Articles | Volume 18, issue 23
https://doi.org/10.5194/bg-18-6181-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6181-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling long-term alluvial-peatland dynamics in temperate river floodplains
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3000, Belgium
Research Foundation – Flanders (FWO), Brussels, 1000, Belgium
Nils Broothaerts
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3000, Belgium
Gert Verstraeten
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3000, Belgium
Related authors
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 16, 3977–3996, https://doi.org/10.5194/bg-16-3977-2019, https://doi.org/10.5194/bg-16-3977-2019, 2019
Short summary
Short summary
In this study, a new model is presented, which was specifically designed to study the development and carbon storage of blanket peatlands since the last ice age. In the past, two main processes (declining forest cover and rising temperatures) have been proposed as drivers of blanket peatland development on the British Isles. The simulations performed in this study support the temperature hypothesis for the blanket peatlands in the Cairngorms Mountains of central Scotland.
Francis Matthews, Panos Panagos, Arthur Fendrich, and Gert Verstraeten
EGUsphere, https://doi.org/10.5194/egusphere-2023-2693, https://doi.org/10.5194/egusphere-2023-2693, 2023
Preprint withdrawn
Short summary
Short summary
We assess if a simplistic model can simulate the timing of soil erosion and sediment transport (delivery) in several small agricultural catchments in North-West Europe. The findings show that the loss of soil in fields and the delivery of sediment to streams are related in complex (non-linear) ways through time which impact our knowledge of soil redistribution. Furthermore, we show how adaptations of simplistic models can be used to reveal the missing processes which require future developments.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 16, 3977–3996, https://doi.org/10.5194/bg-16-3977-2019, https://doi.org/10.5194/bg-16-3977-2019, 2019
Short summary
Short summary
In this study, a new model is presented, which was specifically designed to study the development and carbon storage of blanket peatlands since the last ice age. In the past, two main processes (declining forest cover and rising temperatures) have been proposed as drivers of blanket peatland development on the British Isles. The simulations performed in this study support the temperature hypothesis for the blanket peatlands in the Cairngorms Mountains of central Scotland.
T. Hoffmann, S. M. Mudd, K. van Oost, G. Verstraeten, G. Erkens, A. Lang, H. Middelkoop, J. Boyle, J. O. Kaplan, J. Willenbring, and R. Aalto
Earth Surf. Dynam., 1, 45–52, https://doi.org/10.5194/esurf-1-45-2013, https://doi.org/10.5194/esurf-1-45-2013, 2013
J. Bakker, E. Paulissen, D. Kaniewski, J. Poblome, V. De Laet, G. Verstraeten, and M. Waelkens
Clim. Past, 9, 57–87, https://doi.org/10.5194/cp-9-57-2013, https://doi.org/10.5194/cp-9-57-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Models, Holocene/Anthropocene
Frost matters: incorporating late-spring frost into a dynamic vegetation model regulates regional productivity dynamics in European beech forests
Coupling numerical models of deltaic wetlands with AirSWOT, UAVSAR, and AVIRIS-NG remote sensing data
Meteorological history of low-forest-greenness events in Europe in 2002–2022
Variable particle size distributions reduce the sensitivity of global export flux to climate change
Climate change will cause non-analog vegetation states in Africa and commit vegetation to long-term change
Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC-based global gridded crop model
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections
The capacity of northern peatlands for long-term carbon sequestration
Towards a more complete quantification of the global carbon cycle
Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale
An enhanced forest classification scheme for modeling vegetation–climate interactions based on national forest inventory data
Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests
Modelling past, present and future peatland carbon accumulation across the pan-Arctic region
Biogenic sediments from coastal ecosystems to beach–dune systems: implications for the adaptation of mixed and carbonate beaches to future sea level rise
Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model
Effects of climate change and land management on soil organic carbon dynamics and carbon leaching in northwestern Europe
Quantifying regional, time-varying effects of cropland and pasture on vegetation fire
HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
Impact of human population density on fire frequency at the global scale
Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art
A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe
Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions
A new concept for simulation of vegetated land surface dynamics – Part 1: The event driven phenology model
Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology – Part 2: The event driven phenology model
The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate
Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model
Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization
Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model
Projected 21st century decrease in marine productivity: a multi-model analysis
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
Luca Cortese, Carmine Donatelli, Xiaohe Zhang, Justin A. Nghiem, Marc Simard, Cathleen E. Jones, Michael Denbina, Cédric G. Fichot, Joshua P. Harringmeyer, and Sergio Fagherazzi
Biogeosciences, 21, 241–260, https://doi.org/10.5194/bg-21-241-2024, https://doi.org/10.5194/bg-21-241-2024, 2024
Short summary
Short summary
This study shows that numerical models in coastal areas can greatly benefit from the spatial information provided by remote sensing. Three Delft3D numerical models in coastal Louisiana are calibrated using airborne SAR and hyperspectral remote sensing products from the recent NASA Delta-X mission. The comparison with the remote sensing allows areas where the models perform better to be spatially verified and yields more representative parameters for the entire area.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Short summary
This study examines the multi-annual meteorological history of low-forest-greenness events in Europe's temperate and Mediterranean biome in 2002–2022. We systematically identify anomalies in temperature, precipitation, and weather systems as event precursors, with noteworthy differences between the two biomes. We also quantify the impact of the most extensive event in 2022 (37 % coverage), underlining the importance of understanding the forest–meteorology interaction in a changing climate.
Shirley W. Leung, Thomas Weber, Jacob A. Cram, and Curtis Deutsch
Biogeosciences, 18, 229–250, https://doi.org/10.5194/bg-18-229-2021, https://doi.org/10.5194/bg-18-229-2021, 2021
Short summary
Short summary
A global model is constrained with empirical relationships to quantify how shifts in sinking-particle sizes modulate particulate organic carbon export production changes in a warming ocean. Including the effect of dynamic particle sizes on remineralization reduces the magnitude of predicted 100-year changes in export production by ~14 %. Projections of future export could thus be improved by considering dynamic phytoplankton and particle-size-dependent remineralization depths.
Mirjam Pfeiffer, Dushyant Kumar, Carola Martens, and Simon Scheiter
Biogeosciences, 17, 5829–5847, https://doi.org/10.5194/bg-17-5829-2020, https://doi.org/10.5194/bg-17-5829-2020, 2020
Short summary
Short summary
Lags caused by delayed vegetation response to changing environmental conditions can lead to disequilibrium vegetation states. Awareness of this issue is relevant for ecosystem conservation. We used the aDGVM vegetation model to quantify the difference between transient and equilibrium vegetation states in Africa during the 21st century for two potential climate trajectories. Lag times increased over time and vegetation was non-analog to any equilibrium state due to multi-lag composite states.
Tony W. Carr, Juraj Balkovič, Paul E. Dodds, Christian Folberth, Emil Fulajtar, and Rastislav Skalsky
Biogeosciences, 17, 5263–5283, https://doi.org/10.5194/bg-17-5263-2020, https://doi.org/10.5194/bg-17-5263-2020, 2020
Short summary
Short summary
We generate 30-year mean water erosion estimates in global maize and wheat fields based on daily simulation outputs from an EPIC-based global gridded crop model. Evaluation against field data confirmed the robustness of the outputs for the majority of global cropland and overestimations at locations with steep slopes and strong rainfall. Additionally, we address sensitivities and uncertainties of model inputs to improve water erosion estimates in global agricultural impact studies.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Georgii A. Alexandrov, Victor A. Brovkin, Thomas Kleinen, and Zicheng Yu
Biogeosciences, 17, 47–54, https://doi.org/10.5194/bg-17-47-2020, https://doi.org/10.5194/bg-17-47-2020, 2020
Miko U. F. Kirschbaum, Guang Zeng, Fabiano Ximenes, Donna L. Giltrap, and John R. Zeldis
Biogeosciences, 16, 831–846, https://doi.org/10.5194/bg-16-831-2019, https://doi.org/10.5194/bg-16-831-2019, 2019
Short summary
Short summary
Globally, C is added to the atmosphere from fossil fuels and deforestation, balanced by ocean uptake and atmospheric increase. The difference (residual sink) is equated to plant uptake. But this omits cement carbonation; transport to oceans by dust; riverine organic C and volatile organics; and increased C in plastic, bitumen, wood, landfills, and lakes. Their inclusion reduces the residual sink from 3.6 to 2.1 GtC yr-1 and thus the inferred ability of the biosphere to alter human C emissions.
Kerstin Kretschmer, Lukas Jonkers, Michal Kucera, and Michael Schulz
Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, https://doi.org/10.5194/bg-15-4405-2018, 2018
Short summary
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Titta Majasalmi, Stephanie Eisner, Rasmus Astrup, Jonas Fridman, and Ryan M. Bright
Biogeosciences, 15, 399–412, https://doi.org/10.5194/bg-15-399-2018, https://doi.org/10.5194/bg-15-399-2018, 2018
Short summary
Short summary
Forest management shapes forest structure and in turn surface–atmosphere interactions. We used Fennoscandian forest maps and inventory data to develop a classification system for forest structure. The classification was integrated with the ESA Climate Change Initiative land cover map to achieve complete surface representation. The result is an improved product for modeling surface–atmosphere exchanges in regions with intensively managed forests.
Anna T. Trugman, David Medvigy, William A. Hoffmann, and Adam F. A. Pellegrini
Biogeosciences, 15, 233–243, https://doi.org/10.5194/bg-15-233-2018, https://doi.org/10.5194/bg-15-233-2018, 2018
Short summary
Short summary
Tree fire tolerance strategies may significantly impact woody carbon stability and the existence of tropical savannas under global climate change. We used a numerical ecosystem model to test the impacts of fire survival strategy under differing fire and rainfall regimes. We found that the high survival rate of large fire-tolerant trees reduced carbon losses with increasing fire frequency, and reduced the range of conditions leading to either complete tree loss or complete grass loss.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017, https://doi.org/10.5194/bg-14-4023-2017, 2017
Short summary
Short summary
We employed an individual- and patch-based dynamic global ecosystem model to quantify long-term C accumulation rates and to assess the effects of historical and projected climate change on peatland C balances across the pan-Arctic. We found that peatlands in Scandinavia, Europe, Russia and central and eastern Canada will become C sources, while Siberia, far eastern Russia, Alaska and western and northern Canada will increase their sink capacity by the end of the 21st century.
Giovanni De Falco, Emanuela Molinaroli, Alessandro Conforti, Simone Simeone, and Renato Tonielli
Biogeosciences, 14, 3191–3205, https://doi.org/10.5194/bg-14-3191-2017, https://doi.org/10.5194/bg-14-3191-2017, 2017
Short summary
Short summary
This study quantifies the contribution of carbonate sediments, produced in seagrass meadows and in photophilic algal communities, to the sediment budget of a beach–dune system. The contribution to the beach sediment budget represents a further ecosystem service provided by seagrass. The dependence of the beach sediment budget on carbonate production associated with coastal ecosystems has implications for the adaptation of carbonate beaches to the seagrass decline and sea level rise.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 2571–2596, https://doi.org/10.5194/bg-14-2571-2017, https://doi.org/10.5194/bg-14-2571-2017, 2017
Short summary
Short summary
We incorporated peatland dynamics into
Arcticversion of dynamic vegetation model LPJ-GUESS to understand the long-term evolution of northern peatlands and effects of climate change on peatland carbon balance. We found that the Stordalen mire may be expected to sequester more carbon before 2050 due to milder and wetter climate conditions, a longer growing season and CO2 fertilization effect, turning into a C source after 2050 because of higher decomposition rates in response to warming soils.
Maria Stergiadi, Marcel van der Perk, Ton C. M. de Nijs, and Marc F. P. Bierkens
Biogeosciences, 13, 1519–1536, https://doi.org/10.5194/bg-13-1519-2016, https://doi.org/10.5194/bg-13-1519-2016, 2016
Short summary
Short summary
We modelled the effects of changes in climate and land management on soil organic carbon (SOC) and dissolved organic carbon (DOC) levels in sandy and loamy soils under forest, grassland, and arable land. Climate change causes a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC slightly increases. A reduction in fertilizer application leads to a decrease in SOC and DOC levels under arable land but has a negligible effect under grassland.
S. S. Rabin, B. I. Magi, E. Shevliakova, and S. W. Pacala
Biogeosciences, 12, 6591–6604, https://doi.org/10.5194/bg-12-6591-2015, https://doi.org/10.5194/bg-12-6591-2015, 2015
Short summary
Short summary
People worldwide use fire to manage agriculture, but often also suppress fire in the landscape surrounding their fields. Here, we estimate the net result of these effects of cropland and pasture on fire at a regional, monthly level. Pasture is shown, for the first time, to contribute strongly to global patterns of burning. Our results could be used to improve representations of burning in global vegetation and climate models, improving our understanding of how people affect the Earth system.
Y. Le Page, D. Morton, B. Bond-Lamberty, J. M. C. Pereira, and G. Hurtt
Biogeosciences, 12, 887–903, https://doi.org/10.5194/bg-12-887-2015, https://doi.org/10.5194/bg-12-887-2015, 2015
W. Knorr, T. Kaminski, A. Arneth, and U. Weber
Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, https://doi.org/10.5194/bg-11-1085-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
R. Fuchs, M. Herold, P. H. Verburg, and J. G. P. W. Clevers
Biogeosciences, 10, 1543–1559, https://doi.org/10.5194/bg-10-1543-2013, https://doi.org/10.5194/bg-10-1543-2013, 2013
P. W. Keys, R. J. van der Ent, L. J. Gordon, H. Hoff, R. Nikoli, and H. H. G. Savenije
Biogeosciences, 9, 733–746, https://doi.org/10.5194/bg-9-733-2012, https://doi.org/10.5194/bg-9-733-2012, 2012
V. Kovalskyy and G. M. Henebry
Biogeosciences, 9, 141–159, https://doi.org/10.5194/bg-9-141-2012, https://doi.org/10.5194/bg-9-141-2012, 2012
V. Kovalskyy and G. M. Henebry
Biogeosciences, 9, 161–177, https://doi.org/10.5194/bg-9-161-2012, https://doi.org/10.5194/bg-9-161-2012, 2012
A. Dallmeyer and M. Claussen
Biogeosciences, 8, 1499–1519, https://doi.org/10.5194/bg-8-1499-2011, https://doi.org/10.5194/bg-8-1499-2011, 2011
B. D. Stocker, K. Strassmann, and F. Joos
Biogeosciences, 8, 69–88, https://doi.org/10.5194/bg-8-69-2011, https://doi.org/10.5194/bg-8-69-2011, 2011
A. Oschlies, W. Koeve, W. Rickels, and K. Rehdanz
Biogeosciences, 7, 4017–4035, https://doi.org/10.5194/bg-7-4017-2010, https://doi.org/10.5194/bg-7-4017-2010, 2010
S. Bathiany, M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 7, 1383–1399, https://doi.org/10.5194/bg-7-1383-2010, https://doi.org/10.5194/bg-7-1383-2010, 2010
M. Steinacher, F. Joos, T. L. Frölicher, L. Bopp, P. Cadule, V. Cocco, S. C. Doney, M. Gehlen, K. Lindsay, J. K. Moore, B. Schneider, and J. Segschneider
Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, https://doi.org/10.5194/bg-7-979-2010, 2010
A. Oschlies
Biogeosciences, 6, 1603–1613, https://doi.org/10.5194/bg-6-1603-2009, https://doi.org/10.5194/bg-6-1603-2009, 2009
Cited articles
Aerts, J. C. J. H. and Bouwer, L. M.: Stream SE Manual version 2.0. (IVM Report; No. R-03/13). Dept. of Spatial Analysis and Decision Support, available at: https://research.vu.nl/ws/portalfiles/portal/1936669/f12.pdf (last access: 1 May 2021), 2003.
Aerts, J. C. J. H., Kriek, M., and Schepel, M.:
STREAM (Spatial Tools for River Basins and Environment and Analysis of Management Options): set up and requirements,
Phys. Chem. Earth Pt. B,
24, 591–595, 1999.
Aerts, J. C. J. H., Renssen, H., Ward, P. J., De Moel, H., Odada, E., Bouwer, L. M., and Goosse, H.:
Sensitivity of global river discharges under Holocene and future climate conditions,
Geophys. Res. Lett.,
33, L19401, https://doi.org/10.1029/2006GL027493, 2006.
Baird, A. J., Morris, P. J., and Belyea, L. R.:
The DigiBog peatland development model 1: rationale, conceptual model, and hydrological basis,
Ecohydrology,
5, 242–255, https://doi.org/10.1002/eco.2, 2012.
Baird, A. J., Low, R., Young, D., Swindles, G. T., Lopez, O. R., and Page, S.:
High permeability explains the vulnerability of the carbon store in drained tropical peatlands,
Geophys. Res. Lett.,
44, 1333–1339, https://doi.org/10.1002/2016GL072245, 2017.
Ballabio, C., Panagos, P., and Monatanarella, L.:
Mapping topsoil physical properties at European scale using the LUCAS database,
Geoderma,
261, 110–123, https://doi.org/10.1016/j.geoderma.2015.07.006, 2016.
Batelaan, O. and De Smedt, F.:
WetSpass: A flexible, GIS based, distributed recharge methodology for regional groundwater modelling,
in: IAHS-AISH Publication, 11–18, 2001.
Bauer, I. E.:
Modelling effects of litter quality and environment on peat accumulation over different time-scales,
J. Ecol.,
92, 661–674, https://doi.org/10.1111/j.0022-0477.2004.00905.x, 2004.
Beerten, K., Dreesen, R., Janssen, J., and Van Uytven, D.:
The Campine Plateau,
in: Landscapes and Landforms of Belgium and Luxembourg,
edited by: Demoulin, A.,
Springer,
Cham, Switzerland, p. 423, 2017.
Beven, K.:
A manifesto for the equifinality thesis,
J. Hydrol.,
320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Billett, M. F., Palmer, S. M., Hope, D., Deacon, C., Storeton-West, R., Hargreaves, K. J., Flechard, C., and Fowler, D.:
Linking land–atmosphere–stream carbon fluxes in a lowland peatland system,
Global Biogeochem. Cy.,
18, GB1024, https://doi.org/10.1029/2003GB002058, 2004.
Boelter, D. H. and Blake, G. R.:
Importance of Volumetric Expression of Water Contents of Organic Soils,
Soil Sci. Soc. Am. J.,
28, 176–178, https://doi.org/10.2136/sssaj1964.03615995002800020015x, 1964.
Boucher, É., Arseneault, D., and Hétu, B.:
Late Holocene development of a floodplain along a small meandering stream, northern Québec, Canada,
Geomorphology,
80, 267–281, https://doi.org/10.1016/j.geomorph.2006.02.014, 2006.
Broothaerts, N., Verstraeten, G., Notebaert, B., Assendelft, R., Kasse, C., Bohncke, S., and Vandenberghe, J.:
Sensitivity of floodplain geoecology to human impact: A Holocene perspective for the headwaters of the Dijle catchment, central Belgium,
Holocene,
23, 1403–1414, https://doi.org/10.1177/0959683613489583, 2013.
Broothaerts, N., Verstraeten, G., Kasse, C., Bohncke, S., Notebaert, B., and Vandenberghe, J.:
From natural to human-dominated floodplain geoecology – A Holocene perspective for the Dijle catchment, Belgium,
Anthropocene,
8, 46–58, https://doi.org/10.1016/j.ancene.2014.12.001, 2014a.
Broothaerts, N., Notebaert, B., Verstraeten, G., Kasse, C., Bohncke, S., and Vandenberghe, J.:
Non-uniform and diachronous Holocene floodplain evolution: A case study from the Dijle catchment, Belgium,
J. Quaternary Sci.,
29, 351–360, https://doi.org/10.1002/jqs.2709, 2014b.
Broothaerts, N., Verstraeten, G., Kasse, C., Bohncke, S., Notebaert, B., and Vandenberghe, J.:
Reconstruction and semi-quantification of human impact in the Dijle catchment, central Belgium: A palynological and statistical approach,
Quaternary Sci. Rev.,
102, 96–110, https://doi.org/10.1016/j.quascirev.2014.08.006, 2014c.
Brown, A. G., Lespez, L., Sear, D. A., Macaire, J. J., Houben, P., Klimek, K., Brazier, R. E., Van Oost, K., and Pears, B.:
Natural vs anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services,
Earth-Sci. Rev.,
180, 185–205, https://doi.org/10.1016/j.earscirev.2018.02.001, 2018.
De Brue, H.:
Modelling the long-term evolution of anthropogenic land cover and environmental impact in the central Belgian Loess Belt,
KU Leuven, Leuven, Belgium, 2016.
De Brue, H. and Verstraeten, G.:
Impact of the spatial and thematic resolution of Holocene anthropogenic land-cover scenarios on modeled soil erosion and sediment delivery rates,
Holocene,
24, 67–77, https://doi.org/10.1177/0959683613512168, 2014.
Burny, J.:
Bijdrage tot de historische ecologie van de Limburgse Kempen (1910–1950). Tweehonderd gesprekken samengevat,
Stichting Natuurpublicaties Limburg, Maastricht, the Netherlands, 1999.
Candel, J. H. J., Makaske, B., Storms, J. E. A., and Wallinga, J.:
Oblique aggradation: a novel explanation for sinuosity of low-energy streams in peat-filled valley systems,
Earth Surf. Proc. Land.,
42, 2679–2696, https://doi.org/10.1002/esp.4100, 2017.
Chambers, F. M., Beilman, D. W., and Yu, Z.:
Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics,
Mires Peat,
7, 1–10, 2011.
Chapman, S. J. and Thurlow, M.:
Peat respiration at low temperatures,
Soil Biol. Biochem.,
30, 1013–1021, https://doi.org/10.1016/S0038-0717(98)00009-1, 1998.
Childs, E. C.:
An introduction to the Physical Principles of Soil Water Phenomena,
John Wiley and Sons, London, 1969.
Clymo, R. S.:
The Limits to Peat Bog Growth,
Philos. T. R. Soc. B,
303, 605–654, https://doi.org/10.1098/rstb.1984.0002, 1984.
Clymo, R. S., Turunen, J., and Tolonen, K.:
Carbon Accumulation in Peatland,
Oikos,
81, 368–388, https://doi.org/10.2307/3547057, 1998.
Comas, X., Slater, L., and Reeve, A.:
Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland,
J. Hydrol.,
295, 173–184, https://doi.org/10.1016/j.jhydrol.2004.03.008, 2004.
Dasberg, S. and Neuman, S. P.:
Peat hydrology in the Hula basin, Israel: I. Properties of peat,
J. Hydrol.,
32, 219–239, 1977.
De Smedt, F.:
Paleogeografie en kwartair-geologie van het confluentiegebied Dijle-Demer,
Acta Geogr. Lovan.,
Vol. 11, 141 pp., KUL Geografisch Instituut, Leuven, Belgium, 1973.
De Smedt, F. and Batelaan, O.:
Investigation of the human impact on regional groundwater systems,
Trans. Ecol. Environ.,
64, 1145–1153, 2003.
Diefenderfer, H. L. and Montgomery, D. R.:
Pool spacing, channel morphology, and the restoration of tidal forested wetlands of the Columbia River, U. S. A.,
Restor. Ecol.,
17, 158–168, https://doi.org/10.1111/j.1526-100X.2008.00449.x, 2009.
Dondeyne, S., Vanierschot, L., Langohr, R., Van Ranst, E., and Deckers, J.:
The soil map of the Flemish region converted to the 3rd edition of the World Reference Base for soil resources, Departement Leefmilieu, Natuur & Energie, 2014.
EEA:
CORINE Land Cover Project, published by the Commission of the European Communities, Departement Leefmilieu, Natuur & Energie, Brussels, 1995.
Ellenberg, H.:
Zeigerwerte der Gefässpflanzen Mitteleuropas,
Scripta geobotanica, Götingen, 1974.
Frolking, S., Roulet, N. T., Tuittila, E., Bubier, J. L., Quillet, A., Talbot, J., and Richard, P. J. H.: A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation, Earth Syst. Dynam., 1, 1–21, https://doi.org/10.5194/esd-1-1-2010, 2010.
Gellens-Meulenberghs, F. and Gellens, D.:
L'evapotranspiration potentielle en Belgique: variabilité spatiale et temporelle,
in: Institut Royal Meteorologique de Belgique, publication Série A no. 130,
European Environment Agency, Copenhagen, 1–44, 1992.
Goedseels, V. and Vanhautte, L.:
Hoeven op land gebouwd,
Lannoo, Tielt, 1983.
Goossens, D. and Riksen, M. J. P. M.:
De inlandse zandverstuivingen in België en Nederland: historiek en verband met klimaat en landbouwactiviteit,
Acta Geogr. Lovan.,
38, 323–336, 2009.
Gradziński, R., Baryła, J., Doktor, M., Gmur, D., Gradziński, M., K?dzior, A., Paszkowski, M., Soja, R., Zieliński, T., and Zurek, S.:
Vegetation-controlled modern anastomosing system of the upper Narew River (NE Poland) and its sediments,
Sediment. Geol.,
157, 253–276, https://doi.org/10.1016/S0037-0738(02)00236-1, 2003.
Granberg, G., Grip, H., Ottosson Löfvenius, M., Sundh, I., Svensson, B. H., and Nilsson, M.:
A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires,
Water Resour. Res.,
35, 3771–3782, https://doi.org/10.1029/1999WR900216, 1999.
Gullentops, F., Bogemans, F., and De Moor, G.:
Quaternary lithostratigraphic units (Belgium),
Geol. Belg.,
4, 153–164, 2001.
Heinemeyer, A., Croft, S., Garnett, M. H., Gloor, E., Holden, J., Lomas, M. R., and Ineson, P.:
The MILLENNIA peat cohort model: Predicting past, present and future soil carbon budgets and fluxes under changing climates in peatlands,
Clim. Res.,
45, 207–226, https://doi.org/10.3354/cr00928, 2010.
Herbosch, A. and Verniers, J.:
Stratigraphy of the lower palaeozoic of the Brabant Massif, Belgium. part I: The Cambro-Ordovician from the Halle and Ottignies groups,
Geol. Belg.,
16, 49–65, 2013.
Hilbert, D. W., Roulet, N., and Moore, T.:
Modelling and analysis of peatlands as dynamical systems,
J. Ecol.,
88, 230–242, 2000.
Hosia, L.:
Pienten uomien virtausvastuskerroin, National Board of Waters, Finland, Helsinki, 1980.
Householder, J. E., Janovec, J. P., Tobler, M. W., Page, S., and Lähteenoja, O.:
Peatlands of the Madre de Dios River of Peru: Distribution,
Geomorphology, and Habitat Diversity,
Wetlands,
32, 359–368, https://doi.org/10.1007/s13157-012-0271-2, 2012.
Juutinen, S., Väliranta, M., Kuutti, V., Laine, A. M., Virtanen, T., Seppä, H., Weckström, J., and Tuittila, E.:
Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: A catchment approach,
J. Geophys. Res.-Biogeo.,
118, 171–183, https://doi.org/10.1002/jgrg.20028, 2013.
Kelly, T. J., Baird, A. J., Roucoux, K. H., Baker, T. R., Honorio Coronado, E. N., Ríos, M., and Lawson, I. T.:
The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: Measurements and implications for hydrological function,
Hydrol. Process.,
28, 3373–3387, https://doi.org/10.1002/hyp.9884, 2014.
Kleinen, T., Brovkin, V., and Schuldt, R. J.: A dynamic model of wetland extent and peat accumulation: results for the Holocene, Biogeosciences, 9, 235–248, https://doi.org/10.5194/bg-9-235-2012, 2012.
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.
Kumaran, N. K. P., Padmalal, D., Limaye, R. B., Vishnu Mohan, S., Jennerjahn, T., and Gamre, P. G.:
Tropical peat and peatland development in the floodplains of the Greater Pamba Basin, South-western India during the Holocene,
PLoS One,
11, 1–21, https://doi.org/10.1371/journal.pone.0154297, 2016.
Lappalainen, M., Koivusalo, H., Karvonen, T., and Laurén, A.:
Sediment transport from a peatland forest after ditch network maintenance: a modelling approach,
Boreal Environ. Res.,
15, 595–612, 2010.
Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose, R. S., and Rennie, J.:
An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3,
J. Geophys. Res.-Atmos.,
116, D19121, https://doi.org/10.1029/2011JD016187, 2011.
Lespez, L., Viel, V., Rollet, A. J., and Delahaye, D.:
Geomorphology The anthropogenic nature of present-day low energy rivers in western France and implications for current restoration projects,
Geomorphology,
251, 64–76, https://doi.org/10.1016/j.geomorph.2015.05.015, 2015a.
Lespez, L., Viel, V., Rollet, A. J., and Delahaye, D.:
Geomorphology The anthropogenic nature of present-day low energy rivers in western France and implications for current restoration projects,
Geomorphology,
251, 64–76, https://doi.org/10.1016/j.geomorph.2015.05.015, 2015b.
Letts, M. G., Comer, N. T., Roulet, N. T., Skarupa, M. R., and Verseghy, D. L.:
Parametrization of peatland hydraulic properties for the Canadian land surface scheme,
Atmos. Ocean,
38, 141–160, https://doi.org/10.1080/07055900.2000.9649643, 2000.
Lieth, H.:
Primary production: Terrestrial ecosystems,
Hum. Ecol.,
1, 303–332, 1973.
Lieth, H. and Box, E. O.:
Evapotranspiration and primary productivity: Thornthwaite Memorial Model,
Publ. Climatol.,
25, 37–46, 1972.
Lucchese, M., Waddington, J. M., Poulin, M., Pouliot, R., Rochefort, L., and Strack, M.:
Organic matter accumulation in a restored peatland: Evaluating restoration success,
Ecol. Eng.,
36, 482–488, https://doi.org/10.1016/j.ecoleng.2009.11.017, 2010.
Makaske, B.:
Anastomosing rivers: A review of their classification, origin and sedimentary products,
Earth-Sci. Rev.,
53, 149–196, https://doi.org/10.1016/S0012-8252(00)00038-6, 2001.
Malmer, N. and Wallen, B.:
Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes,
Holocene,
14, 111–117, 2004.
Mann, D. H., Groves, P., Reanier, R. E., and Kunz, M. L.:
Floodplains, permafrost, cottonwood trees, and peat: What happened the last time climate warmed suddenly in arctic Alaska?,
Quaternary Sci. Rev.,
29, 3812–3830, https://doi.org/10.1016/j.quascirev.2010.09.002, 2010.
Marttila, H., Tammela, S., and Kløve, B.:
Hydraulic Geometry, Hydraulics and Sediment Properties of Forest Brooks after Extensive Erosion from Upland Peatland Drainage,
Open J. Mod. Hydrol.,
2, 59–69, 2012.
Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.:
The climate of Europe during the Holocene: A gridded pollen-based reconstruction and its multi-proxy evaluation,
Quaternary Sci. Rev.,
112, 109–127, https://doi.org/10.1016/j.quascirev.2015.01.013, 2015.
Medeiros, S. C., Hagen, S. C., and Weishampel, J. F.:
Comparison of floodplain surface roughness parameters derived from land cover data and field measurements,
J. Hydrol.,
452–453, 139–149, https://doi.org/10.1016/j.jhydrol.2012.05.043, 2012a.
Medeiros, S. C., Hagen, S. C., and Weishampel, J. F.:
Comparison of floodplain surface roughness parameters derived from land cover data and field measurements,
J. Hydrol.,
452–453, 139–149, https://doi.org/10.1016/j.jhydrol.2012.05.043, 2012b.
Moeletsi, M. E., Walker, S., and Hamandawana, H.:
Comparison of the Hargreaves and Samani equation and the Thornthwaite equation for estimating dekadal evapotranspiration in the Free State Province, South Africa,
Phys. Chem. Earth,
66, 4–15, https://doi.org/10.1016/j.pce.2013.08.003, 2013.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.:
Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations,
T. ASABE,
50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Morris, P. J., Belyea, L. R., and Baird, A. J.:
Ecohydrological feedbacks in peatland development: A theoretical modelling study,
J. Ecol.,
99, 1190–1201, https://doi.org/10.1111/j.1365-2745.2011.01842.x, 2011.
Morris, P. J., Baird, A. J., and Belyea, L. R.:
The DigiBog peatland development model 2: ecohydrological simulations in 2D,
Ecohydrology,
5, 256–268, https://doi.org/10.1002/eco.2, 2012.
Morris, P. J., Baird, A. J., Young, D. M., and Swindles, G. T.:
Untangling climate signals from autogenic changes in long-term peatland development,
Geophys. Res. Lett.,
42, 10788–10797, https://doi.org/10.1002/2015GL066824, 2015.
Mullenders, W. and Gullentops, F.:
Palynologisch en geologisch onderzoek in de alluviale vlakte van de Dijle te Heverlee-Leuven,
Agricultura,
5, 57–64, 1957.
Mullenders, W., Gullentops, F., Lorent, J., Coremans, M., and Gilot, E.:
Le remblement de la vallée de la Nethen,
Acta Geogr. Lovan.,
4, 169–181, 1966.
Nanson, R. A.:
The evolution of peat-swamp channels and organic floodplains, barrington tops, New South Wales, Australia,
Geogr. Res.,
47, 434–448, https://doi.org/10.1111/j.1745-5871.2009.00596.x, 2009.
Nanson, R. A., Nanson, G. C., and Huang, H. Q.:
The hydraulic geometry of narrow and deep channels; evidence for flow optimisation and controlled peatland growth,
Geomorphology,
117, 143–154, https://doi.org/10.1016/j.geomorph.2009.11.021, 2010.
Nash, J. E. and Sutcliffe, J. V.:
River Flow Forecasting Through Conceptual Models Part I–a Discussion of Principles,
J. Hydrol.,
10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Notebaert, B. and Verstraeten, G.:
Sensitivity of West and Central European river systems to environmental changes during the Holocene: A review,
Earth-Sci. Rev.,
103, 163–182, https://doi.org/10.1016/j.earscirev.2010.09.009, 2010.
Notebaert, B., Verstraeten, G., Rommens, T., Vanmontfort, B., Govers, G., and Poesen, J.:
Establishing a Holocene sediment budget for the river Dijle,
Catena,
77, 150–163, https://doi.org/10.1016/j.catena.2008.02.001, 2009.
Notebaert, B., Verstraeten, G., Ward, P., Renssen, H., and Van Rompaey, A.:
Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale,
Geomorphology,
126, 18–31, https://doi.org/10.1016/j.geomorph.2010.08.016, 2011.
Peterson, T. C. and Vose, R. S.: An overview of the Global Historical Climatology Network temperature database, B. Am. Meteorol. Soc., 78, 2837–2849, https://doi.org/10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2, 1997.
Polvi, L. E. and Wohl, E.:
The beaver meadow complex revisited – the role of beavers in post-glacial floodplain development,
Earth Surf. Proc. Land.,
37, 332–346, https://doi.org/10.1002/esp.2261, 2012.
Price, J. S., Heathwaite, A. L., and Baird, A.:
Hydrological processes in abandoned and restored peatlands,
Wetl. Ecol. Manag.,
11, 65–83, 2003.
Renssen, H., Lougheed, B. C., Aerts, J. C. J. H., de Moel, H., Ward, P. J., and Kwadijk, J. C. J.:
Simulating long-term Caspian Sea level changes: The impact of Holocene and future climate conditions,
Earth Planet. Sc. Lett.,
261, 685–693, https://doi.org/10.1016/j.epsl.2007.07.037, 2007.
Ritter, A. and Muñoz-Carpena, R.:
Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments,
J. Hydrol.,
480, 33–45, https://doi.org/10.1016/j.jhydrol.2012.12.004, 2013.
Schwanghart, W. and Scherler, D.: Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., 2, 1–7, https://doi.org/10.5194/esurf-2-1-2014, 2014.
Soil Conservation Service:
Urban hydrology for small watersheds, Technical release No. 55,
Soil Conservation Service (SCS), Washington, DC, 1986.
Stefan, J. and Klein, A.:
Hydrogeomorphic effects of beaver dams on floodplain morphology: Avulsion processes and sediment fluxes in upland valley floors (Spessart, Germany),
Quaternaire,
15, 219–231, https://doi.org/10.3406/quate.2004.1769, 2004.
Stewart, J. M. and Wheatly, R. E.:
Estimates of CO2 production from eroding peat surfaces,
Soil Biol. Biochem.,
22, 65–68, https://doi.org/10.1016/0038-0717(90)90061-4, 1990.
Suphunvorranop, T.:
A guide to SCS runoff procedures, Technical publication No. 85-5, Department of Water Resources, St. Johns River Water Management District, Palatka, Florida, 1985.
Sutfin, N. A., Wohl, E. E., and Dwire, K. A.:
Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems,
Earth Surf. Proc. Land.,
41, 38–60, https://doi.org/10.1002/esp.3857, 2016.
Svensson, B. H.:
Carbon Dioxide and Methane Fluxes from the Ombrotrophic Parts of a Subarctic Mire,
Ecol. Bull.,
30, 235–250, 1980.
Swinnen, W.:
Long-term dynamics of temperate peatlands in relation to environmental change and anthropogenic impact,
KU Leuven, Leuven, Belgium, 2020.
Swinnen, W.: model code alluvial peatlands (Swinnen et al., 2021 – Biogeosciences), Mendeley Data [code], V1, https://doi.org/10.17632/vrz6gm7nhp.1, 2021.
Swinnen, W., Broothaerts, N., and Verstraeten, G.: Modelling long-term blanket peatland development in eastern Scotland, Biogeosciences, 16, 3977–3996, https://doi.org/10.5194/bg-16-3977-2019, 2019.
Swinnen, W., Broothaerts, N., Hoevers, R., and Verstraeten, G.:
Anthropogenic legacy effects control sediment and organic carbon storage in temperate river floodplains,
Catena,
195, 104897, https://doi.org/10.1016/j.catena.2020.104897, 2020.
Terzaghi, K.:
Theoretical Soil Mechanics,
John Wiley and Sons, New York, 1943.
Thomas, H. and Nisbet, T. R.:
An assessment of the impact of floodplain woodland on flood flows,
Water Environ. J.,
21, 114–126, https://doi.org/10.1111/j.1747-6593.2006.00056.x, 2007.
Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.:
3D soil hydraulic database of Europe at 250 m resolution,
Hydrol. Process.,
31, 2662–2666, https://doi.org/10.1002/hyp.11203, 2017.
Treat, C. C., Kleinen, T., Broothaerts, N., Dalton, A. S., Dommain, R., Douglas, T. A., Drexler, J. Z., Finkelstein, S. A., Grosse, G., Hope, G., Hutchings, J., Jones, M. C., Kuhry, P., Lacourse, T., Lähteenoja, O., Loisel, J., Notebaert, B., Payne, R. J., Peteet, D. M., Sannel, A. B. K., Stelling, J. M., Strauss, J., Swindles, G. T., Talbot, J., Tarnocai, C., Verstraeten, G., Williams, C. J., Xia, Z., Yu, Z., Väliranta, M., Hättestrand, M., Alexanderson, H., and Brovkin, V.:
Widespread global peatland establishment and persistence over the last 130,000 y,
Proc. Natl. Acad. Sci. USA,
116, 4822–4827, https://doi.org/10.1073/pnas.1813305116, 2019.
Turunen, J., Tolonen, K., Tomppo, E., and Reinikainen, A.:
Estimating carbon accumulation rates of undrained mires in Finland – Application to boreal and subarctic regions,
Holocene,
12, 69–80, https://doi.org/10.1191/0959683602hl522rp, 2002.
Tuukkanen, T., Koivusalo, H., Marttila, H., Leinonen, A., Kløve, B., Laurén, A. R. I., and Finér, L.:
A GIS-based model for ditch erosion risk assessment in peatland forestry,
in: Erosion and Sediment Yields in the Changing Environment,
International Association of Hydrological Sciences (IAHS), 221–227, 2012.
Van Asselen, S., Stouthamer, E., and Smith, N. D.:
Factors controlling peat compaction in alluvial floodplains: A case study in the cold-temperate Cumberland Marshes, Canada,
J. Sediment. Res.,
80, 155–166, https://doi.org/10.2110/jsr.2010.015, 2010.
van Diggelen, R., Middleton, B., Bakker, J., Grootjans, A., and Wassen, M.:
Fens and floodplains of the temperate zone: Present status, threats, conservation and restoration,
Appl. Veg. Sci.,
9, 157, https://doi.org/10.1111/j.1654-109X.2006.tb00664.x, 2006.
Van Oost, K., Verstraeten, G., Doetterl, S., Notebaert, B., Wiaux, F., Broothaerts, N., and Six, J.:
Legacy of human-induced C erosion and burial on soil-atmosphere C exchange,
P. Natl. Acad. Sci. USA,
109, 19492–19497, https://doi.org/10.1073/pnas.1211162109, 2012.
VMM (Flemish Environmental Agency): Daily discharge measurements, Sint-Joris-Weert (Dijle), Flemish Environmental Agency [data set], available at: https://www.waterinfo.be/station/01L08_098, last access: 1 May 2021a.
VMM (Flemish Environmental Agency): Daily discharge measurements, Hulshout (Grote Nete), Flemish Environmental Agency [data set], available at: https://www.waterinfo.be/station/04gnt05a-1066, last access: 1 May 2021b.
Walter, R. C. and Merritts, D. J.:
Natural streams and the legacy of water-powered mills, Science (80-. )., 319, 299–304, https://doi.org/10.1126/science.1151716, 2008.
Ward, P. J.,
Aerts, J. C. J. H.,
de Moel, H., and
Renssen, H.:
Verification of a coupled climate-hydrological model against Holocene palaeohydrological records,
Global Planet. Change, 57, 283–300, https://doi.org/10.1016/j.gloplacha.2006.12.002, 2007.
Ward, P. J., Renssen, H., Aerts, J. C. J. H., van Balen, R. T., and Vandenberghe, J.: Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: impacts of long-term anthropogenic land use change and climate variability, Hydrol. Earth Syst. Sci., 12, 159–175, https://doi.org/10.5194/hess-12-159-2008, 2008.
Watters, J. R. and Stanley, E. H.:
Stream channels in peatlands: The role of biological processes in controlling channel form,
Geomorphology,
89, 97–110, https://doi.org/10.1016/j.geomorph.2006.07.015, 2007.
Wieder, R. K. and Yavitt, J. B.:
Peatlands and global climate change: Insights from comparative studies of sites situated along a latitudinal gradient,
Wetlands,
14, 229–238, https://doi.org/10.1007/BF03160660, 1994.
Williams, J. R., Dyke, P. T., and Jones, C. A.:
EPIC – A model for assessing the effects of erosion on soil productivity,
in: Analysis of Ecological Systems: State-of-the-Art in Ecological Modelling,
edited by: Lauenroth, W. K., Skogerboe, G. V., and Flug, M.,
Elsevier, Colorado State University, Fort Collins, Colorado, USA, p. 971, 1983.
Wohl, E., Dwire, K., Sutfin, N., Polvi, L., and Bazan, R.:
Mechanisms of carbon storage in mountainous headwater rivers,
Nat. Commun.,
3, 1263–1268, https://doi.org/10.1038/ncomms2274, 2012.
Wosten, J. H. and Ritzema, H. P.:
Land and water management options for peatland development in Sarawak, Malaysia,
L. Water Manag. Options,
11, 59–66, 2001.
Wu, J.:
Response of peatland development and carbon cycling to climate change: A dynamic system modeling approach,
Environ. Earth Sci.,
65, 141–151, https://doi.org/10.1007/s12665-011-1073-1, 2012.
Young, D. M., Baird, A. J., Morris, P. J., and Holden, J.:
Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands,
Water Resour. Res.,
53, 6510–6522, https://doi.org/10.1002/2016WR019898, 2017.
Young, D. M., Baird, A. J., Charman, D. J., Evans, C. D., Gallego-Sala, A. V., Gill, P. J., Hughes, P. D. M., Morris, P. J., and Swindles, G. T.:
Misinterpreting carbon accumulation rates in records from near-surface peat,
Sci. Rep.-UK,
9, 1–8, https://doi.org/10.1038/s41598-019-53879-8, 2019.
Yu, Z., Campbell, I. D., Vitt, D. H., and Apps, M. J.:
Modelling long-term peatland dynamics. I. Concepts, review, and proposed design,
Ecol. Modell.,
145, 197–210, https://doi.org/10.1016/S0304-3800(01)00391-X, 2001a.
Yu, Z., Turetsky, M. R., Campbell, I. D., and Vitt, D. H.:
Modelling long-term peatland dynamics. II. Processes and rates as inferred from litter and peat-core data,
Ecol. Modell.,
145, 159–173, https://doi.org/10.1016/S0304-3800(01)00387-8, 2001b.
Short summary
Here we present a new modelling framework specifically designed to simulate alluvial peat growth, taking into account the river dynamics. The results indicate that alluvial peat growth is strongly determined by the number, spacing and movement of the river channels in the floodplain, rather than by environmental changes or peat properties. As such, the amount of peat that can develop in a floodplain is strongly determined by the characteristics and dynamics of the local river network.
Here we present a new modelling framework specifically designed to simulate alluvial peat...
Altmetrics
Final-revised paper
Preprint