Articles | Volume 17, issue 13
https://doi.org/10.5194/bg-17-3613-2020
https://doi.org/10.5194/bg-17-3613-2020
Research article
 | 
10 Jul 2020
Research article |  | 10 Jul 2020

Quantity and distribution of methane entrapped in sediments of calcareous, Alpine glacier forefields

Biqing Zhu, Manuel Kübler, Melanie Ridoli, Daniel Breitenstein, and Martin H. Schroth

Related authors

Effects of eutrophication on sedimentary organic carbon cycling in five temperate lakes
Annika Fiskal, Longhui Deng, Anja Michel, Philip Eickenbusch, Xingguo Han, Lorenzo Lagostina, Rong Zhu, Michael Sander, Martin H. Schroth, Stefano M. Bernasconi, Nathalie Dubois, and Mark A. Lever
Biogeosciences, 16, 3725–3746, https://doi.org/10.5194/bg-16-3725-2019,https://doi.org/10.5194/bg-16-3725-2019, 2019
Technical note: An experimental set-up to measure latent and sensible heat fluxes from (artificial) plant leaves
Stanislaus J. Schymanski, Daniel Breitenstein, and Dani Or
Hydrol. Earth Syst. Sci., 21, 3377–3400, https://doi.org/10.5194/hess-21-3377-2017,https://doi.org/10.5194/hess-21-3377-2017, 2017
Short summary
Anthropogenic and natural methane fluxes in Switzerland synthesized within a spatially explicit inventory
R. V. Hiller, D. Bretscher, T. DelSontro, T. Diem, W. Eugster, R. Henneberger, S. Hobi, E. Hodson, D. Imer, M. Kreuzer, T. Künzle, L. Merbold, P. A. Niklaus, B. Rihm, A. Schellenberger, M. H. Schroth, C. J. Schubert, H. Siegrist, J. Stieger, N. Buchmann, and D. Brunner
Biogeosciences, 11, 1941–1959, https://doi.org/10.5194/bg-11-1941-2014,https://doi.org/10.5194/bg-11-1941-2014, 2014
Technical Note: Disturbance of soil structure can lead to release of entrapped methane in glacier forefield soils
P. A. Nauer, E. Chiri, J. Zeyer, and M. H. Schroth
Biogeosciences, 11, 613–620, https://doi.org/10.5194/bg-11-613-2014,https://doi.org/10.5194/bg-11-613-2014, 2014

Related subject area

Biogeochemistry: Sediment
Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph
Christiane Schmidt, Emmanuelle Geslin, Joan M. Bernhard, Charlotte LeKieffre, Mette Marianne Svenning, Helene Roberge, Magali Schweizer, and Giuliana Panieri
Biogeosciences, 19, 3897–3909, https://doi.org/10.5194/bg-19-3897-2022,https://doi.org/10.5194/bg-19-3897-2022, 2022
Short summary
Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022,https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments
Hanni Vigderovich, Werner Eckert, Michal Elul, Maxim Rubin-Blum, Marcus Elvert, and Orit Sivan
Biogeosciences, 19, 2313–2331, https://doi.org/10.5194/bg-19-2313-2022,https://doi.org/10.5194/bg-19-2313-2022, 2022
Short summary
Ideas and perspectives: Sea-level change, anaerobic methane oxidation, and the glacial–interglacial phosphorus cycle
Bjorn Sundby, Pierre Anschutz, Pascal Lecroart, and Alfonso Mucci
Biogeosciences, 19, 1421–1434, https://doi.org/10.5194/bg-19-1421-2022,https://doi.org/10.5194/bg-19-1421-2022, 2022
Short summary
Estimation of the natural background of phosphate in a lowland river using tidal marsh sediment cores
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022,https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary

Cited articles

Abrams, M. A.: Evaluation of Near-Surface Gases in Marine Sediments to Assess Subsurface Petroleum Gas Generation and Entrapment, Geosciences, 7, 35, https://doi.org/10.3390/geosciences7020035, 2017. 
André, M., Malmstrom, M. E., and Neretnieks, I.: Specific surface area determinations on intact drillcores and evaluation of extrapolation methods for rock matrix surfaces, J. Contam. Hydrol., 110, 1–8, https://doi.org/10.1016/j.jconhyd.2009.05.003, 2009. 
Bárcena, T. G., Yde, J. C., and Finster, K. W.: Methane flux and high-affinity methanotrophic diversity along the chronosequence of a receding glacier in Greenland, Ann. Glaciol., 51, 23–31, 2010. 
Bárcena, T. G., Finster, K. W., and Yde, J. C.: Spatial Patterns of Soil Development, Methane Oxidation, and Methanotrophic Diversity along a Receding Glacier Forefield, Southeast Greenland, Arct. Antarct. Alp. Res., 43, 178–188, https://doi.org/10.1657/1938-4246-43.2.178, 2011. 
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon sink, Science, 331, 50–50, 2011. 
Download
Short summary
We provide evidence that the greenhouse gas methane (CH4) is enclosed in calcareous glacier-forefield sediments across Switzerland. Geochemical analyses confirmed that this ancient CH4 has its origin in the calcareous parent bedrock. Our estimate of the total quantity of CH4 enclosed in sediments across Switzerland indicates a large CH4 mass (~105 t CH4). We produced evidence that CH4 is stable in its enclosed state, but additional experiments are needed to elucidate its long-term fate.
Altmetrics
Final-revised paper
Preprint