Articles | Volume 15, issue 5
https://doi.org/10.5194/bg-15-1335-2018
https://doi.org/10.5194/bg-15-1335-2018
Research article
 | 
05 Mar 2018
Research article |  | 05 Mar 2018

Towards an assessment of riverine dissolved organic carbon in surface waters of the western Arctic Ocean based on remote sensing and biogeochemical modeling

Vincent Le Fouest, Atsushi Matsuoka, Manfredi Manizza, Mona Shernetsky, Bruno Tremblay, and Marcel Babin

Related authors

On biotic and abiotic drivers of the microphytobenthos seasonal cycle in a temperate intertidal mudflat: a modelling study
Raphaël Savelli, Christine Dupuy, Laurent Barillé, Astrid Lerouxel, Katell Guizien, Anne Philippe, Pierrick Bocher, Pierre Polsenaere, and Vincent Le Fouest
Biogeosciences, 15, 7243–7271, https://doi.org/10.5194/bg-15-7243-2018,https://doi.org/10.5194/bg-15-7243-2018, 2018
Short summary
Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin
Biogeosciences, 12, 3385–3402, https://doi.org/10.5194/bg-12-3385-2015,https://doi.org/10.5194/bg-12-3385-2015, 2015

Related subject area

Biogeochemistry: Coastal Ocean
Long-term variations in pH in coastal waters along the Korean Peninsula
Yong-Woo Lee, Mi-Ok Park, Seong-Gil Kim, Tae-Hoon Kim, Yong Hwa Oh, Sang Heon Lee, and DongJoo Joung
Biogeosciences, 22, 675–690, https://doi.org/10.5194/bg-22-675-2025,https://doi.org/10.5194/bg-22-675-2025, 2025
Short summary
The effect of carbonate mineral additions on biogeochemical conditions in surface sediments and benthic–pelagic exchange fluxes
Kadir Biçe, Tristen Myers Stewart, George G. Waldbusser, and Christof Meile
Biogeosciences, 22, 641–657, https://doi.org/10.5194/bg-22-641-2025,https://doi.org/10.5194/bg-22-641-2025, 2025
Short summary
Assessing the impacts of simulated ocean alkalinity enhancement on viability and growth of nearshore species of phytoplankton
Jessica L. Oberlander, Mackenzie E. Burke, Cat A. London, and Hugh L. MacIntyre
Biogeosciences, 22, 499–512, https://doi.org/10.5194/bg-22-499-2025,https://doi.org/10.5194/bg-22-499-2025, 2025
Short summary
Responses of microbial metabolic rates to non-equilibrated silicate- versus calcium-based ocean alkalinity enhancement
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024,https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
High metabolic zinc demand within native Amundsen and Ross sea phytoplankton communities determined by stable isotope uptake rate measurements
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024,https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary

Cited articles

Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res.-Oceans, 94, 14485–14498, https://doi.org/10.1029/JC094iC10p14485, 1989. 
Abbott, B. W. , Jones, J. B., Schuur, E. A. G., Chapin III, F. S., Bowden, W. B., Bret-Harte, M. S., Epstein, H. E., Flannigan, M. D., Harms, T. K., Hollingsworth, T. N., Mack, M. C., McGuire, A. D., Natali, S. M., Rocha, A. V., Tank, S. E., Turetsky, M. R., Vonk, J. E., Wickland, K. P., Aiken, G. R., Alexander, H. D., Amon, R. M. W., Benscoter, B. W., Bergeron, Y., Bishop, K., Blarquez, O., Bond-Lamberty, B., Breen, A. L., Buffam, I., Cai, Y., Carcaillet, C., Carey, S. K., Chen, J. M., Chen, H. Y. H., Christensen, T. R., Cooper, L. W., Cornelissen, J. H. C., de Groot, W. J., DeLuca, T. H., Dorrepaal, E., Fetcher, N., Finlay, J. C., Forbes, B. C., French, N. H. F., Gauthier, S., Girardin, M. P., Goetz, S. J., Goldammer, J. G., Gough, L., Grogan, P., Guo, L., Higuera, P. E., Hinzman, L., Hu, F. S., Hugelius, G., Jafarov, E. E., Jandt, R., Johnstone, J. F., Karlsson, J., Kasischke, E. S., Kattner, G., Kelly, R., Keuper, F., Kling, G. W., Kortelainen, P., Kouki, J., Kuhry, P., Laudon, H., Laurion, I., Macdonald, R. W., Mann, P. J., Martikainen, P. J., McClelland, J. W., Molau, U., Oberbauer, S. F., Olefeldt, D., Paré, D., Parisien, M. A., Payette, S., Peng, C., Pokrovsky, O. S., Rastetter, E. B., Raymond, P. A., Raynolds, M. K., Rein, G., Reynolds, J. F., Robards, M., Rogers, B. M., Schädel, C., Schaefer, K., Schmidt, I. K., Shvidenko, A., Sky, J., Spencer, R. G. M., Starr, G., Striegl, R. G., Teisserenc, R., Tranvik, L. J., Virtanen, T., Welker, J. M., and Zimov, S.: Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment, Environ. Res. Lett., 11, 034014, https://doi.org/10.1088/1748-9326/11/3/034014, 2016. 
Alling, V., Sanchez-Garcia, L., Porcelli, D., Pugach, S., Vonk, J. E., van Dongen, B., Mörth, C.-M., Anderson, L. G., Sokolov, A., Andersson, P., Humborg, C., Semiletov, I., and Gustafsson, Ö.: Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas, Global Biogeochem. Cy., 24, GB4033, https://doi.org/10.1029/2010GB003834, 2010. 
Bélanger, S., Xie, H., Krotkov, N., Larouche, P., Vincent, W. F., and Babin, M.: Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: interannual variability and implications of climate change, Global Biogeochem. Cy., 20, GB4005, https://doi.org/10.1029/2006GB002708, 2006. 
Bélanger, S., Babin, M., and Tremblay, J.-É.: Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding, Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, 2013. 
Download
Short summary
Climate warming could enhance the load of terrigenous dissolved organic carbon (tDOC) of Arctic rivers. We show that tDOC concentrations simulated by an ocean–biogeochemical model in the Canadian Beaufort Sea compare favorably with their satellite counterparts. Over spring–summer, riverine tDOC contributes to 35 % of primary production and an equivalent of ~ 10 % of tDOC is exported westwards with the potential for fueling the biological production of the eastern Alaskan nearshore waters.
Share
Altmetrics
Final-revised paper
Preprint