short summary
Short summary
Lags caused by delayed vegetation response to changing environmental conditions can lead to disequilibrium vegetation states. Awareness of this issue is relevant for ecosystem conservation. We used the aDGVM vegetation model to quantify the difference between transient and equilibrium vegetation states in Africa during the 21st century for two potential climate trajectories. Lag times increased over time and vegetation was non-analog to any equilibrium state due to multi-lag composite states.
Tony W. Carr, Juraj Balkovič, Paul E. Dodds, Christian Folberth, Emil Fulajtar, and Rastislav Skalsky
Biogeosciences, 17, 5263–5283, https://doi.org/10.5194/bg-17-5263-2020, https://doi.org/10.5194/bg-17-5263-2020, 2020
Short summary
Short summary
We generate 30-year mean water erosion estimates in global maize and wheat fields based on daily simulation outputs from an EPIC-based global gridded crop model. Evaluation against field data confirmed the robustness of the outputs for the majority of global cropland and overestimations at locations with steep slopes and strong rainfall. Additionally, we address sensitivities and uncertainties of model inputs to improve water erosion estimates in global agricultural impact studies.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Georgii A. Alexandrov, Victor A. Brovkin, Thomas Kleinen, and Zicheng Yu
Biogeosciences, 17, 47–54, https://doi.org/10.5194/bg-17-47-2020, https://doi.org/10.5194/bg-17-47-2020, 2020
Miko U. F. Kirschbaum, Guang Zeng, Fabiano Ximenes, Donna L. Giltrap, and John R. Zeldis
Biogeosciences, 16, 831–846, https://doi.org/10.5194/bg-16-831-2019, https://doi.org/10.5194/bg-16-831-2019, 2019
Short summary
Short summary
Globally, C is added to the atmosphere from fossil fuels and deforestation, balanced by ocean uptake and atmospheric increase. The difference (residual sink) is equated to plant uptake. But this omits cement carbonation; transport to oceans by dust; riverine organic C and volatile organics; and increased C in plastic, bitumen, wood, landfills, and lakes. Their inclusion reduces the residual sink from 3.6 to 2.1 GtC yr-1 and thus the inferred ability of the biosphere to alter human C emissions.
Kerstin Kretschmer, Lukas Jonkers, Michal Kucera, and Michael Schulz
Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, https://doi.org/10.5194/bg-15-4405-2018, 2018
Short summary
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Titta Majasalmi, Stephanie Eisner, Rasmus Astrup, Jonas Fridman, and Ryan M. Bright
Biogeosciences, 15, 399–412, https://doi.org/10.5194/bg-15-399-2018, https://doi.org/10.5194/bg-15-399-2018, 2018
Short summary
Short summary
Forest management shapes forest structure and in turn surface–atmosphere interactions. We used Fennoscandian forest maps and inventory data to develop a classification system for forest structure. The classification was integrated with the ESA Climate Change Initiative land cover map to achieve complete surface representation. The result is an improved product for modeling surface–atmosphere exchanges in regions with intensively managed forests.
Anna T. Trugman, David Medvigy, William A. Hoffmann, and Adam F. A. Pellegrini
Biogeosciences, 15, 233–243, https://doi.org/10.5194/bg-15-233-2018, https://doi.org/10.5194/bg-15-233-2018, 2018
Short summary
Short summary
Tree fire tolerance strategies may significantly impact woody carbon stability and the existence of tropical savannas under global climate change. We used a numerical ecosystem model to test the impacts of fire survival strategy under differing fire and rainfall regimes. We found that the high survival rate of large fire-tolerant trees reduced carbon losses with increasing fire frequency, and reduced the range of conditions leading to either complete tree loss or complete grass loss.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017, https://doi.org/10.5194/bg-14-4023-2017, 2017
Short summary
Short summary
We employed an individual- and patch-based dynamic global ecosystem model to quantify long-term C accumulation rates and to assess the effects of historical and projected climate change on peatland C balances across the pan-Arctic. We found that peatlands in Scandinavia, Europe, Russia and central and eastern Canada will become C sources, while Siberia, far eastern Russia, Alaska and western and northern Canada will increase their sink capacity by the end of the 21st century.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 2571–2596, https://doi.org/10.5194/bg-14-2571-2017, https://doi.org/10.5194/bg-14-2571-2017, 2017
Short summary
Short summary
We incorporated peatland dynamics into
Arcticversion of dynamic vegetation model LPJ-GUESS to understand the long-term evolution of northern peatlands and effects of climate change on peatland carbon balance. We found that the Stordalen mire may be expected to sequester more carbon before 2050 due to milder and wetter climate conditions, a longer growing season and CO2 fertilization effect, turning into a C source after 2050 because of higher decomposition rates in response to warming soils.
Maria Stergiadi, Marcel van der Perk, Ton C. M. de Nijs, and Marc F. P. Bierkens
Biogeosciences, 13, 1519–1536, https://doi.org/10.5194/bg-13-1519-2016, https://doi.org/10.5194/bg-13-1519-2016, 2016
Short summary
Short summary
We modelled the effects of changes in climate and land management on soil organic carbon (SOC) and dissolved organic carbon (DOC) levels in sandy and loamy soils under forest, grassland, and arable land. Climate change causes a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC slightly increases. A reduction in fertilizer application leads to a decrease in SOC and DOC levels under arable land but has a negligible effect under grassland.
S. S. Rabin, B. I. Magi, E. Shevliakova, and S. W. Pacala
Biogeosciences, 12, 6591–6604, https://doi.org/10.5194/bg-12-6591-2015, https://doi.org/10.5194/bg-12-6591-2015, 2015
Short summary
Short summary
People worldwide use fire to manage agriculture, but often also suppress fire in the landscape surrounding their fields. Here, we estimate the net result of these effects of cropland and pasture on fire at a regional, monthly level. Pasture is shown, for the first time, to contribute strongly to global patterns of burning. Our results could be used to improve representations of burning in global vegetation and climate models, improving our understanding of how people affect the Earth system.
Y. Le Page, D. Morton, B. Bond-Lamberty, J. M. C. Pereira, and G. Hurtt
Biogeosciences, 12, 887–903, https://doi.org/10.5194/bg-12-887-2015, https://doi.org/10.5194/bg-12-887-2015, 2015
W. Knorr, T. Kaminski, A. Arneth, and U. Weber
Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, https://doi.org/10.5194/bg-11-1085-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
R. Fuchs, M. Herold, P. H. Verburg, and J. G. P. W. Clevers
Biogeosciences, 10, 1543–1559, https://doi.org/10.5194/bg-10-1543-2013, https://doi.org/10.5194/bg-10-1543-2013, 2013
P. W. Keys, R. J. van der Ent, L. J. Gordon, H. Hoff, R. Nikoli, and H. H. G. Savenije
Biogeosciences, 9, 733–746, https://doi.org/10.5194/bg-9-733-2012, https://doi.org/10.5194/bg-9-733-2012, 2012
V. Kovalskyy and G. M. Henebry
Biogeosciences, 9, 141–159, https://doi.org/10.5194/bg-9-141-2012, https://doi.org/10.5194/bg-9-141-2012, 2012
V. Kovalskyy and G. M. Henebry
Biogeosciences, 9, 161–177, https://doi.org/10.5194/bg-9-161-2012, https://doi.org/10.5194/bg-9-161-2012, 2012
A. Dallmeyer and M. Claussen
Biogeosciences, 8, 1499–1519, https://doi.org/10.5194/bg-8-1499-2011, https://doi.org/10.5194/bg-8-1499-2011, 2011
B. D. Stocker, K. Strassmann, and F. Joos
Biogeosciences, 8, 69–88, https://doi.org/10.5194/bg-8-69-2011, https://doi.org/10.5194/bg-8-69-2011, 2011
A. Oschlies, W. Koeve, W. Rickels, and K. Rehdanz
Biogeosciences, 7, 4017–4035, https://doi.org/10.5194/bg-7-4017-2010, https://doi.org/10.5194/bg-7-4017-2010, 2010
S. Bathiany, M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 7, 1383–1399, https://doi.org/10.5194/bg-7-1383-2010, https://doi.org/10.5194/bg-7-1383-2010, 2010
M. Steinacher, F. Joos, T. L. Frölicher, L. Bopp, P. Cadule, V. Cocco, S. C. Doney, M. Gehlen, K. Lindsay, J. K. Moore, B. Schneider, and J. Segschneider
Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, https://doi.org/10.5194/bg-7-979-2010, 2010
A. Oschlies
Biogeosciences, 6, 1603–1613, https://doi.org/10.5194/bg-6-1603-2009, https://doi.org/10.5194/bg-6-1603-2009, 2009
Cited articles
Acquaro, E.: Tharros, Cartagine di Sardegna, Rendiconti Accademia Lincei, 6, 523–541, 1995.
Andreucci, S., Pascucci, V., Murray, A. S., and Clemmensen, L. B.: Late Pleistocene coastal evolution of San Giovanni di Sinis, west Sardinia (Western Mediterranean), Sediment. Geol., 216, 104–116, 2009.
Antonioli, F., Anzidei, M., Amorosi, A., Lo Presti, V., Mastronuzzi, G., Deiana, G., De Falco, G., Fontana, A., Fontolan, G., Lisco, S., Marsico, A., Moretti, M., Orrù, P. E., Sannino, G. M., Serpelloni, E., and Vecchio, A.: Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100, Quaternary Sci. Rev., 158, 29–43, 2017.
Ardizzone, G., Belluscio, A., and Maiorano, L.: Long-term change in the structure of a Posidonia oceanica landscape and its reference for a monitoring plan, Mar. Ecol.-Prog. Ser., 27, 299–309, 2006.
Balzano, A., De Falco, G., Simeone, S., Sulis, A., Antognarelli, F., Massaro, G., Satta, A., Cugusi, G., Oiras, M., and Ventroni, M.: Morfodinamica della spiaggia di San Giovanni del Sinis, in: La Rete per il monitoraggio delle spiagge, edited by: Abis, A., Campo, C., Careddu, M. B., and Deriu, M., 98–136, ISBN 9788874321322, 2013.
Barsanti, M., Calda, N., and Valloni, R.: The Italian coasts: a Natural Laboratory for the Quality Evaluation of Beach Replenishments, J. Coastal Res., SI 61, 1–7, 2011.
Bianchi, C. and Morri, C.: Marine biodiversity of the Mediterranean sea: situation, problems and prospects for future research, Mar. Pollut. Bull., 40, 367–376, 2000.
Bird, E.: Coastal geomorphology. An introduction, San Francisco, Wiley & Sons, 2008.
Blanc, J. J. and Jeudy de Grissac, A.: Reflexion sur la regression des herbiers a Posidonies, in: International workshop on Posidonia oceanica Meadows, Departements du Var e des Bouches di Rhone, GIS Posidonie Publisher, France, 2, 273–285, 1989.
Borg, J. A., Attrill, M. J., Rowden, A. A., Schembri, P. J., and Jones, M. B.: Architectural characteristics of two bed types of the seagrass Posidonia oceanica over different spatial scales, Estuar. Coast. Shelf S., 62, 667–678, 2005.
Boström, C., Jackson, E. L., and Simenstad, C. A.: Seagrass landscapes and their effects on associated fauna: a review, Estuar. Coast. Shelf S., 68, 383–403, 2006.
Boudouresque, C. F., Bernard, G., Pergent, G., Shili, A., and Verlaque, M.: Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review, Bot. Mar., 52, 395–418, 2009.
Campus, B., Devoti, D., Pranzini, E., Rossi, L., and Silenzi, S.: Morfologia e dinamica dei sedimenti di una cuspate foreland (spiaggia della Pelosa, Stintino, Sardegna), Atti del Convegno Nazionale di Maratea 15–17 maggio 2008 n.9 – maggio 2008, http://www.adb.basilicata.it/adb/pubblicazioni/vol9.asp, 2008.
Canals, M. and Ballesteros, E.: Production of carbonate particles be phytobentic communities on the Mallorcae Menorca shelf, northwestern Mediterranean Sea, Deep-Sea Res. Pt. II, 44, 611–629, 1997.
Como, S., Magni, P., Baroli, M., Casu, D., De Falco, G., and Floris, A.: Comparative analysis of macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and leaf litter beds, Mar. Biol., 153, 1087–1101, 2008.
Corsini, S., Franco, L., Inghilesi, R., and Piscopia, R.: Atlante delle onde nei mari Italiani – Italian Waves Atlas. Roma, Italy: Roma: Agenzia per la Protezione dell'Ambiente e per i servizi Tecnici, 2006.
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., and Turner, K.: Changes in the global value of ecosystem services, Glob. Environ. Chang., 26, 152–158, 2014.
Cucco, A., Perilli, A., De Falco, G., Ghezzo, M., and Umgiesser, G.: Water circulation and transport timescales in the Gulf of Oristano, Chem. Ecol., 22 (Suppl. 1), 307–331, 2006.
De Falco, G. and Piergallini, G. (Eds.): Mare, Golfo, Lagune – Studi e ricerche, Editrice S'Alvure (Oristano, Italy), 205 pp., 2003.
De Falco, G., Ferrari, S., Cancemi, G., and Baroli, M.: Relationships between sediment distribution and Posidonia oceanica seagrass, Geomarine Letters, 20, 50–57, 2000.
De Falco, G., Molinaroli, E., Baroli, M., and Bellacicco, S.: Grain size and compositional trends of sediments from Posidonia oceanica meadows to beach shore, Sardinia, Western Mediterranean, Coast. Shelf S., 58, 299–309, 2003.
De Falco, G., Baroli, M., Cucco, A., and Simeone, S.: Intrabasinal conditions promoting the development of a biogenic carbonate sedimentary facies associated with the seagrass Posidonia oceanic, Cont. Shelf Res., 28, 797–812, https://doi.org/10.1016/j.csr.2007.12.014, 2008.
De Falco, G., De Muro, S., Batzella, T., and Cucco, A.: Carbonate sedimentation and hydro-dynamical pattern on a modern temperate shelf: the strait of Bonifacio (western Mediterranean), Estuar. Coast. Shelf S., 93, 14–26, 2011.
De Falco, G., Antonioli, F., Fontolan, G., Lo Presti, V., Simeone, S., and Tonielli, R.: Early cementation and accommodation space dictate the evolution of an overstepping barrier system during the Holocene, Mar. Geol., 369, 52–66, 2015.
De Falco et al.: Data Repository De Falco et al. 2017 Biogeosciences, 14, 1–15, 2017, http://sk.oristano.iamc.cnr.it/maps/285, 30 June 2017.
de Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L.C., ten Brink, P., and van Beukering, P.: Global estimates of the value of ecosystems and their services in monetary units, Ecosystem Services, 1, 50–61, 2012.
De Muro, S. and De Falco, G. (Eds.): Manuale per la gestione delle spiagge: studi, indagini ed esperienze sulle spiagge sarde e corse, Cagliari: CUEC Ed., ISBN: 978-88-8467-629-0, 367 pp., 2010.
De Muro, S., Ibba, A., and Kalb, C.: Morpho-sedimentology of a Mediterranean microtidal embayed wave dominated beach system and related inner shelf with Posidonia oceanica meadows: the SE Sardinian coast, Journal of Maps, 12, 558–572, 2016.
Duarte, C. M.: The future of seagrass meadows, Environ. Conserv., 29, 192–206, 2002.
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marbà, N.: The role of coastal plant communities for climate change mitigation and adaptation, Nat. Climate Change, 3, 961–968, 2013.
Flügel, E. (Ed.): Microfacies Analysis of Limestones, Berlin Heidelberg, Springer Verlag, 1982.
Fornós, J. J. and Ahr, W. M.: Temperate Carbonates on a Modern, Low-Energy, Isolated Ramp: The Balearic Platform, Spain. J. Sediment. Res. B, 67, 364–373, 1997.
Fornós, J. J. and Ahr, W. M.: Present-day temperate carbonate sedimentation on the Balearic Platform, western Mediterranean: compositional and textural variation along a low-energy isolated ramp, Geological Society, London, Special Publications, 255, 71–84, 2006.
Gacia, E., Duarte, C. M., Marbà, N., Terrados, J., Kennedy, H., Fortes, M. D., and Tri, N. H.: Sediment deposition and production in SE-Asia seagrass meadows. Estuarine, Coast. Shelf Sci., 56, 909–919, 2003.
Giakoumi, S., Sini, M., Gerovasileiou, V., Mazor, T., Beher, J., Possingham, H. P., Abdulla, A., Cinar, M. E., Dendrinos, P., Gucu, A. C., Karamanlidis, A. A., Rodic, P., Panayotidis, P., Taskin, E., Jaklin, A., Voultsiadou, E., Webster, C., Zenetos, A., and Katsanevakis, S.: Ecoregion-based conservation planning in the Mediterranean: dealing with large-scale heterogeneity, PLOS ONE, 8, 1–15, https://doi.org/10.1371/journal.pone.0076449, 2013.
Gómez-Pujol, L., Roig-Munar, F. X., Fornós, J. J., and Balaguer, P. Mateu, J.: Provenance-related characteristics of beach sediments around the island of Menorca, Balearic Islands (western Mediterranean), Geo-Mar. Lett., 33, 195-208, https://doi.org/10.1007/s00367-012-0314-y, 2013.
Harney, J. N. and Fletcher III, C. H.: A budget of carbonate framework and sediment production, Kailua Bay, Oahu, Hawaii, J. Sediment. Res., 73, 856–868, 2003.
James, N. P.: The cool-water carbonate depositional realm, in: Cool-Water Carbonates, edited by: James, N. P. and Clarke, J. A. D., SEPM Special Publication, 56, 1–22, 1997.
Jeudy de Grissac, A. and Boudouresque, C. F.: Rôles des herbiers de phanérogames marines dans les mouvements des sédiments côtiers: les herbiers à Posidonia oceanica, Colloque franco-japonais Oceanographie, Marseille, 16–21, 143–151, 1985.
Kendrick, G. A., Marba, N., and Duarte, C. M.: Modelling formation of complex topography by the seagrass Posidonia oceanica, Estuar. Coast. Shelf S., 65, 717–725, 2005.
Le Cozannet, G., Garcin, M., Yates, M., Idier, D., and Meyssignac, B.: Approaches to evaluate the recent impacts of sea-level rise on shoreline changes, Earth-Sci. Rev., 138, 47–60, 2014.
Leriche, A., Pasqualini, V., Boudouresque, C. F., Bernard, G., Bonhomme, P., Clabaut, P., and Denis, J.: Spatial, temporal and structural variations of a Posidonia oceanica seagrass meadow facing human activities, Aquat. Bot., 84, 287–293, 2006.
López, M., López, I., Aragonés, L., Serra, J. C., and Esteban, V.: The erosion on the east coast of Spain: Wear of particles, mineral composition, carbonates and Posidonia oceanica, Sci. Total Environ., 572, 487–497, 2016.
Marbà, N. and Duarte, C. M.: Interannual changes in seagrass (Posidonia oceanica) growth and environmental change in the Spanish Mediterranean littoral zone, Limnol. Oceanogr., 42, 800–810, 1997.
Marbà, N., Duarte, C. M., Cebrian, J., Gallegos, M. E., Olesen, B., and Sand-Jensen, K.: Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean Coast: Elucidating seagrass decline, Mar. Ecol.-Prog. Ser., 137, 203–213, 1996.
Mateu-Vicens, G., Brandano, M., Gaglianone, G., and Baldassarre, A.: Seagrass-meadow sedimentary facies in a mixed siliciclastic-carbonate temperate system in the Tyrrhenian Sea (Pontinian Islands, Western Mediterranean), J. Sediment. Res., 82, 451–463, https://doi.org/10.2110/jsr.2012.42, 2012.
Mazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., and Duarte, C. M.: Seagrass meadows as a globally significant carbonate reservoir, Biogeosciences, 12, 4993–5003, https://doi.org/10.5194/bg-12-4993-2015, 2015.
Meinesz, A., Lefevre, J. R., and Astier, J. M.: Impact of coastal development on the infralittoral zone along the Southeastern Mediterranean shore of continental France, Mar. Pollut. Bull., 23, 343–347, 1991.
Milliman, J. D. and Droxler, A. W.: Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss, Geol. Rundsch., 85, 496–504, 1996.
Montefalcone, M., Albertelli, G., Morri, C., and Bianchi, C. N.: Pattern of wide-scale substitution within Posidonia oceanica meadows of NW Mediterranean Sea: invaders are stronger than natives, Aquat. Conserv., 20, 507–515, 2010.
Nelson, C. S.: An introductory perspective on nontropical shelf carbonates, Sediment. Geol., 60, 3–14, 1988.
Pasqualini, V., Pergent-Martini, C., Clabaut, P., and Pergent, G.: Mapping of Posidonia oceanica using aerial photographs and side scan sonar: application off the Island of Corsica (France), Estuar. Coast. Shelf S., 47, 359–367, 1998.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E. Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hattè, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Rivers, J., James, N. P., Kyser, T. K., and Bone, Y.: Genesis of palimpsest cool-water carbonate sediment on the continental margin of Southern Australia, J. Sediment. Res., 77, 480–494, https://doi.org/10.2110/jsr.2007.046, 2007.
Rosati, J. D.: Concepts in sediment budgets, J. Coastal Res., 21, 307–322, 2005.
Ryan, D. A., Brooke, B. P., Collins, L. B., Spooner, M. I., and Siwabessy, P. J. W.: Formation, morphology and preservation of high energy carbonate lithofacies: evolution of the cool-water Recherche Archipelago inner shelf, south-western Australia, Sediment. Geol., 207, 41–55, 2008.
Sanderson, P. G. and Eliot, I.: Compartmentalisation of beachface sediments along the southwestern coast of Australia, Mar. Geol., 162, 145–164, 1999.
Serrano, O., Mateo, M. A., Renom, P., and Julià, R.: Characterization of soils beneath a Posidonia oceanica meadow, Geoderma, 185, 26–36, 2012.
Short, A. D: Handbook of Beach and Shoreface Morphodynamics, John Wiley & Sons Ltd., England, 379 pp., ISBN: 0 471 96570 7, 1999.
Short, A. D.: The Distribution and Impact of Carbonate Sands on Southern Australian Beach-Dune Systems, in: Carbonate Beaches, edited by: Magoon, O. T., Robbins, L. L., and Ewing, L., Proceedings ASCE, 236–250, 2000.
Short, A. D.: Sediment transport around Australia – Sources, mechanisms, rates, and barrier forms, J. Coast. Res., 26, 395–402, 2010.
Short, F. T. and Neckels, H. A.: The effects of global climate change on seagrasses, Aquat. Bot., 63, 169–196, 1999.
Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Bujang, J. S., Calumpong, H. P., Carruthers, T. J. B., Coles, R. G., Dennison, W. C., Erftemeier, P. L. A., Fortes, M. D., Freeman, A. S., Jagtap, T. G., Kamal, A. H. M., Kendrick, G. A., Kenworthy, W. J., La Nafie, Y. A., Nasution, I. M., Orth, R. J., Prathep, A., Sanciangco, J. C., van Tussenbroek, B., Vergara, S. G., Waycott, M., and Zieman, J. C.: Extinction risk assessment of the world's seagrass species, Biol. Conserv., 144, 1961–1971, 2011.
Simeone, S. and De Falco, G.: Morphology and composition of beachcast Posidonia oceanica litter on beaches with different exposures, Geomorphology, 151, 224–233, 2012.
Simeone, S., De Muro, S., and De Falco, G.: Seagrass berm deposition on a Mediterranean embayed beach, Estuarine, Coast. Shelf Sci., 135, 171–181, 2013.
Simeone, S., De Falco, G., Quattrocchi, G., and Cucco, A.: Morphological changes of a Mediterranean beach over one year (San Giovanni Sinis, western Mediterranean), J. Coast. Res., SI 70, 217–222, 2014.
Talma, A. S. and Vogel, J. C.: A simplified approach to calibrating 14C dates, Radiocarbon, 35, 317–322, 1993.
Tecchiato, S., Collins, L., Parnum, I., and Stevens, A.: The influence of geomorphology and sedimentary processes on benthic habitat distribution and littoral sediment dynamics: Geraldton, Western Australia, Mar. Geol., 359, 148–162, 2015.
Tigny, V., Ozer, A., De Falco, G., Baroli, M., and Djenidi, S.: Relationship between the Evolution of the Shoreline and the Posidonia oceanica meadow limit in a Sardinian Coastal Zone, J. Coast. Res., 23, 787–793, 2007.
Vacchi, M., De Falco, G., Simeone, S., Montefalcone, M., Morri, C., Ferrari, M., and Nike Bianchi, C.: Biogeomorphology of the Mediterranean Posidonia oceanica seagrass meadows,. Earth Surf. Proc. Land., 42, 42–54, https://doi.org/10.1002/esp.3932, 2016.
Vassallo, P., Paoli, C., Rovere, A., Montefalcone, M., Morri, C., and Bianchi, C. N.: The value of the seagrass Posidonia oceanica: a natural capital assessment, Mar. Pollut. Bull., 75, 157–167, 2013.
Waycott, M., Duarte, C. M., Carruthers, T. J., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck Jr., K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L.: Accelerating loss of seagrasses across the globe threatens coastal ecosystems, P. Natl. Acad. Sci. USA, 106, 12377–12381, 2009.
Yamano, H., Kayanne, H., Matsuda, F., and Tsuji, Y.: Lagoonal facies, ages, and sedimentation in three atolls in the Pacific, Mar. Geol., 185, 233–247, 2002.
Yamano, H., Cabioch, G., Pelletier, B., Chevillon, C., Tachikawa, H., Lefêvre, J., and Marchesiello, P.: Modern carbonate sedimentary facies on the outer shelf and slope around New Caledonia, Isl. Arc, 24, 4–15, 2015.
Short summary
This study quantifies the contribution of carbonate sediments, produced in seagrass meadows and in photophilic algal communities, to the sediment budget of a beach–dune system. The contribution to the beach sediment budget represents a further ecosystem service provided by seagrass. The dependence of the beach sediment budget on carbonate production associated with coastal ecosystems has implications for the adaptation of carbonate beaches to the seagrass decline and sea level rise.
This study quantifies the contribution of carbonate sediments, produced in seagrass meadows and...
Altmetrics
Final-revised paper
Preprint