Articles | Volume 17, issue 10
https://doi.org/10.5194/bg-17-2745-2020
https://doi.org/10.5194/bg-17-2745-2020
Research article
 | 
24 May 2020
Research article |  | 24 May 2020

Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic Sea

Niels A. G. M. van Helmond, Elizabeth K. Robertson, Daniel J. Conley, Martijn Hermans, Christoph Humborg, L. Joëlle Kubeneck, Wytze K. Lenstra, and Caroline P. Slomp

Related authors

Dissolved Mn(III) is a key redox intermediate in sediments of a seasonally euxinic coastal basin
Robin Klomp, Olga M. Żygadłowska, Mike S. M. Jetten, Véronique E. Oldham, Niels A. G. M. van Helmond, Caroline P. Slomp, and Wytze K. Lenstra
EGUsphere, https://doi.org/10.5194/egusphere-2024-1706,https://doi.org/10.5194/egusphere-2024-1706, 2024
Short summary
Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial
Wytze K. Lenstra, Matthias Egger, Niels A. G. M. van Helmond, Emma Kritzberg, Daniel J. Conley, and Caroline P. Slomp
Biogeosciences, 15, 6979–6996, https://doi.org/10.5194/bg-15-6979-2018,https://doi.org/10.5194/bg-15-6979-2018, 2018
Short summary
Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016,https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Freshwater discharge controlled deposition of Cenomanian–Turonian black shales on the NW European epicontinental shelf (Wunstorf, northern Germany)
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015,https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014,https://doi.org/10.5194/bg-11-977-2014, 2014

Related subject area

Biogeochemistry: Coastal Ocean
Temperature-enhanced effects of iron on Southern Ocean phytoplankton
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024,https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Riverine nutrient impact on global ocean nitrogen cycle feedbacks and marine primary production in an Earth system model
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024,https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
The Northeast Greenland Shelf as a potential late-summer CO2 source to the atmosphere
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024,https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024,https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024,https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary

Cited articles

Algar, C. K. and Vallino, J. J.: Predicting microbial nitrate reduction pathways in coastal sediments, Aquat. Microb. Ecol., 71, 223–238, https://doi.org/10.3354/ame01678, 2014. 
Algeo, T. J. and Ingall, E.: Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2, Palaeogeogr. Palaeoecol., 256, 130–155, https://doi.org/10.1016/j.palaeo.2007.02.029, 2007. 
Almroth-Rosell, E., Edman, M., Eilola, K., Meier, H. E. M., and Sahlberg, J.: Modelling nutrient retention in the coastal zone of an eutrophic sea, Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016, 2016. 
An, S. and Gardner, W. S.: Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas), Mar. Ecol. Prog. Ser., 237, 41–50, https://doi.org/10.3354/meps237041, 2002. 
Anderson, D. M., Glibert, P. M., and Burkholder, J. M.: Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences, Estuaries, 25, 704–726, https://doi.org/10.1007/BF02804901, 2002. 
Download
Short summary
We studied the removal of phosphorus (P) and nitrogen (N) in the eutrophic Stockholm archipelago (SA). High sedimentation rates and sediment P contents lead to high P burial. Benthic denitrification is the primary nitrate-reducing pathway. Together, these mechanisms limit P and N transport to the open Baltic Sea. We expect that further nutrient load reduction will contribute to recovery of the SA from low-oxygen conditions and that the sediments will continue to remove part of the P and N loads.
Altmetrics
Final-revised paper
Preprint