Articles | Volume 19, issue 10
https://doi.org/10.5194/bg-19-2627-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2627-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data-based estimates of interannual sea–air CO2 flux variations 1957–2020 and their relation to environmental drivers
Christian Rödenbeck
CORRESPONDING AUTHOR
Max Planck Institute for Biogeochemistry, Jena, Germany
Tim DeVries
Department of Geography, University of California, Santa Barbara, CA USA
Judith Hauck
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Corinne Le Quéré
School of Environmental Sciences, University of East Anglia, Norwich, UK
Ralph F. Keeling
Scripps Institution of Oceanography, University of California, San Diego, CA USA
Related authors
Dieu Anh Tran, Christoph Gerbig, Christian Rödenbeck, and Sönke Zaehle
Atmos. Chem. Phys., 24, 8413–8440, https://doi.org/10.5194/acp-24-8413-2024, https://doi.org/10.5194/acp-24-8413-2024, 2024
Short summary
Short summary
The analysis of the atmospheric CO2 record from the Zotino Tall Tower Observatory (ZOTTO) in central Siberia shows significant increases in the length and amplitude of the CO2 uptake and release in the 2010–2021 period. The trend shows a stronger increase in carbon release amplitude compared to the uptake, suggesting that, despite enhanced growing season uptake, during this period climate warming did not elevate the annual net CO2 uptake as cold-season respirations also responded to the warming.
Fabian Maier, Christian Rödenbeck, Ingeborg Levin, Christoph Gerbig, Maksym Gachkivskyi, and Samuel Hammer
Atmos. Chem. Phys., 24, 8183–8203, https://doi.org/10.5194/acp-24-8183-2024, https://doi.org/10.5194/acp-24-8183-2024, 2024
Short summary
Short summary
We investigate the usage of discrete radiocarbon (14C)-based fossil fuel carbon dioxide (ffCO2) concentration estimates vs. continuous carbon monoxide (CO)-based ffCO2 estimates to evaluate the seasonal cycle of ffCO2 emissions in an urban region with an inverse modeling framework. We find that the CO-based ffCO2 estimates allow us to reconstruct robust seasonal cycles, which show the distinct COVID-19 drawdown in 2020 and can be used to validate emission inventories.
Santiago Botía, Saqr Munassar, Thomas Koch, Danilo Custodio, Luana S. Basso, Shujiro Komiya, Jost V. Lavric, David Walter, Manuel Gloor, Giordane Martins, Stijn Naus, Gerbrand Koren, Ingrid Luijkx, Stijn Hantson, John B. Miller, Wouter Peters, Christian Rödenbeck, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1735, https://doi.org/10.5194/egusphere-2024-1735, 2024
Short summary
Short summary
This study uses CO2 data from the Amazon Tall Tower Observatory and airborne profiles to estimate net carbon exchange. We found that the biogeographic Amazon is a net carbon sink, while the Cerrado and Caatinga biomes are net carbon sources, resulting in an overall neutral balance. To further reduce the uncertainty in our estimates we call for an expansion of the monitoring capacity, especially in the Amazon-Andes foothills.
Saqr Munassar, Christian Roedenbeck, Michał Gałkowski, Frank-Thomas Koch, Kai U. Totsche, Santiago Botía, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-291, https://doi.org/10.5194/egusphere-2024-291, 2024
Short summary
Short summary
CO2 mole fractions simulated over a global stations showed an overestimation of CO2 if the diurnal cycle is missing NEE. This led to biases in the estimated fluxes derived from the inversions at continental and regional scales. IAVof estimated NEE was affected by the diurnal effect. The findings point to the importance of including the diurnal variations of CO2 in the biosphere priors used in inversions to better converge flux estimates among inversions, in particular those contributing to GCB.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Christian Rödenbeck, Karina E. Adcock, Markus Eritt, Maksym Gachkivskyi, Christoph Gerbig, Samuel Hammer, Armin Jordan, Ralph F. Keeling, Ingeborg Levin, Fabian Maier, Andrew C. Manning, Heiko Moossen, Saqr Munassar, Penelope A. Pickers, Michael Rothe, Yasunori Tohjima, and Sönke Zaehle
Atmos. Chem. Phys., 23, 15767–15782, https://doi.org/10.5194/acp-23-15767-2023, https://doi.org/10.5194/acp-23-15767-2023, 2023
Short summary
Short summary
The carbon dioxide content of the Earth atmosphere is increasing due to human emissions from burning of fossil fuels, causing global climate change. The strength of the fossil-fuel emissions is estimated by inventories based on energy data, but independent validation of these inventories has been recommended by the Intergovernmental Panel on Climate Change. Here we investigate the potential to validate inventories based on measurements of small changes in the atmospheric oxygen content.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Saqr Munassar, Guillaume Monteil, Marko Scholze, Ute Karstens, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, and Christoph Gerbig
Atmos. Chem. Phys., 23, 2813–2828, https://doi.org/10.5194/acp-23-2813-2023, https://doi.org/10.5194/acp-23-2813-2023, 2023
Short summary
Short summary
Using different transport models results in large errors in optimized fluxes in the atmospheric inversions. Boundary conditions and inversion system configurations lead to a smaller but non-negligible impact. The findings highlight the importance to validate transport models for further developments but also to properly account for such errors in inverse modelling. This will help narrow the convergence of gas estimates reported in the scientific literature from different inversion frameworks.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Short summary
The results obtained from ensembles of inversions over 13 years show the largest spread in the a posteriori fluxes over the station set ensemble. Using different prior fluxes in the inversions led to a smaller impact. Drought occurrences in 2018 and 2019 affected CO2 fluxes as seen in net ecosystem exchange estimates. Our study highlights the importance of expanding the atmospheric site network across Europe to better constrain CO2 fluxes in inverse modelling.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
Barbara Marcolla, Mirco Migliavacca, Christian Rödenbeck, and Alessandro Cescatti
Biogeosciences, 17, 2365–2379, https://doi.org/10.5194/bg-17-2365-2020, https://doi.org/10.5194/bg-17-2365-2020, 2020
Short summary
Short summary
This work investigates the sensitivity of terrestrial CO2 fluxes to climate drivers. We observed that CO2 flux is mostly controlled by temperature during the growing season and by radiation off season. We also observe that radiation importance is increasing over time while sensitivity to temperature is decreasing in Eurasia. Ultimately this analysis shows that ecosystem response to climate is changing, with potential repercussions for future terrestrial sink and land role in climate mitigation.
Martin Jung, Christopher Schwalm, Mirco Migliavacca, Sophia Walther, Gustau Camps-Valls, Sujan Koirala, Peter Anthoni, Simon Besnard, Paul Bodesheim, Nuno Carvalhais, Frédéric Chevallier, Fabian Gans, Daniel S. Goll, Vanessa Haverd, Philipp Köhler, Kazuhito Ichii, Atul K. Jain, Junzhi Liu, Danica Lombardozzi, Julia E. M. S. Nabel, Jacob A. Nelson, Michael O'Sullivan, Martijn Pallandt, Dario Papale, Wouter Peters, Julia Pongratz, Christian Rödenbeck, Stephen Sitch, Gianluca Tramontana, Anthony Walker, Ulrich Weber, and Markus Reichstein
Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, https://doi.org/10.5194/bg-17-1343-2020, 2020
Short summary
Short summary
We test the approach of producing global gridded carbon fluxes based on combining machine learning with local measurements, remote sensing and climate data. We show that we can reproduce seasonal variations in carbon assimilated by plants via photosynthesis and in ecosystem net carbon balance. The ecosystem’s mean carbon balance and carbon flux trends require cautious interpretation. The analysis paves the way for future improvements of the data-driven assessment of carbon fluxes.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Karel Castro-Morales, Gregor Schürmann, Christoph Köstler, Christian Rödenbeck, Martin Heimann, and Sönke Zaehle
Biogeosciences, 16, 3009–3032, https://doi.org/10.5194/bg-16-3009-2019, https://doi.org/10.5194/bg-16-3009-2019, 2019
Short summary
Short summary
To obtain nearly 30 years of global terrestrial carbon fluxes, we simultaneously incorporated in a land surface model three different time periods of two observational data sets: absorbed photosynthetic active radiation and atmospheric CO2 concentrations. One decade of data is enough to improve the modeled long-term trends and seasonal amplitudes of the assimilated variables, particularly in boreal regions. This model has the potential to provide short-term predictions of land carbon fluxes.
Benjamin Gaubert, Britton B. Stephens, Sourish Basu, Frédéric Chevallier, Feng Deng, Eric A. Kort, Prabir K. Patra, Wouter Peters, Christian Rödenbeck, Tazu Saeki, David Schimel, Ingrid Van der Laan-Luijkx, Steven Wofsy, and Yi Yin
Biogeosciences, 16, 117–134, https://doi.org/10.5194/bg-16-117-2019, https://doi.org/10.5194/bg-16-117-2019, 2019
Short summary
Short summary
We have compared global carbon budgets calculated from numerical inverse models and CO2 observations, and evaluated how these systems reproduce vertical gradients in atmospheric CO2 from aircraft measurements. We found that available models have converged on near-neutral tropical total fluxes for several decades, implying consistent sinks in intact tropical forests, and that assumed fossil fuel emissions and predicted atmospheric growth rates are now the dominant axes of disagreement.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Christian Rödenbeck, Sönke Zaehle, Ralph Keeling, and Martin Heimann
Biogeosciences, 15, 2481–2498, https://doi.org/10.5194/bg-15-2481-2018, https://doi.org/10.5194/bg-15-2481-2018, 2018
Short summary
Short summary
In this paper we investigate how the CO2 exchange between the land vegetation and the atmosphere varies from year to year. We quantify the relation between variations in the CO2 exchange and variations in air temperature. For this quantification, we use long-term measurements of CO2 in the air at many locations, a simulation code for the transport of carbon dioxide through the atmosphere, and a data set of air temperature. The results help us to understand the mechanisms of CO2 exchange.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas Frank Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3027–3045, https://doi.org/10.5194/acp-18-3027-2018, https://doi.org/10.5194/acp-18-3027-2018, 2018
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas F. Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3047–3064, https://doi.org/10.5194/acp-18-3047-2018, https://doi.org/10.5194/acp-18-3047-2018, 2018
Chao Yue, Philippe Ciais, Ana Bastos, Frederic Chevallier, Yi Yin, Christian Rödenbeck, and Taejin Park
Atmos. Chem. Phys., 17, 13903–13919, https://doi.org/10.5194/acp-17-13903-2017, https://doi.org/10.5194/acp-17-13903-2017, 2017
Short summary
Short summary
The year 2015 appeared as a paradox regarding how global carbon cycle has responded to climate variation: it is the greenest year since 2000 according to satellite observation, but the atmospheric CO2 growth rate is also the highest since 1959. We found that this is due to a only moderate land carbon sink, because high growing-season sink in northern lands has been partly offset by autumn and winter release and the late-year El Niño has led to an abrupt transition to land source in the tropics.
Barbara Marcolla, Christian Rödenbeck, and Alessandro Cescatti
Biogeosciences, 14, 3815–3829, https://doi.org/10.5194/bg-14-3815-2017, https://doi.org/10.5194/bg-14-3815-2017, 2017
Short summary
Short summary
Patterns and controls of the inter-annual variability of carbon net ecosystem exchange were analysed using three different data streams: ecosystem-level observations (FLUXNET database), a global upscaling of site-level fluxes (MPI-MTE), and a top–down estimate of fluxes (Jena CarboScope Inversion). Consistencies and discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of the inter-annual variability were investigated for the three data sources.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Shreeya Verma, Julia Marshall, Christoph Gerbig, Christian Rödenbeck, and Kai Uwe Totsche
Atmos. Chem. Phys., 17, 5665–5675, https://doi.org/10.5194/acp-17-5665-2017, https://doi.org/10.5194/acp-17-5665-2017, 2017
Short summary
Short summary
The inverse modelling approach for estimating surface fluxes is based on transport models that have an imperfect representation of atmospheric processes like vertical mixing. In this paper, we show how assimilating commercial aircraft-based vertical profiles of CO2 into inverse models can help reduce error due to the transport model, thus providing more accurate estimates of surface fluxes. Further, the reduction in flux uncertainty due to aircraft profiles from the IAGOS project is quantified.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Gregor J. Schürmann, Thomas Kaminski, Christoph Köstler, Nuno Carvalhais, Michael Voßbeck, Jens Kattge, Ralf Giering, Christian Rödenbeck, Martin Heimann, and Sönke Zaehle
Geosci. Model Dev., 9, 2999–3026, https://doi.org/10.5194/gmd-9-2999-2016, https://doi.org/10.5194/gmd-9-2999-2016, 2016
Short summary
Short summary
We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS). The system improves the modelled carbon cycle of the terrestrial biosphere by systematically confronting (or assimilating) the model with observations of atmospheric CO2 and fractions of absorbed photosynthetically active radiation. Jointly assimilating both data streams outperforms the single-data stream experiments, thus showing the value of a multi-data stream assimilation.
Lisa R. Welp, Prabir K. Patra, Christian Rödenbeck, Rama Nemani, Jian Bi, Stephen C. Piper, and Ralph F. Keeling
Atmos. Chem. Phys., 16, 9047–9066, https://doi.org/10.5194/acp-16-9047-2016, https://doi.org/10.5194/acp-16-9047-2016, 2016
Short summary
Short summary
Boreal and arctic ecosystems have been responding to elevated temperatures and atmospheric CO2 over the last decades. It is not clear if these ecosystems are sequestering more carbon or possibly becoming sources. This is an important feedback of the carbon cycle to global warming. We studied monthly biological land CO2 fluxes inferred from atmospheric CO2 concentrations using inverse models and found that net summer CO2 uptake increased, resulting in a small increase in annual CO2 uptake.
C. Rödenbeck, D. C. E. Bakker, N. Gruber, Y. Iida, A. R. Jacobson, S. Jones, P. Landschützer, N. Metzl, S. Nakaoka, A. Olsen, G.-H. Park, P. Peylin, K. B. Rodgers, T. P. Sasse, U. Schuster, J. D. Shutler, V. Valsala, R. Wanninkhof, and J. Zeng
Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, https://doi.org/10.5194/bg-12-7251-2015, 2015
Short summary
Short summary
This study investigates variations in the CO2 uptake of the ocean from year to year. These variations have been calculated from measurements of the surface-ocean carbon content by various different interpolation methods. The equatorial Pacific is estimated to be the region with the strongest year-to-year variations, tied to the El Nino phase. The global ocean CO2 uptake gradually increased from about the year 2000. The comparison of the interpolation methods identifies these findings as robust.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
C. Rödenbeck, D. C. E. Bakker, N. Metzl, A. Olsen, C. Sabine, N. Cassar, F. Reum, R. F. Keeling, and M. Heimann
Biogeosciences, 11, 4599–4613, https://doi.org/10.5194/bg-11-4599-2014, https://doi.org/10.5194/bg-11-4599-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
P. Peylin, R. M. Law, K. R. Gurney, F. Chevallier, A. R. Jacobson, T. Maki, Y. Niwa, P. K. Patra, W. Peters, P. J. Rayner, C. Rödenbeck, I. T. van der Laan-Luijkx, and X. Zhang
Biogeosciences, 10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, https://doi.org/10.5194/bg-10-6699-2013, 2013
B. Badawy, C. Rödenbeck, M. Reichstein, N. Carvalhais, and M. Heimann
Biogeosciences, 10, 6485–6508, https://doi.org/10.5194/bg-10-6485-2013, https://doi.org/10.5194/bg-10-6485-2013, 2013
A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. Takahashi
Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, https://doi.org/10.5194/bg-10-4037-2013, 2013
C. Rödenbeck, R. F. Keeling, D. C. E. Bakker, N. Metzl, A. Olsen, C. Sabine, and M. Heimann
Ocean Sci., 9, 193–216, https://doi.org/10.5194/os-9-193-2013, https://doi.org/10.5194/os-9-193-2013, 2013
U. Schuster, G. A. McKinley, N. Bates, F. Chevallier, S. C. Doney, A. R. Fay, M. González-Dávila, N. Gruber, S. Jones, J. Krijnen, P. Landschützer, N. Lefèvre, M. Manizza, J. Mathis, N. Metzl, A. Olsen, A. F. Rios, C. Rödenbeck, J. M. Santana-Casiano, T. Takahashi, R. Wanninkhof, and A. J. Watson
Biogeosciences, 10, 607–627, https://doi.org/10.5194/bg-10-607-2013, https://doi.org/10.5194/bg-10-607-2013, 2013
Dieu Anh Tran, Christoph Gerbig, Christian Rödenbeck, and Sönke Zaehle
Atmos. Chem. Phys., 24, 8413–8440, https://doi.org/10.5194/acp-24-8413-2024, https://doi.org/10.5194/acp-24-8413-2024, 2024
Short summary
Short summary
The analysis of the atmospheric CO2 record from the Zotino Tall Tower Observatory (ZOTTO) in central Siberia shows significant increases in the length and amplitude of the CO2 uptake and release in the 2010–2021 period. The trend shows a stronger increase in carbon release amplitude compared to the uptake, suggesting that, despite enhanced growing season uptake, during this period climate warming did not elevate the annual net CO2 uptake as cold-season respirations also responded to the warming.
Fabian Maier, Christian Rödenbeck, Ingeborg Levin, Christoph Gerbig, Maksym Gachkivskyi, and Samuel Hammer
Atmos. Chem. Phys., 24, 8183–8203, https://doi.org/10.5194/acp-24-8183-2024, https://doi.org/10.5194/acp-24-8183-2024, 2024
Short summary
Short summary
We investigate the usage of discrete radiocarbon (14C)-based fossil fuel carbon dioxide (ffCO2) concentration estimates vs. continuous carbon monoxide (CO)-based ffCO2 estimates to evaluate the seasonal cycle of ffCO2 emissions in an urban region with an inverse modeling framework. We find that the CO-based ffCO2 estimates allow us to reconstruct robust seasonal cycles, which show the distinct COVID-19 drawdown in 2020 and can be used to validate emission inventories.
Santiago Botía, Saqr Munassar, Thomas Koch, Danilo Custodio, Luana S. Basso, Shujiro Komiya, Jost V. Lavric, David Walter, Manuel Gloor, Giordane Martins, Stijn Naus, Gerbrand Koren, Ingrid Luijkx, Stijn Hantson, John B. Miller, Wouter Peters, Christian Rödenbeck, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1735, https://doi.org/10.5194/egusphere-2024-1735, 2024
Short summary
Short summary
This study uses CO2 data from the Amazon Tall Tower Observatory and airborne profiles to estimate net carbon exchange. We found that the biogeographic Amazon is a net carbon sink, while the Cerrado and Caatinga biomes are net carbon sources, resulting in an overall neutral balance. To further reduce the uncertainty in our estimates we call for an expansion of the monitoring capacity, especially in the Amazon-Andes foothills.
Frauke Bunsen, Judith Hauck, Lars Nerger, and Sinhué Torres-Valdés
EGUsphere, https://doi.org/10.5194/egusphere-2024-1750, https://doi.org/10.5194/egusphere-2024-1750, 2024
Short summary
Short summary
Computer models are used to derive estimates of the ocean CO2 uptake. Because such idealized models don't always correspond precisely to the real-world, we combine real-world observations of ocean temperature and salinity with a model, and study the effect on the modeled air-sea CO2 flux (2010–2020). The corrections of temperature and salinity have their largest effect on regional CO2 fluxes in the Southern Ocean during winter, but a comparatively small effect on the global ocean CO2 uptake.
Saqr Munassar, Christian Roedenbeck, Michał Gałkowski, Frank-Thomas Koch, Kai U. Totsche, Santiago Botía, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-291, https://doi.org/10.5194/egusphere-2024-291, 2024
Short summary
Short summary
CO2 mole fractions simulated over a global stations showed an overestimation of CO2 if the diurnal cycle is missing NEE. This led to biases in the estimated fluxes derived from the inversions at continental and regional scales. IAVof estimated NEE was affected by the diurnal effect. The findings point to the importance of including the diurnal variations of CO2 in the biosphere priors used in inversions to better converge flux estimates among inversions, in particular those contributing to GCB.
Joshua L. Laughner, Geoffrey C. Toon, Joseph Mendonca, Christof Petri, Sébastien Roche, Debra Wunch, Jean-Francois Blavier, David W. T. Griffith, Pauli Heikkinen, Ralph F. Keeling, Matthäus Kiel, Rigel Kivi, Coleen M. Roehl, Britton B. Stephens, Bianca C. Baier, Huilin Chen, Yonghoon Choi, Nicholas M. Deutscher, Joshua P. DiGangi, Jochen Gross, Benedikt Herkommer, Pascal Jeseck, Thomas Laemmel, Xin Lan, Erin McGee, Kathryn McKain, John Miller, Isamu Morino, Justus Notholt, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Haris Riris, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Steven C. Wofsy, Minqiang Zhou, and Paul O. Wennberg
Earth Syst. Sci. Data, 16, 2197–2260, https://doi.org/10.5194/essd-16-2197-2024, https://doi.org/10.5194/essd-16-2197-2024, 2024
Short summary
Short summary
This paper describes a new version, called GGG2020, of a data set containing column-integrated observations of greenhouse and related gases (including CO2, CH4, CO, and N2O) made by ground stations located around the world. Compared to the previous version (GGG2014), improvements have been made toward site-to-site consistency. This data set plays a key role in validating space-based greenhouse gas observations and in understanding the carbon cycle.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Martin Butzin, Ying Ye, Christoph Völker, Özgür Gürses, Judith Hauck, and Peter Köhler
Geosci. Model Dev., 17, 1709–1727, https://doi.org/10.5194/gmd-17-1709-2024, https://doi.org/10.5194/gmd-17-1709-2024, 2024
Short summary
Short summary
In this paper we describe the implementation of the carbon isotopes 13C and 14C into the marine biogeochemistry model FESOM2.1-REcoM3 and present results of long-term test simulations. Our model results are largely consistent with marine carbon isotope reconstructions for the pre-anthropogenic period, but also exhibit some discrepancies.
Christian Rödenbeck, Karina E. Adcock, Markus Eritt, Maksym Gachkivskyi, Christoph Gerbig, Samuel Hammer, Armin Jordan, Ralph F. Keeling, Ingeborg Levin, Fabian Maier, Andrew C. Manning, Heiko Moossen, Saqr Munassar, Penelope A. Pickers, Michael Rothe, Yasunori Tohjima, and Sönke Zaehle
Atmos. Chem. Phys., 23, 15767–15782, https://doi.org/10.5194/acp-23-15767-2023, https://doi.org/10.5194/acp-23-15767-2023, 2023
Short summary
Short summary
The carbon dioxide content of the Earth atmosphere is increasing due to human emissions from burning of fossil fuels, causing global climate change. The strength of the fossil-fuel emissions is estimated by inventories based on energy data, but independent validation of these inventories has been recommended by the Intergovernmental Panel on Climate Change. Here we investigate the potential to validate inventories based on measurements of small changes in the atmospheric oxygen content.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, https://doi.org/10.5194/amt-16-5909-2023, 2023
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert Observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Claudia Hinrichs, Peter Köhler, Christoph Völker, and Judith Hauck
Biogeosciences, 20, 3717–3735, https://doi.org/10.5194/bg-20-3717-2023, https://doi.org/10.5194/bg-20-3717-2023, 2023
Short summary
Short summary
This study evaluated the alkalinity distribution in 14 climate models and found that most models underestimate alkalinity at the surface and overestimate it in the deeper ocean. It highlights the need for better understanding and quantification of processes driving alkalinity distribution and calcium carbonate dissolution and the importance of accounting for biases in model results when evaluating potential ocean alkalinity enhancement experiments.
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-181, https://doi.org/10.5194/gmd-2023-181, 2023
Revised manuscript under review for GMD
Short summary
Short summary
Many biogeochemistry models assume all material reaching the seafloor is remineralized and returned to solution, which is sufficient for studies on short-term climate change. Under long-term climate change the storage of carbon in sediments slows down carbon cycling and influences feedbacks in the atmosphere-ocean-sediment system. Here we coupled a sediment model to an ocean biogeochemistry model and found a shift of carbon storage from the atmosphere to the ocean-sediment system.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev., 16, 2995–3012, https://doi.org/10.5194/gmd-16-2995-2023, https://doi.org/10.5194/gmd-16-2995-2023, 2023
Short summary
Short summary
Using outputs of global biogeochemical ocean model and machine learning methods, we demonstrate that it will be possible to identify linkages between surface environmental and ecosystem structure and the export of carbon to depth by sinking organic particles using real observations. It will be possible to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
Benjamin Birner, Eric Morgan, and Ralph F. Keeling
Atmos. Meas. Tech., 16, 1551–1561, https://doi.org/10.5194/amt-16-1551-2023, https://doi.org/10.5194/amt-16-1551-2023, 2023
Short summary
Short summary
Atmospheric variations of helium (He) and CO2 are strongly linked due to the co-release of both gases from natural-gas burning. This implies that atmospheric He measurements may be a potentially powerful tool for verifying reported anthropogenic natural-gas usage. Here, we present the development and initial results of a novel measurement system of atmospheric He that paves the way for establishing a global monitoring network in the future.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Mark O. Battle, Raine Raynor, Stephen Kesler, and Ralph Keeling
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-765, https://doi.org/10.5194/acp-2022-765, 2023
Preprint withdrawn
Short summary
Short summary
For decades, we have used measurements of atmospheric oxygen to understand how much carbon dioxide leaves the atmosphere and enters the land biosphere and the oceans. Until now, these calculations have ignored the release of oxygen associated with the refining of iron, aluminum and copper from their ores. In this article, we show that this release of oxygen is indeed much smaller than all of the other terms that have been included in the calculations and the earlier calculations are valid.
Saqr Munassar, Guillaume Monteil, Marko Scholze, Ute Karstens, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, and Christoph Gerbig
Atmos. Chem. Phys., 23, 2813–2828, https://doi.org/10.5194/acp-23-2813-2023, https://doi.org/10.5194/acp-23-2813-2023, 2023
Short summary
Short summary
Using different transport models results in large errors in optimized fluxes in the atmospheric inversions. Boundary conditions and inversion system configurations lead to a smaller but non-negligible impact. The findings highlight the importance to validate transport models for further developments but also to properly account for such errors in inverse modelling. This will help narrow the convergence of gas estimates reported in the scientific literature from different inversion frameworks.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Saqr Munassar, Christian Rödenbeck, Frank-Thomas Koch, Kai U. Totsche, Michał Gałkowski, Sophia Walther, and Christoph Gerbig
Atmos. Chem. Phys., 22, 7875–7892, https://doi.org/10.5194/acp-22-7875-2022, https://doi.org/10.5194/acp-22-7875-2022, 2022
Short summary
Short summary
The results obtained from ensembles of inversions over 13 years show the largest spread in the a posteriori fluxes over the station set ensemble. Using different prior fluxes in the inversions led to a smaller impact. Drought occurrences in 2018 and 2019 affected CO2 fluxes as seen in net ecosystem exchange estimates. Our study highlights the importance of expanding the atmospheric site network across Europe to better constrain CO2 fluxes in inverse modelling.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Nobuyuki Aoki, Shigeyuki Ishidoya, Yasunori Tohjima, Shinji Morimoto, Ralph F. Keeling, Adam Cox, Shuichiro Takebayashi, and Shohei Murayama
Atmos. Meas. Tech., 14, 6181–6193, https://doi.org/10.5194/amt-14-6181-2021, https://doi.org/10.5194/amt-14-6181-2021, 2021
Short summary
Short summary
Observing the minimal long-term change in atmospheric O2 molar fraction combined with CO2 observation enables us to estimate terrestrial biospheric and oceanic CO2 uptakes separately. In this study, we firstly identified the span offset between the laboratory O2 scales using our developed high-precision standard mixtures, suggesting that the result may allow us to estimate terrestrial biospheric and oceanic CO2 uptakes precisely.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Britton B. Stephens, Eric J. Morgan, Jonathan D. Bent, Ralph F. Keeling, Andrew S. Watt, Stephen R. Shertz, and Bruce C. Daube
Atmos. Meas. Tech., 14, 2543–2574, https://doi.org/10.5194/amt-14-2543-2021, https://doi.org/10.5194/amt-14-2543-2021, 2021
Short summary
Short summary
We describe methods used to make high-precision global-scale airborne measurements of atmospheric oxygen concentrations over a period of 20 years in order to study the global carbon cycle. Our techniques include an in situ vacuum ultraviolet absorption instrument and a pressure- and flow-controlled, cryogenically dried, glass flask sampler. We have deployed these instruments in 15 airborne research campaigns spanning from the Earth’s surface to the lower stratosphere and from pole to pole.
Benjamin Birner, William Paplawsky, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Meas. Tech., 14, 2515–2527, https://doi.org/10.5194/amt-14-2515-2021, https://doi.org/10.5194/amt-14-2515-2021, 2021
Short summary
Short summary
The atmospheric helium-to-nitrogen ratio is a promising indicator for circulation changes in the upper atmosphere and fossil fuel burning by humans. We present a very precise analysis method to determine changes in the helium-to-nitrogen ratio of air samples. The method relies on stabilizing the gas flow to a mass spectrometer and continuous removal of reactive gases. These advances enable new insights and monitoring possibilities for anthropogenic and natural processes.
Rebecca M. Wright, Corinne Le Quéré, Erik Buitenhuis, Sophie Pitois, and Mark J. Gibbons
Biogeosciences, 18, 1291–1320, https://doi.org/10.5194/bg-18-1291-2021, https://doi.org/10.5194/bg-18-1291-2021, 2021
Short summary
Short summary
Jellyfish have been included in a global ocean biogeochemical model for the first time. The global mean jellyfish biomass in the model is within the observational range. Jellyfish are found to play an important role in the plankton ecosystem, influencing community structure, spatiotemporal dynamics and biomass. The model raises questions about the sensitivity of the zooplankton community to jellyfish mortality and the interactions between macrozooplankton and jellyfish.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Yuming Jin, Ralph F. Keeling, Eric J. Morgan, Eric Ray, Nicholas C. Parazoo, and Britton B. Stephens
Atmos. Chem. Phys., 21, 217–238, https://doi.org/10.5194/acp-21-217-2021, https://doi.org/10.5194/acp-21-217-2021, 2021
Short summary
Short summary
We propose a new atmospheric coordinate (Mθe) based on equivalent potential temperature (θe) but with mass as the unit. This coordinate is useful in studying the spatial and temporal distribution of long-lived chemical tracers (CO2, CH4, O2 / N2, etc.) from sparse data, like airborne observation. Using this coordinate and sparse airborne observation (HIPPO and ATom), we resolve the Northern Hemisphere mass-weighted average CO2 seasonal cycle with high accuracy.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Benjamin Birner, Martyn P. Chipperfield, Eric J. Morgan, Britton B. Stephens, Marianna Linz, Wuhu Feng, Chris Wilson, Jonathan D. Bent, Steven C. Wofsy, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Chem. Phys., 20, 12391–12408, https://doi.org/10.5194/acp-20-12391-2020, https://doi.org/10.5194/acp-20-12391-2020, 2020
Short summary
Short summary
With new high-precision observations from nine aircraft campaigns and 3-D chemical transport modeling, we show that the argon-to-nitrogen ratio (Ar / N2) in the lowermost stratosphere provides a useful constraint on the “age of air” (the time elapsed since entry of an air parcel into the stratosphere). Therefore, Ar / N2 in combination with traditional age-of-air indicators, such as CO2 and N2O, could provide new insights into atmospheric mixing and transport.
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
Barbara Marcolla, Mirco Migliavacca, Christian Rödenbeck, and Alessandro Cescatti
Biogeosciences, 17, 2365–2379, https://doi.org/10.5194/bg-17-2365-2020, https://doi.org/10.5194/bg-17-2365-2020, 2020
Short summary
Short summary
This work investigates the sensitivity of terrestrial CO2 fluxes to climate drivers. We observed that CO2 flux is mostly controlled by temperature during the growing season and by radiation off season. We also observe that radiation importance is increasing over time while sensitivity to temperature is decreasing in Eurasia. Ultimately this analysis shows that ecosystem response to climate is changing, with potential repercussions for future terrestrial sink and land role in climate mitigation.
Martin Jung, Christopher Schwalm, Mirco Migliavacca, Sophia Walther, Gustau Camps-Valls, Sujan Koirala, Peter Anthoni, Simon Besnard, Paul Bodesheim, Nuno Carvalhais, Frédéric Chevallier, Fabian Gans, Daniel S. Goll, Vanessa Haverd, Philipp Köhler, Kazuhito Ichii, Atul K. Jain, Junzhi Liu, Danica Lombardozzi, Julia E. M. S. Nabel, Jacob A. Nelson, Michael O'Sullivan, Martijn Pallandt, Dario Papale, Wouter Peters, Julia Pongratz, Christian Rödenbeck, Stephen Sitch, Gianluca Tramontana, Anthony Walker, Ulrich Weber, and Markus Reichstein
Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, https://doi.org/10.5194/bg-17-1343-2020, 2020
Short summary
Short summary
We test the approach of producing global gridded carbon fluxes based on combining machine learning with local measurements, remote sensing and climate data. We show that we can reproduce seasonal variations in carbon assimilated by plants via photosynthesis and in ecosystem net carbon balance. The ecosystem’s mean carbon balance and carbon flux trends require cautious interpretation. The analysis paves the way for future improvements of the data-driven assessment of carbon fluxes.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Elizabeth Asher, Rebecca S. Hornbrook, Britton B. Stephens, Doug Kinnison, Eric J. Morgan, Ralph F. Keeling, Elliot L. Atlas, Sue M. Schauffler, Simone Tilmes, Eric A. Kort, Martin S. Hoecker-Martínez, Matt C. Long, Jean-François Lamarque, Alfonso Saiz-Lopez, Kathryn McKain, Colm Sweeney, Alan J. Hills, and Eric C. Apel
Atmos. Chem. Phys., 19, 14071–14090, https://doi.org/10.5194/acp-19-14071-2019, https://doi.org/10.5194/acp-19-14071-2019, 2019
Short summary
Short summary
Halogenated organic trace gases, which are a source of reactive halogens to the atmosphere, exert a disproportionately large influence on atmospheric chemistry and climate. This paper reports novel aircraft observations of halogenated compounds over the Southern Ocean in summer and evaluates hypothesized regional sources and emissions of these trace gases through their relationships to additional aircraft observations.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Karel Castro-Morales, Gregor Schürmann, Christoph Köstler, Christian Rödenbeck, Martin Heimann, and Sönke Zaehle
Biogeosciences, 16, 3009–3032, https://doi.org/10.5194/bg-16-3009-2019, https://doi.org/10.5194/bg-16-3009-2019, 2019
Short summary
Short summary
To obtain nearly 30 years of global terrestrial carbon fluxes, we simultaneously incorporated in a land surface model three different time periods of two observational data sets: absorbed photosynthetic active radiation and atmospheric CO2 concentrations. One decade of data is enough to improve the modeled long-term trends and seasonal amplitudes of the assimilated variables, particularly in boreal regions. This model has the potential to provide short-term predictions of land carbon fluxes.
Patrick A. Rafter, Aaron Bagnell, Dario Marconi, and Timothy DeVries
Biogeosciences, 16, 2617–2633, https://doi.org/10.5194/bg-16-2617-2019, https://doi.org/10.5194/bg-16-2617-2019, 2019
Short summary
Short summary
The N isotopic composition of nitrate (
nitrate δ15N) is a useful tracer of ocean N cycling and many other ocean processes. Here, we use a global compilation of marine nitrate δ15N as an input, training, and validating dataset for an artificial neural network (a.k.a.,
machine learning) and examine basin-scale trends in marine nitrate δ15N from the surface to the seafloor.
Benjamin Gaubert, Britton B. Stephens, Sourish Basu, Frédéric Chevallier, Feng Deng, Eric A. Kort, Prabir K. Patra, Wouter Peters, Christian Rödenbeck, Tazu Saeki, David Schimel, Ingrid Van der Laan-Luijkx, Steven Wofsy, and Yi Yin
Biogeosciences, 16, 117–134, https://doi.org/10.5194/bg-16-117-2019, https://doi.org/10.5194/bg-16-117-2019, 2019
Short summary
Short summary
We have compared global carbon budgets calculated from numerical inverse models and CO2 observations, and evaluated how these systems reproduce vertical gradients in atmospheric CO2 from aircraft measurements. We found that available models have converged on near-neutral tropical total fluxes for several decades, implying consistent sinks in intact tropical forests, and that assumed fossil fuel emissions and predicted atmospheric growth rates are now the dominant axes of disagreement.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Christian Rödenbeck, Sönke Zaehle, Ralph Keeling, and Martin Heimann
Biogeosciences, 15, 2481–2498, https://doi.org/10.5194/bg-15-2481-2018, https://doi.org/10.5194/bg-15-2481-2018, 2018
Short summary
Short summary
In this paper we investigate how the CO2 exchange between the land vegetation and the atmosphere varies from year to year. We quantify the relation between variations in the CO2 exchange and variations in air temperature. For this quantification, we use long-term measurements of CO2 in the air at many locations, a simulation code for the transport of carbon dioxide through the atmosphere, and a data set of air temperature. The results help us to understand the mechanisms of CO2 exchange.
Erik T. Buitenhuis, Parvadha Suntharalingam, and Corinne Le Quéré
Biogeosciences, 15, 2161–2175, https://doi.org/10.5194/bg-15-2161-2018, https://doi.org/10.5194/bg-15-2161-2018, 2018
Short summary
Short summary
Thanks to decreases in CFC concentrations, N2O is now the third-most important greenhouse gas, and the dominant contributor to stratospheric ozone depletion. Here we estimate the ocean–atmosphere N2O flux. We find that an estimate based on observations alone has a large uncertainty. By combining observations and a range of model simulations we find that the uncertainty is much reduced to 2.45 ± 0.8 Tg N yr−1, and better constrained and at the lower end of the estimate in the latest IPCC report.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas Frank Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3027–3045, https://doi.org/10.5194/acp-18-3027-2018, https://doi.org/10.5194/acp-18-3027-2018, 2018
Panagiotis Kountouris, Christoph Gerbig, Christian Rödenbeck, Ute Karstens, Thomas F. Koch, and Martin Heimann
Atmos. Chem. Phys., 18, 3047–3064, https://doi.org/10.5194/acp-18-3047-2018, https://doi.org/10.5194/acp-18-3047-2018, 2018
Heather Graven, Colin E. Allison, David M. Etheridge, Samuel Hammer, Ralph F. Keeling, Ingeborg Levin, Harro A. J. Meijer, Mauro Rubino, Pieter P. Tans, Cathy M. Trudinger, Bruce H. Vaughn, and James W. C. White
Geosci. Model Dev., 10, 4405–4417, https://doi.org/10.5194/gmd-10-4405-2017, https://doi.org/10.5194/gmd-10-4405-2017, 2017
Short summary
Short summary
Modelling of carbon isotopes 13C and 14C in land and ocean components of Earth system models provides opportunities for new insights and improved understanding of global carbon cycling, and for model evaluation. We compiled existing historical datasets to define the annual mean carbon isotopic composition of atmospheric CO2 for 1850–2015 that can be used in CMIP6 and other modelling activities.
Chao Yue, Philippe Ciais, Ana Bastos, Frederic Chevallier, Yi Yin, Christian Rödenbeck, and Taejin Park
Atmos. Chem. Phys., 17, 13903–13919, https://doi.org/10.5194/acp-17-13903-2017, https://doi.org/10.5194/acp-17-13903-2017, 2017
Short summary
Short summary
The year 2015 appeared as a paradox regarding how global carbon cycle has responded to climate variation: it is the greenest year since 2000 according to satellite observation, but the atmospheric CO2 growth rate is also the highest since 1959. We found that this is due to a only moderate land carbon sink, because high growing-season sink in northern lands has been partly offset by autumn and winter release and the late-year El Niño has led to an abrupt transition to land source in the tropics.
Barbara Marcolla, Christian Rödenbeck, and Alessandro Cescatti
Biogeosciences, 14, 3815–3829, https://doi.org/10.5194/bg-14-3815-2017, https://doi.org/10.5194/bg-14-3815-2017, 2017
Short summary
Short summary
Patterns and controls of the inter-annual variability of carbon net ecosystem exchange were analysed using three different data streams: ecosystem-level observations (FLUXNET database), a global upscaling of site-level fluxes (MPI-MTE), and a top–down estimate of fluxes (Jena CarboScope Inversion). Consistencies and discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of the inter-annual variability were investigated for the three data sources.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Kristal R. Verhulst, Anna Karion, Jooil Kim, Peter K. Salameh, Ralph F. Keeling, Sally Newman, John Miller, Christopher Sloop, Thomas Pongetti, Preeti Rao, Clare Wong, Francesca M. Hopkins, Vineet Yadav, Ray F. Weiss, Riley M. Duren, and Charles E. Miller
Atmos. Chem. Phys., 17, 8313–8341, https://doi.org/10.5194/acp-17-8313-2017, https://doi.org/10.5194/acp-17-8313-2017, 2017
Short summary
Short summary
We present the first carbon dioxide (CO2) and methane (CH4) measurements from an extensive surface network as part of the Los Angeles Megacity Carbon Project. We describe methods that are essential for understanding carbon fluxes from complex urban environments. CO2 and CH4 levels are spatially and temporally variable, with urban sites showing significant enhancements relative to background. In 2015, the median afternoon enhancement near downtown Los Angeles was ~15 ppm CO2 and ~80 ppb CH4.
Shreeya Verma, Julia Marshall, Christoph Gerbig, Christian Rödenbeck, and Kai Uwe Totsche
Atmos. Chem. Phys., 17, 5665–5675, https://doi.org/10.5194/acp-17-5665-2017, https://doi.org/10.5194/acp-17-5665-2017, 2017
Short summary
Short summary
The inverse modelling approach for estimating surface fluxes is based on transport models that have an imperfect representation of atmospheric processes like vertical mixing. In this paper, we show how assimilating commercial aircraft-based vertical profiles of CO2 into inverse models can help reduce error due to the transport model, thus providing more accurate estimates of surface fluxes. Further, the reduction in flux uncertainty due to aircraft profiles from the IAGOS project is quantified.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Gregor J. Schürmann, Thomas Kaminski, Christoph Köstler, Nuno Carvalhais, Michael Voßbeck, Jens Kattge, Ralf Giering, Christian Rödenbeck, Martin Heimann, and Sönke Zaehle
Geosci. Model Dev., 9, 2999–3026, https://doi.org/10.5194/gmd-9-2999-2016, https://doi.org/10.5194/gmd-9-2999-2016, 2016
Short summary
Short summary
We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS). The system improves the modelled carbon cycle of the terrestrial biosphere by systematically confronting (or assimilating) the model with observations of atmospheric CO2 and fractions of absorbed photosynthetically active radiation. Jointly assimilating both data streams outperforms the single-data stream experiments, thus showing the value of a multi-data stream assimilation.
Lisa R. Welp, Prabir K. Patra, Christian Rödenbeck, Rama Nemani, Jian Bi, Stephen C. Piper, and Ralph F. Keeling
Atmos. Chem. Phys., 16, 9047–9066, https://doi.org/10.5194/acp-16-9047-2016, https://doi.org/10.5194/acp-16-9047-2016, 2016
Short summary
Short summary
Boreal and arctic ecosystems have been responding to elevated temperatures and atmospheric CO2 over the last decades. It is not clear if these ecosystems are sequestering more carbon or possibly becoming sources. This is an important feedback of the carbon cycle to global warming. We studied monthly biological land CO2 fluxes inferred from atmospheric CO2 concentrations using inverse models and found that net summer CO2 uptake increased, resulting in a small increase in annual CO2 uptake.
Corinne Le Quéré, Erik T. Buitenhuis, Róisín Moriarty, Séverine Alvain, Olivier Aumont, Laurent Bopp, Sophie Chollet, Clare Enright, Daniel J. Franklin, Richard J. Geider, Sandy P. Harrison, Andrew G. Hirst, Stuart Larsen, Louis Legendre, Trevor Platt, I. Colin Prentice, Richard B. Rivkin, Sévrine Sailley, Shubha Sathyendranath, Nick Stephens, Meike Vogt, and Sergio M. Vallina
Biogeosciences, 13, 4111–4133, https://doi.org/10.5194/bg-13-4111-2016, https://doi.org/10.5194/bg-13-4111-2016, 2016
Short summary
Short summary
We present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types, and use the model to assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean. Our results suggest that observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton growth.
Charlotte Laufkötter, Meike Vogt, Nicolas Gruber, Olivier Aumont, Laurent Bopp, Scott C. Doney, John P. Dunne, Judith Hauck, Jasmin G. John, Ivan D. Lima, Roland Seferian, and Christoph Völker
Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, https://doi.org/10.5194/bg-13-4023-2016, 2016
Short summary
Short summary
We compare future projections in marine export production, generated by four ecosystem models under IPCC's high-emission scenario RCP8.5. While all models project decreases in export, they differ strongly regarding the drivers. The formation of sinking particles of organic matter is the most uncertain process with models not agreeing on either magnitude or the direction of change. Changes in diatom concentration are a strong driver for export in some models but of low significance in others.
Sally Newman, Xiaomei Xu, Kevin R. Gurney, Ying Kuang Hsu, King Fai Li, Xun Jiang, Ralph Keeling, Sha Feng, Darragh O'Keefe, Risa Patarasuk, Kam Weng Wong, Preeti Rao, Marc L. Fischer, and Yuk L. Yung
Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, https://doi.org/10.5194/acp-16-3843-2016, 2016
Short summary
Short summary
Combining 14C and 13C data from the Los Angeles, CA megacity with background data allows source attribution of CO2 emissions among biosphere, natural gas, and gasoline. The 8-year record of CO2 emissions from fossil fuel burning is consistent with "The Great Recession" of 2008–2010. The long-term trend and source attribution are consistent with government inventories. Seasonal patterns agree with the high-resolution Hestia-LA emission data product, when seasonal wind directions are considered.
C. Rödenbeck, D. C. E. Bakker, N. Gruber, Y. Iida, A. R. Jacobson, S. Jones, P. Landschützer, N. Metzl, S. Nakaoka, A. Olsen, G.-H. Park, P. Peylin, K. B. Rodgers, T. P. Sasse, U. Schuster, J. D. Shutler, V. Valsala, R. Wanninkhof, and J. Zeng
Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, https://doi.org/10.5194/bg-12-7251-2015, 2015
Short summary
Short summary
This study investigates variations in the CO2 uptake of the ocean from year to year. These variations have been calculated from measurements of the surface-ocean carbon content by various different interpolation methods. The equatorial Pacific is estimated to be the region with the strongest year-to-year variations, tied to the El Nino phase. The global ocean CO2 uptake gradually increased from about the year 2000. The comparison of the interpolation methods identifies these findings as robust.
C. Laufkötter, M. Vogt, N. Gruber, M. Aita-Noguchi, O. Aumont, L. Bopp, E. Buitenhuis, S. C. Doney, J. Dunne, T. Hashioka, J. Hauck, T. Hirata, J. John, C. Le Quéré, I. D. Lima, H. Nakano, R. Seferian, I. Totterdell, M. Vichi, and C. Völker
Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, https://doi.org/10.5194/bg-12-6955-2015, 2015
Short summary
Short summary
We analyze changes in marine net primary production (NPP) and its drivers for the 21st century in 9 marine ecosystem models under the RCP8.5 scenario. NPP decreases in 5 models and increases in 1 model; 3 models show no significant trend. The main drivers include stronger nutrient limitation, but in many models warming-induced increases in phytoplankton growth outbalance the nutrient effect. Temperature-driven increases in grazing and other loss processes cause a net decrease in biomass and NPP.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
D. D. Lucas, C. Yver Kwok, P. Cameron-Smith, H. Graven, D. Bergmann, T. P. Guilderson, R. Weiss, and R. Keeling
Geosci. Instrum. Method. Data Syst., 4, 121–137, https://doi.org/10.5194/gi-4-121-2015, https://doi.org/10.5194/gi-4-121-2015, 2015
Short summary
Short summary
Multiobjective optimization is used to design Pareto optimal greenhouse gas (GHG) observing networks. A prototype GHG network is designed to optimize scientific performance and measurement costs. The Pareto frontier is convex, showing the trade-offs between performance and cost and the diminishing returns in trading one for the other. Other objectives and constraints that are important in the design of practical GHG monitoring networks can be incorporated into our method.
C. Heinze, S. Meyer, N. Goris, L. Anderson, R. Steinfeldt, N. Chang, C. Le Quéré, and D. C. E. Bakker
Earth Syst. Dynam., 6, 327–358, https://doi.org/10.5194/esd-6-327-2015, https://doi.org/10.5194/esd-6-327-2015, 2015
Short summary
Short summary
Rapidly rising atmospheric CO2 concentrations caused by human actions over the past 250 years have raised cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20,000 years. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems. Major future ocean carbon research challenges are discussed.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
C. D. Nevison, M. Manizza, R. F. Keeling, M. Kahru, L. Bopp, J. Dunne, J. Tiputra, T. Ilyina, and B. G. Mitchell
Biogeosciences, 12, 193–208, https://doi.org/10.5194/bg-12-193-2015, https://doi.org/10.5194/bg-12-193-2015, 2015
Short summary
Short summary
The observed seasonal cycles in atmospheric potential oxygen (APO) at five surface monitoring sites are compared to those inferred from the air-sea O2 fluxes of six ocean biogeochemistry models. The simulated air-sea fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM) uncertainty among 13 different ATMs. Net primary production (NPP), estimated from satellite ocean color data, is also compared to model output.
L. Kwiatkowski, A. Yool, J. I. Allen, T. R. Anderson, R. Barciela, E. T. Buitenhuis, M. Butenschön, C. Enright, P. R. Halloran, C. Le Quéré, L. de Mora, M.-F. Racault, B. Sinha, I. J. Totterdell, and P. M. Cox
Biogeosciences, 11, 7291–7304, https://doi.org/10.5194/bg-11-7291-2014, https://doi.org/10.5194/bg-11-7291-2014, 2014
C. Rödenbeck, D. C. E. Bakker, N. Metzl, A. Olsen, C. Sabine, N. Cassar, F. Reum, R. F. Keeling, and M. Heimann
Biogeosciences, 11, 4599–4613, https://doi.org/10.5194/bg-11-4599-2014, https://doi.org/10.5194/bg-11-4599-2014, 2014
K. B. Rodgers, O. Aumont, S. E. Mikaloff Fletcher, Y. Plancherel, L. Bopp, C. de Boyer Montégut, D. Iudicone, R. F. Keeling, G. Madec, and R. Wanninkhof
Biogeosciences, 11, 4077–4098, https://doi.org/10.5194/bg-11-4077-2014, https://doi.org/10.5194/bg-11-4077-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
T. Hashioka, M. Vogt, Y. Yamanaka, C. Le Quéré, E. T. Buitenhuis, M. N. Aita, S. Alvain, L. Bopp, T. Hirata, I. Lima, S. Sailley, and S. C. Doney
Biogeosciences, 10, 6833–6850, https://doi.org/10.5194/bg-10-6833-2013, https://doi.org/10.5194/bg-10-6833-2013, 2013
P. Peylin, R. M. Law, K. R. Gurney, F. Chevallier, A. R. Jacobson, T. Maki, Y. Niwa, P. K. Patra, W. Peters, P. J. Rayner, C. Rödenbeck, I. T. van der Laan-Luijkx, and X. Zhang
Biogeosciences, 10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, https://doi.org/10.5194/bg-10-6699-2013, 2013
B. Badawy, C. Rödenbeck, M. Reichstein, N. Carvalhais, and M. Heimann
Biogeosciences, 10, 6485–6508, https://doi.org/10.5194/bg-10-6485-2013, https://doi.org/10.5194/bg-10-6485-2013, 2013
A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. Takahashi
Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, https://doi.org/10.5194/bg-10-4037-2013, 2013
L. R. Welp, R. F. Keeling, R. F. Weiss, W. Paplawsky, and S. Heckman
Atmos. Meas. Tech., 6, 1217–1226, https://doi.org/10.5194/amt-6-1217-2013, https://doi.org/10.5194/amt-6-1217-2013, 2013
C. Le Quéré, R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. R. van der Werf, A. Ahlström, R. M. Andrew, L. Bopp, J. G. Canadell, P. Ciais, S. C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A. K. Jain, C. Jourdain, E. Kato, R. F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M. R. Raupach, J. Schwinger, S. Sitch, B. D. Stocker, N. Viovy, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, https://doi.org/10.5194/essd-5-165-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
O. D. Andrews, N. L. Bindoff, P. R. Halloran, T. Ilyina, and C. Le Quéré
Biogeosciences, 10, 1799–1813, https://doi.org/10.5194/bg-10-1799-2013, https://doi.org/10.5194/bg-10-1799-2013, 2013
C. Rödenbeck, R. F. Keeling, D. C. E. Bakker, N. Metzl, A. Olsen, C. Sabine, and M. Heimann
Ocean Sci., 9, 193–216, https://doi.org/10.5194/os-9-193-2013, https://doi.org/10.5194/os-9-193-2013, 2013
C. E. Yver, H. D. Graven, D. D. Lucas, P. J. Cameron-Smith, R. F. Keeling, and R. F. Weiss
Atmos. Chem. Phys., 13, 1837–1852, https://doi.org/10.5194/acp-13-1837-2013, https://doi.org/10.5194/acp-13-1837-2013, 2013
U. Schuster, G. A. McKinley, N. Bates, F. Chevallier, S. C. Doney, A. R. Fay, M. González-Dávila, N. Gruber, S. Jones, J. Krijnen, P. Landschützer, N. Lefèvre, M. Manizza, J. Mathis, N. Metzl, A. Olsen, A. F. Rios, C. Rödenbeck, J. M. Santana-Casiano, T. Takahashi, R. Wanninkhof, and A. J. Watson
Biogeosciences, 10, 607–627, https://doi.org/10.5194/bg-10-607-2013, https://doi.org/10.5194/bg-10-607-2013, 2013
Related subject area
Biogeochemistry: Greenhouse Gases
Carbon degradation and mobilisation potentials of thawing permafrost peatlands in northern Norway inferred from laboratory incubations
Seasonal dynamics and regional distribution patterns of CO2 and CH4 in the north-eastern Baltic Sea
Interannual and seasonal variability of the air–sea CO2 exchange at Utö in the coastal region of the Baltic Sea
CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems
Influence of wind strength and direction on diffusive methane fluxes and atmospheric methane concentrations above the North Sea
Using eddy covariance observations to determine the carbon sequestration characteristics of subalpine forests in the Qinghai–Tibet Plateau
Dynamics of CO2 and CH4 fluxes in Red Sea mangrove soils
Isotopomer labeling and oxygen dependence of hybrid nitrous oxide production
The emission of CO from tropical rainforest soils
Drought disrupts atmospheric carbon uptake in a Mediterranean saline lake
Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Technical note: A low-cost, automatic soil-plant-atmosphere enclosure system to investigate CO2 and ET flux dynamics
Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Assessing improvements in global ocean pCO2 machine learning reconstructions with Southern Ocean autonomous sampling
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Physicochemical Perturbation Increases Nitrous Oxide Production in Soils and Sediments
Resolving heterogeneous fluxes from tundra halves the growing season carbon budget
Tidal influence on carbon dioxide and methane fluxes from tree stems and soils in mangrove forests
Lawns and meadows in urban green space – a comparison from perspectives of greenhouse gases, drought resilience and plant functional types
Large contribution of soil N2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices
Identifying landscape hot and cold spots of soil greenhouse gas fluxes by combining field measurements and remote sensing data
Explainable machine learning for modelling of net ecosystem exchange in boreal forest
Enhanced Southern Ocean CO2 outgassing as a result of stronger and poleward shifted southern hemispheric westerlies
Spatial and temporal variability of methane emissions and environmental conditions in a hyper-eutrophic fishpond
Optical and radar Earth observation data for upscaling methane emissions linked to permafrost degradation in sub-Arctic peatlands in northern Sweden
Herbivore–shrub interactions influence ecosystem respiration and biogenic volatile organic compound composition in the subarctic
Methane emissions due to reservoir flushing: a significant emission pathway?
Carbon dioxide and methane fluxes from mounds of African fungus-growing termites
Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea
Technical note: Skirt chamber – an open dynamic method for the rapid and minimally intrusive measurement of greenhouse gas emissions from peatlands
Seasonal variability of nitrous oxide concentrations and emissions in a temperate estuary
Reviews and syntheses: Recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic–boreal regions
Simulated methane emissions from Arctic ponds are highly sensitive to warming
Water-table-driven greenhouse gas emission estimates guide peatland restoration at national scale
Relationships between greenhouse gas production and landscape position during short-term permafrost thaw under anaerobic conditions in the Lena Delta
Carbon emissions and radiative forcings from tundra wildfires in the Yukon–Kuskokwim River Delta, Alaska
Carbon monoxide (CO) cycling in the Fram Strait, Arctic Ocean
Post-flooding disturbance recovery promotes carbon capture in riparian zones
Meteorological responses of carbon dioxide and methane fluxes in the terrestrial and aquatic ecosystems of a subarctic landscape
Carbon emission and export from the Ket River, western Siberia
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
Temporal patterns and drivers of CO2 emission from dry sediments in a groyne field of a large river
Effects of water table level and nitrogen deposition on methane and nitrous oxide emissions in an alpine peatland
Highest methane concentrations in an Arctic river linked to local terrestrial inputs
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
Biogeosciences, 21, 4723–4737, https://doi.org/10.5194/bg-21-4723-2024, https://doi.org/10.5194/bg-21-4723-2024, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4 or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 d to measure carbon loss. CO2 production was initially the highest, whereas CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Silvie Lainela, Erik Jacobs, Stella-Theresa Luik, Gregor Rehder, and Urmas Lips
Biogeosciences, 21, 4495–4519, https://doi.org/10.5194/bg-21-4495-2024, https://doi.org/10.5194/bg-21-4495-2024, 2024
Short summary
Short summary
We evaluate the variability of carbon dioxide and methane in the surface layer of the north-eastern basins of the Baltic Sea in 2018. We show that the shallower coastal areas have considerably higher spatial variability and seasonal amplitude of surface layer pCO2 and cCH4 than measured in the offshore areas of the Baltic Sea. Despite this high variability, caused mostly by coastal physical processes, the average annual air–sea CO2 fluxes differed only marginally between the sub-basins.
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
Biogeosciences, 21, 4341–4359, https://doi.org/10.5194/bg-21-4341-2024, https://doi.org/10.5194/bg-21-4341-2024, 2024
Short summary
Short summary
The exchange of CO2 between the sea and the atmosphere was studied in the Archipelago Sea, Baltic Sea, in 2017–2021, using an eddy covariance technique. The sea acted as a net source of CO2 with an average yearly emission of 27.1 gC m-2 yr-1, indicating that the marine ecosystem respired carbon that originated elsewhere. The yearly CO2 emission varied between 18.2–39.2 gC m-2 yr-1, mostly due to the yearly variation of ecosystem carbon uptake.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Niu Zhu, Jinniu Wang, Dongliang Luo, Xufeng Wang, Cheng Shen, and Ning Wu
Biogeosciences, 21, 3509–3522, https://doi.org/10.5194/bg-21-3509-2024, https://doi.org/10.5194/bg-21-3509-2024, 2024
Short summary
Short summary
Our study delves into the vital role of subalpine forests in the Qinghai–Tibet Plateau as carbon sinks in the context of climate change. Utilizing advanced eddy covariance systems, we uncover their significant carbon sequestration potential, observing distinct seasonal patterns influenced by temperature, humidity, and radiation. Notably, these forests exhibit robust carbon absorption, with potential implications for global carbon balance.
Jessica Ashley Valerie Breavington, Alexandra Steckbauer, Chuancheng Fu, Mongi Ennasri, and Carlos Manuel Duarte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1831, https://doi.org/10.5194/egusphere-2024-1831, 2024
Short summary
Short summary
Mangroves are known for storing large amounts of carbon in their soils, but this is lower in the Red Sea due to challenging growth conditions. We collected soil cores over multiple seasons to measure soil properties, and the greenhouse gasses (GHG) of carbon dioxide and methane. We found that GHG emissions are generally a small offset to carbon storage but punctuated by periods of very high GHG emission and this variability is linked to multiple environmental and soil properties.
Colette L. Kelly, Nicole M. Travis, Pascale Anabelle Baya, Claudia Frey, Xin Sun, Bess B. Ward, and Karen L. Casciotti
Biogeosciences, 21, 3215–3238, https://doi.org/10.5194/bg-21-3215-2024, https://doi.org/10.5194/bg-21-3215-2024, 2024
Short summary
Short summary
Nitrous oxide, a potent greenhouse gas, accumulates in regions of the ocean that are low in dissolved oxygen. We used a novel combination of chemical tracers to determine how nitrous oxide is produced in one of these regions, the eastern tropical North Pacific Ocean. Our experiments showed that the two most important sources of nitrous oxide under low-oxygen conditions are denitrification, an anaerobic process, and a novel “hybrid” process performed by ammonia-oxidizing archaea.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
EGUsphere, https://doi.org/10.5194/egusphere-2024-1562, https://doi.org/10.5194/egusphere-2024-1562, 2024
Short summary
Short summary
Inland saline lakes are crucial in the global carbon cycle, but increased droughts may alter their carbon exchange capacity. We measured CO2 and CH4 fluxes in a Mediterranean saline lake using the Eddy Covariance method under dry and wet conditions. We found the lake acts as a carbon sink during wet periods but not during droughts. These results highlight the importance of saline lakes in carbon sequestration and their vulnerability to climate change-induced droughts.
Johnathan D. Maxey, Neil D. Hartstein, Hermann W. Bange, and Mortiz Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1731, https://doi.org/10.5194/egusphere-2024-1731, 2024
Short summary
Short summary
The distribution of N2O in fjord-like estuaries is poorly described in the southern hemisphere. Our study describes N2O distribution and its drivers in one such system Macquarie Harbour, Tasmania. Water samples were collected seasonally from 2022/2023. Results show the system is a sink for atmospheric N2O when river flow is high; and the system emits N2O when the river flow is low. N2O generated in basins is intercepted by the surface water and exported to the ocean during high river flow.
Wael Al Hamwi, Maren Dubbert, Joerg Schaller, Matthias Lueck, Marten Schmidt, and Mathias Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1806, https://doi.org/10.5194/egusphere-2024-1806, 2024
Short summary
Short summary
We present a fully automatic, low-cost soil-plant enclosure system to monitor CO2 and ET fluxes within greenhouse experiments. It operates in two modes: independent, using low-cost sensors, and dependent, connecting multiple chambers to a single gas analyzer via a low-cost multiplexer. This system offers precise and accurate measurements, cost and labor efficiency, and high temporal resolution, enabling comprehensive monitoring of plant-soil responses to various treatments and conditions.
Yélognissè Agbohessou, Claire Delon, Manuela Grippa, Eric Mougin, Daouda Ngom, Espoir Koudjo Gaglo, Ousmane Ndiaye, Paulo Salgado, and Olivier Roupsard
Biogeosciences, 21, 2811–2837, https://doi.org/10.5194/bg-21-2811-2024, https://doi.org/10.5194/bg-21-2811-2024, 2024
Short summary
Short summary
Emissions of greenhouse gases in the Sahel are not well represented because they are considered weak compared to the rest of the world. However, natural areas in the Sahel emit carbon dioxide and nitrous oxides, which need to be assessed because of extended surfaces. We propose an assessment of such emissions in Sahelian silvopastoral systems and of how they are influenced by environmental characteristics. These results are essential to inform climate change strategies in the region.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Thea H. Heimdal, Galen A. McKinley, Adrienne J. Sutton, Amanda R. Fay, and Lucas Gloege
Biogeosciences, 21, 2159–2176, https://doi.org/10.5194/bg-21-2159-2024, https://doi.org/10.5194/bg-21-2159-2024, 2024
Short summary
Short summary
Measurements of ocean carbon are limited in time and space. Machine learning algorithms are therefore used to reconstruct ocean carbon where observations do not exist. Improving these reconstructions is important in order to accurately estimate how much carbon the ocean absorbs from the atmosphere. In this study, we find that a small addition of observations from the Southern Ocean, obtained by autonomous sampling platforms, could significantly improve the reconstructions.
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024, https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Short summary
We study the timescale dependence of airborne fraction and underlying feedbacks by a theory of the climate–carbon system. Using simulations we show the predictive power of this theory and find that (1) this fraction generally decreases for increasing timescales and (2) at all timescales the total feedback is negative and the model spread in a single feedback causes the spread in the airborne fraction. Our study indicates that those are properties of the system, independently of the scenario.
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024, https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Short summary
Determination of dissolved greenhouse gas (GHG) in freshwater allows us to estimate GHG fluxes. Mercuric chloride (HgCl2) is used to preserve water samples prior to GHG analysis despite its environmental and health impacts and interferences with water chemistry in freshwater. Here, we tested the effects of HgCl2, two substitutes and storage time on GHG in water from two boreal lakes. Preservation with HgCl2 caused overestimation of CO2 concentration with consequences for GHG flux estimation.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024, https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Short summary
We measured the emission of carbon dioxide (CO2) and methane (CH4) from different sites at the river Elbe in Germany over 3 days to find out what is more important for quantification: small-scale spatial variability or diurnal temporal variability. We found that CO2 emissions were very different between day and night, while CH4 emissions were more different between sites. Dried out river sediments contributed to CO2 emissions, while the side areas of the river were important CH4 sources.
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024, https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary
Short summary
We performed a full assessment of the carbon and nitrogen cycles of a cropland ecosystem. An uncertainty analysis and quantification of all carbon and nitrogen fluxes were deployed. The inventory simulations include greenhouse gas emissions of N2O, NH3 volatilization and NO3 leaching from arable land cultivation in Greece. The inventory also reports changes in soil organic carbon and nitrogen stocks in arable soils.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
EGUsphere, https://doi.org/10.5194/egusphere-2024-448, https://doi.org/10.5194/egusphere-2024-448, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbance to soils and sediments. We demonstrate that the disturbance increases N2O production, the microbial community adapts to disturbance over time, an initial disturbance appears to confer resilience to subsequent disturbance.
Sarah M. Ludwig, Luke Schiferl, Jacqueline Hung, Susan M. Natali, and Roisin Commane
Biogeosciences, 21, 1301–1321, https://doi.org/10.5194/bg-21-1301-2024, https://doi.org/10.5194/bg-21-1301-2024, 2024
Short summary
Short summary
Landscapes are often assumed to be homogeneous when using eddy covariance fluxes, which can lead to biases when calculating carbon budgets. In this study we report eddy covariance carbon fluxes from heterogeneous tundra. We used the footprints of each flux observation to unmix the fluxes coming from components of the landscape. We identified and quantified hot spots of carbon emissions in the landscape. Accurately scaling with landscape heterogeneity yielded half as much regional carbon uptake.
Zhao-Jun Yong, Wei‐Jen Lin, Chiao-Wen Lin, and Hsing-Juh Lin Lin
EGUsphere, https://doi.org/10.5194/egusphere-2024-533, https://doi.org/10.5194/egusphere-2024-533, 2024
Short summary
Short summary
This study is the first to simultaneously measure mangrove CH4 emissions from both stems and soils throughout tidal cycles. The stems served as both net CO2 and CH4 sources. Compared to those of the soils, the stems exhibited markedly lower CH4 emissions, but no difference in CO2 emissions. Sampling only during low tides might overestimate the stem CO2 and CH4 emissions on a diurnal scale. This study also highlights species distinctness (with pneumatophores) in the emissions.
Justine Trémeau, Beñat Olascoaga, Leif Backman, Esko Karvinen, Henriikka Vekuri, and Liisa Kulmala
Biogeosciences, 21, 949–972, https://doi.org/10.5194/bg-21-949-2024, https://doi.org/10.5194/bg-21-949-2024, 2024
Short summary
Short summary
We studied urban lawns and meadows in the Helsinki metropolitan area, Finland. We found that meadows are more resistant to drought events but that they do not increase carbon sequestration compared with lawns. Moreover, the transformation from lawns to meadows did not demonstrate any negative climate effects in terms of greenhouse gas emissions. Even though social and economic aspects also steer urban development, these results can guide planning to consider carbon-smart options.
Guantao Chen, Edzo Veldkamp, Muhammad Damris, Bambang Irawan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 21, 513–529, https://doi.org/10.5194/bg-21-513-2024, https://doi.org/10.5194/bg-21-513-2024, 2024
Short summary
Short summary
We established an oil palm management experiment in a large-scale oil palm plantation in Jambi, Indonesia. We recorded oil palm fruit yield and measured soil CO2, N2O, and CH4 fluxes. After 4 years of treatment, compared with conventional fertilization with herbicide weeding, reduced fertilization with mechanical weeding did not reduce yield and soil greenhouse gas emissions, which highlights the legacy effects of over a decade of conventional management prior to the start of the experiment.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2023-2559, https://doi.org/10.5194/egusphere-2023-2559, 2023
Short summary
Short summary
ML models are gaining popularity in biogeosciences. They are applied as gapfilling methods and used to upscale carbon fluxes to larger areas based on local measurements. In this study, we use Explainable ML methods to elucidate performance of machine learning models for carbon dioxide fluxes in boreal forest. We show that statistically equal models treat input variables differently. Explainable ML can help scientists to make informed solutions when applying ML models in their research.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Petr Znachor, Jiří Nedoma, Vojtech Kolar, and Anna Matoušů
Biogeosciences, 20, 4273–4288, https://doi.org/10.5194/bg-20-4273-2023, https://doi.org/10.5194/bg-20-4273-2023, 2023
Short summary
Short summary
We conducted intensive spatial sampling of the hypertrophic fishpond to better understand the spatial dynamics of methane fluxes and environmental heterogeneity in fishponds. The diffusive fluxes of methane accounted for only a minor fraction of the total fluxes and both varied pronouncedly within the pond and over the studied summer season. This could be explained only by the water depth. Wind substantially affected temperature, oxygen and chlorophyll a distribution in the pond.
Sofie Sjögersten, Martha Ledger, Matthias Siewert, Betsabé de la Barreda-Bautista, Andrew Sowter, David Gee, Giles Foody, and Doreen S. Boyd
Biogeosciences, 20, 4221–4239, https://doi.org/10.5194/bg-20-4221-2023, https://doi.org/10.5194/bg-20-4221-2023, 2023
Short summary
Short summary
Permafrost thaw in Arctic regions is increasing methane emissions, but quantification is difficult given the large and remote areas impacted. We show that UAV data together with satellite data can be used to extrapolate emissions across the wider landscape as well as detect areas at risk of higher emissions. A transition of currently degrading areas to fen type vegetation can increase emission by several orders of magnitude, highlighting the importance of quantifying areas at risk.
Cole G. Brachmann, Tage Vowles, Riikka Rinnan, Mats P. Björkman, Anna Ekberg, and Robert G. Björk
Biogeosciences, 20, 4069–4086, https://doi.org/10.5194/bg-20-4069-2023, https://doi.org/10.5194/bg-20-4069-2023, 2023
Short summary
Short summary
Herbivores change plant communities through grazing, altering the amount of CO2 and plant-specific chemicals (termed VOCs) emitted. We tested this effect by excluding herbivores and studying the CO2 and VOC emissions. Herbivores reduced CO2 emissions from a meadow community and altered VOC composition; however, community type had the strongest effect on the amount of CO2 and VOCs released. Herbivores can mediate greenhouse gas emissions, but the effect is marginal and community dependent.
Ole Lessmann, Jorge Encinas Fernández, Karla Martínez-Cruz, and Frank Peeters
Biogeosciences, 20, 4057–4068, https://doi.org/10.5194/bg-20-4057-2023, https://doi.org/10.5194/bg-20-4057-2023, 2023
Short summary
Short summary
Based on a large dataset of seasonally resolved methane (CH4) pore water concentrations in a reservoir's sediment, we assess the significance of CH4 emissions due to reservoir flushing. In the studied reservoir, CH4 emissions caused by one flushing operation can represent 7 %–14 % of the annual CH4 emissions and depend on the timing of the flushing operation. In reservoirs with high sediment loadings, regular flushing may substantially contribute to the overall CH4 emissions.
Matti Räsänen, Risto Vesala, Petri Rönnholm, Laura Arppe, Petra Manninen, Markus Jylhä, Jouko Rikkinen, Petri Pellikka, and Janne Rinne
Biogeosciences, 20, 4029–4042, https://doi.org/10.5194/bg-20-4029-2023, https://doi.org/10.5194/bg-20-4029-2023, 2023
Short summary
Short summary
Fungus-growing termites recycle large parts of dead plant material in African savannas and are significant sources of greenhouse gases. We measured CO2 and CH4 fluxes from their mounds and surrounding soils in open and closed habitats. The fluxes scale with mound volume. The results show that emissions from mounds of fungus-growing termites are more stable than those from other termites. The soil fluxes around the mound are affected by the termite colonies at up to 2 m distance from the mound.
Tim René de Groot, Anne Margriet Mol, Katherine Mesdag, Pierre Ramond, Rachel Ndhlovu, Julia Catherine Engelmann, Thomas Röckmann, and Helge Niemann
Biogeosciences, 20, 3857–3872, https://doi.org/10.5194/bg-20-3857-2023, https://doi.org/10.5194/bg-20-3857-2023, 2023
Short summary
Short summary
This study investigates methane dynamics in the Wadden Sea. Our measurements revealed distinct variations triggered by seasonality and tidal forcing. The methane budget was higher in warmer seasons but surprisingly high in colder seasons. Methane dynamics were amplified during low tides, flushing the majority of methane into the North Sea or releasing it to the atmosphere. Methanotrophic activity was also elevated during low tide but mitigated only a small fraction of the methane efflux.
Frederic Thalasso, Brenda Riquelme, Andrés Gómez, Roy Mackenzie, Francisco Javier Aguirre, Jorge Hoyos-Santillan, Ricardo Rozzi, and Armando Sepulveda-Jauregui
Biogeosciences, 20, 3737–3749, https://doi.org/10.5194/bg-20-3737-2023, https://doi.org/10.5194/bg-20-3737-2023, 2023
Short summary
Short summary
A robust skirt-chamber design to capture and quantify greenhouse gas emissions from peatlands is presented. Compared to standard methods, this design improves the spatial resolution of field studies in remote locations while minimizing intrusion.
Gesa Schulz, Tina Sanders, Yoana G. Voynova, Hermann W. Bange, and Kirstin Dähnke
Biogeosciences, 20, 3229–3247, https://doi.org/10.5194/bg-20-3229-2023, https://doi.org/10.5194/bg-20-3229-2023, 2023
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas. However, N2O emissions from estuaries underlie significant uncertainties due to limited data availability and high spatiotemporal variability. We found the Elbe Estuary (Germany) to be a year-round source of N2O, with the highest emissions in winter along with high nitrogen loads. However, in spring and summer, N2O emissions did not decrease alongside lower nitrogen loads because organic matter fueled in situ N2O production along the estuary.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Jennifer L. Baltzer, Christophe Kinnard, and Alexandre Roy
Biogeosciences, 20, 2941–2970, https://doi.org/10.5194/bg-20-2941-2023, https://doi.org/10.5194/bg-20-2941-2023, 2023
Short summary
Short summary
This review supports the integration of microwave spaceborne information into carbon cycle science for Arctic–boreal regions. The microwave data record spans multiple decades with frequent global observations of soil moisture and temperature, surface freeze–thaw cycles, vegetation water storage, snowpack properties, and land cover. This record holds substantial unexploited potential to better understand carbon cycle processes.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Julian Koch, Lars Elsgaard, Mogens H. Greve, Steen Gyldenkærne, Cecilie Hermansen, Gregor Levin, Shubiao Wu, and Simon Stisen
Biogeosciences, 20, 2387–2403, https://doi.org/10.5194/bg-20-2387-2023, https://doi.org/10.5194/bg-20-2387-2023, 2023
Short summary
Short summary
Utilizing peatlands for agriculture leads to large emissions of greenhouse gases worldwide. The emissions are triggered by lowering the water table, which is a necessary step in order to make peatlands arable. Many countries aim at reducing their emissions by restoring peatlands, which can be achieved by stopping agricultural activities and thereby raising the water table. We estimate a total emission of 2.6 Mt CO2-eq for organic-rich peatlands in Denmark and a potential reduction of 77 %.
Mélissa Laurent, Matthias Fuchs, Tanja Herbst, Alexandra Runge, Susanne Liebner, and Claire C. Treat
Biogeosciences, 20, 2049–2064, https://doi.org/10.5194/bg-20-2049-2023, https://doi.org/10.5194/bg-20-2049-2023, 2023
Short summary
Short summary
In this study we investigated the effect of different parameters (temperature, landscape position) on the production of greenhouse gases during a 1-year permafrost thaw experiment. For very similar carbon and nitrogen contents, our results show a strong heterogeneity in CH4 production, as well as in microbial abundance. According to our study, these differences are mainly due to the landscape position and the hydrological conditions established as a result of the topography.
Michael Moubarak, Seeta Sistla, Stefano Potter, Susan M. Natali, and Brendan M. Rogers
Biogeosciences, 20, 1537–1557, https://doi.org/10.5194/bg-20-1537-2023, https://doi.org/10.5194/bg-20-1537-2023, 2023
Short summary
Short summary
Tundra wildfires are increasing in frequency and severity with climate change. We show using a combination of field measurements and computational modeling that tundra wildfires result in a positive feedback to climate change by emitting significant amounts of long-lived greenhouse gasses. With these effects, attention to tundra fires is necessary for mitigating climate change.
Hanna I. Campen, Damian L. Arévalo-Martínez, and Hermann W. Bange
Biogeosciences, 20, 1371–1379, https://doi.org/10.5194/bg-20-1371-2023, https://doi.org/10.5194/bg-20-1371-2023, 2023
Short summary
Short summary
Carbon monoxide (CO) is a climate-relevant trace gas emitted from the ocean. However, oceanic CO cycling is understudied. Results from incubation experiments conducted in the Fram Strait (Arctic Ocean) indicated that (i) pH did not affect CO cycling and (ii) enhanced CO production and consumption were positively correlated with coloured dissolved organic matter and nitrate concentrations. This suggests microbial CO uptake to be the driving factor for CO cycling in the Arctic Ocean.
Yihong Zhu, Ruihua Liu, Huai Zhang, Shaoda Liu, Zhengfeng Zhang, Fei-Hai Yu, and Timothy G. Gregoire
Biogeosciences, 20, 1357–1370, https://doi.org/10.5194/bg-20-1357-2023, https://doi.org/10.5194/bg-20-1357-2023, 2023
Short summary
Short summary
With global warming, the risk of flooding is rising, but the response of the carbon cycle of aquatic and associated riparian systems
to flooding is still unclear. Based on the data collected in the Lijiang, we found that flooding would lead to significant carbon emissions of fluvial areas and riparian areas during flooding, but carbon capture may happen after flooding. In the riparian areas, the surviving vegetation, especially clonal plants, played a vital role in this transformation.
Lauri Heiskanen, Juha-Pekka Tuovinen, Henriikka Vekuri, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences, 20, 545–572, https://doi.org/10.5194/bg-20-545-2023, https://doi.org/10.5194/bg-20-545-2023, 2023
Short summary
Short summary
We measured and modelled the CO2 and CH4 fluxes of the terrestrial and aquatic ecosystems of the subarctic landscape for 2 years. The landscape was an annual CO2 sink and a CH4 source. The forest had the largest contribution to the landscape-level CO2 sink and the peatland to the CH4 emissions. The lakes released 24 % of the annual net C uptake of the landscape back to the atmosphere. The C fluxes were affected most by the rainy peak growing season of 2017 and the drought event in July 2018.
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Saúl Edgardo Martínez Castellón, José Henrique Cattanio, José Francisco Berrêdo, Marcelo Rollnic, Maria de Lourdes Ruivo, and Carlos Noriega
Biogeosciences, 19, 5483–5497, https://doi.org/10.5194/bg-19-5483-2022, https://doi.org/10.5194/bg-19-5483-2022, 2022
Short summary
Short summary
We seek to understand the influence of climatic seasonality and microtopography on CO2 and CH4 fluxes in an Amazonian mangrove. Topography and seasonality had a contrasting influence when comparing the two gas fluxes: CO2 fluxes were greater in high topography in the dry period, and CH4 fluxes were greater in the rainy season in low topography. Only CO2 fluxes were correlated with soil organic matter, the proportion of carbon and nitrogen, and redox potential.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Wantong Zhang, Zhengyi Hu, Joachim Audet, Thomas A. Davidson, Enze Kang, Xiaoming Kang, Yong Li, Xiaodong Zhang, and Jinzhi Wang
Biogeosciences, 19, 5187–5197, https://doi.org/10.5194/bg-19-5187-2022, https://doi.org/10.5194/bg-19-5187-2022, 2022
Short summary
Short summary
This work focused on the CH4 and N2O emissions from alpine peatlands in response to the interactive effects of altered water table levels and increased nitrogen deposition. Across the 2-year mesocosm experiment, nitrogen deposition showed nonlinear effects on CH4 emissions and linear effects on N2O emissions, and these N effects were associated with the water table levels. Our results imply the future scenario of strengthened CH4 and N2O emissions from an alpine peatland.
Karel Castro-Morales, Anna Canning, Sophie Arzberger, Will A. Overholt, Kirsten Küsel, Olaf Kolle, Mathias Göckede, Nikita Zimov, and Arne Körtzinger
Biogeosciences, 19, 5059–5077, https://doi.org/10.5194/bg-19-5059-2022, https://doi.org/10.5194/bg-19-5059-2022, 2022
Short summary
Short summary
Permafrost thaw releases methane that can be emitted into the atmosphere or transported by Arctic rivers. Methane measurements are lacking in large Arctic river regions. In the Kolyma River (northeast Siberia), we measured dissolved methane to map its distribution with great spatial detail. The river’s edge and river junctions had the highest methane concentrations compared to other river areas. Microbial communities in the river showed that the river’s methane likely is from the adjacent land.
Cited articles
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith,
D. K., and Gombos, D.: A cross-calibrated, multi-platform ocean surface wind
velocity product for meteorological and oceanographic applications, Bull. Am. Meteorol. Soc., 92, 157–174, 2011. a
Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning,
A. S., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fung, I. Y.,
Heimann, M., John, J., Maki, T., Maksyutov, S., Masarie, K., Prather, M.,
Pak, B., Taguchi, S., and Zhu, Z.: TransCom 3 inversion intercomparison:
Impact of transport model errors on the interannual variability of regional
CO2 fluxes, 1988–2003, Global Biogeochem. Cy., 20, GB1002,
https://doi.org/10.1029/2004GB002439, 2006. a
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen,
A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S.-I., Nojiri,
Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B.,
Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates,
N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai,
W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W.,
Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N.,
Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J.,
Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P.,
Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A.,
Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre,
N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J.,
Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M.,
Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S.,
Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R.,
Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro,
K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward,
B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality
fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT),
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. a, b, c, d, e, f
Bakker, D. C. E., Alin, S. R., Bates, N., Becker, M., Castaño-Primo, R.,
Cosca, C. E., Cronin, M., Kadono, K., Kozyr, A., Lauvset, S. K., Metzl, N.,
Munro, D. R., Nakaoka, S., O'Brien, K. M., Ólafsson, J., Olsen, A.,
Pfeil, B., Pierrot, D., Smith, K., Sutton, A. J., Takahashi, T., Tilbrook,
B., Wanninkhof, R., Andersson, A., Atamanchuk, D., Benoit-Cattin, A., Bott,
R., Burger, E. F., Cai, W.-J., Cantoni, C., Collins, A., Corredor, J. E.,
Cronin, M. F., Cross, J. N., Currie, K. I., De Carlo, E. H., DeGrandpre,
M. D., Dietrich, C., Emerson, S., Enright, M. P., Evans, W., Feely, R. A.,
García-Ibáñez, M. I., Gkritzalis, T., Glockzin, M., Hales, B.,
Hartman, S. E., Hashida, G., Herndon, J., Howden, S. D., Humphreys, M. P.,
Hunt, C. W., Jones, S. D., Kim, S., Kitidis, V., Landa, C. S.,
Landschützer, P., Lebon, G. T., Lefèvre, N., Lo Monaco, C., Luchetta,
A., Maenner Jones, S., Manke, A. B., Manzello, D., Mears, P., Mickett, J.,
Monacci, N. M., Morell, J. M., Musielewicz, S., Newberger, T., Newton, J.,
Noakes, S., Noh, J.-H., Nojiri, Y., Ohman, M., Ólafsdóttir, S. R.,
Omar, A. M., Ono, T., Osborne, J., Plueddemann, A. J., Rehder, G., Sabine,
C. L., Salisbury, J. E., Schlitzer, R., Send, U., Skjelvan, I., Sparnocchia,
S., Steinhoff, T., Sullivan, K. F., Sutherland, S. C., Sweeney, C., Tadokoro,
K., Tanhua, T., Telszewski, M., Tomlinson, M., Tribollet, A., Trull, T.,
Vandemark, D., Wada, C., Wallace, D. W. R., Weller, R. A., and Woosley,
R. J.: Surface Ocean CO2 Atlas Database Version 2020 (SOCATv2020) (NCEI
Accession 0210711), NOAA National Centers for Environmental Information,
https://doi.org/10.25921/4xkx-ss49,
2020. a, b
Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P., and
Tans, P. P.: Regional changes in carbon dioxide fluxes of land and oceans
since 1980, Science, 290, 1342–1346, 2000. a
Carroll, D., Menemenlis, D., Adkins, J. F., Bowman, K. W., Brix, H., and
Dutkiewicz, S., Fenty, I., Gierach, M. M., Hill, C., Jahn, O.,
Landschützer, P., Lauderdale, J. M., Liu, J., Manizza, M., Naviaux, J. D.,
Rödenbeck, C., Schimel, D. S., Van der Stocken, T., and Zhang, H.: The ECCO-Darwin data-assimilative global ocean
biogeochemistry model: Estimates of seasonal to multidecadal surface ocean
pCO2 and air-sea CO2 flux, J. Adv. Model. Earth Syst., 12,
e2019MS001888, https://doi.org/10.1029/2019MS001888, 2020. a
Conkright, M., Locarnini, R. A., Garcia, H., O'Brien, T., Boyer, T.,
Stephens, C., and Antonov, J.: World Ocean Atlas 2001: Objective Analyses,
Data Statistics, and Figures, CD-ROM Documentation. National Oceanographic
Data Center, Silver Spring, MD, 17 pp., 2002. a
Conway, T., Tans, P., Waterman, L., Thoning, K., Kitzis, D., Masarie, K., and
Zhang, N.: Evidence for interannual variability of the carbon cycle from the
national oceanic and atmospheric administration climate monitoring and
diagnostics laboratory global air sampling network, J. Geophys. Res., 99,
22831–22855, 1994. a
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone,
D.: Mixed layer depth over the global ocean: an examination of profile data
and a profile-based climatology, J. Geophys. Res., 109, C12003,
https://doi.org/10.1029/2004JC002378, 2004. a
Denvil-Sommer, A., Gehlen, M., Vrac, M., and Mejia, C.: LSCE-FFNN-v1: a
two-step neural network model for the reconstruction of surface ocean pCO2
over the global ocean, Geosci. Model Dev., 12, 2091–2105,
https://doi.org/10.5194/gmd-12-2091-2019, 2019. a, b, c, d
DeVries, T.: Atmospheric CO2 and sea surface temperature variability cannot
explain recent decadal variability of the ocean CO2 sink, Geophys.
Res. Lett., 49, e2021GL096 018, https://doi.org/10.1029/2021GL096018, 2022. a, b, c, d
DeVries, T., Le Quéré, C., Andrews, O., Berthet, S., Hauck, J., Ilyina,
T., Landschützer, P., Lenton, A., Lima, I. D., Nowick, M., Schwinger, J.,
and Séférian, R.: Decadal trends in the ocean carbon sink, P. Natl. Acad. Sci., 116,
11646–11651, https://doi.org/10.1073/pnas.1900371116, 2019. a
Feely, R. A., Wanninkhof, R., Takahashi, T., and Tans, P.: Influence of El
Niño on the equatorial Pacific contribution to atmospheric CO2
accumulation, Nature, 398, 597–601, 1999. a
Francey, R., Steele, L., Spencer, D., Langenfelds, R., Law, R., Krummel, P.,
Fraser, P., Etheridge, D., Derek, N., Coram, S., Cooper, L., Allison, C.,
Porter, L., and Baly, S.: The CSIRO (Australia) measurement of greenhouse
gases in the global atmosphere, Report of the 11th WMO/IAEA Meeting of
Experts on Carbon Dioxide Concentration and Related Tracer Measurement
Techniques, Tokyo, Japan, September 2001, edited by: Toru, S. and Kazuto, S.,
World Meteorological Organization Global Atmosphere Watch, 97–111, 2003. a
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J.,
Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré,
C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E.
O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A.,
Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini,
L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M.,
Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung,
K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E.,
Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P.,
Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland,
G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y.,
O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L.,
Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan,
I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H.,
Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R.,
Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle,
S.: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 3269–3340,
https://doi.org/10.5194/essd-12-3269-2020, 2020. a, b, c, d
Garcia, H. E., Locarnini, R. A., Boyer, T. P., and Antonov, J. I.: World Ocean
Atlas 2005, Vol. 4, Nutrients (phosphate, nitrate, silicate), edited by: Levitus, S.,
NOAA Atlas NESDIS 64, U.S. Government Printing Office, Washington, D.C.,
396 pp., 2006. a
Gloege, L., McKinley, G. A., Landschützer, P., Fay, A. R., Frölicher,
T. L., Fyfe, J. C., Ilyina, T., Jones, St.,
Lovenduski, N. S., Rodgers, K. B., Schlunegger, S., and Takano, Y.: Quantifying errors in observationally-based
estimates of ocean carbon sink variability, Global Biogeochem. Cy., 35,
e2020GB006788, https://doi.org/10.1029/2020GB006788, 2021. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Ocean., 118,
6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a, b
Gregor, L., Lebehot, A. D., Kok, S., and Scheel Monteiro, P. M.: A comparative
assessment of the uncertainties of global surface ocean CO2 estimates
using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the
wall?, Geosci. Model Dev., 12, 5113–5136,
https://doi.org/10.5194/gmd-12-5113-2019, 2019. a, b, c, d
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema,
M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Mathis,
J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., and
Wanninkhof, R.: The oceanic sink for anthropogenic CO2 from 1994 to 2007,
Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019. a, b, c, d, e, f
Hauck, J., Völker, C., Wang, T., Hoppema, M., Losch, M., and Wolf-Gladrow,
D. A.: Seasonally different carbon flux changes in the Southern Ocean in
response to the southern annular mode, Global Biogeochem. Cy., 27,
1236–1245, https://doi.org/10.1002/2013GB004600, 2013. a, b, c
Hauck, J., Zeising, M., Quéré, C. L., Gruber, N., Bakker, D. C. E., Bopp,
L., Chau, T. T. T., Gürses, Ö., Ilyina, T., Landschützer, P.,
Lenton, A., Resplandy, L., Rödenbeck, C., Schwinger, J., and Séférian,
R.: Consistency and challenges in the ocean carbon sink estimate for the
Global Carbon Budget, Front. Mar. Sci., 7, 571720,
https://doi.org/10.3389/fmars.2020.571720, 2020. a, b
Hirt, C. and Rexer, M.: Earth2014: 1 arc-min shape, topography, bedrock and
ice-sheet models – available as gridded data and degree-10,800 spherical
harmonics, Int. J. Appl. Earth Obs., 39, 103–112, https://doi.org/10.1016/j.jag.2015.03.001, 2015. a
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: NOAA
Extended Reconstructed Sea Surface Temperature (ERSST), Version 5., NOAA
National Centers for Environmental Information, https://doi.org/10.7289/V5T72FNM, 2017 (ftp://ftp.cdc.noaa.gov/Datasets/noaa.ersst.v5/sst.mnmean.nc, last access: 26 June 2020). a
Iida, Y., Kojima, A., Takatani, Y., Nakano, T., Midorikawa, T., and Ishii, M.:
Trends in pCO2 and sea-air CO2 flux over the global open oceans
for the last two decades, J. Oceanogr., 71, 637–661,
https://doi.org/10.1007/s10872-015-0306-4, 2015. a
Iida, Y., Takatani, Y., Kojima, A., and Ishii, M.: Global trends of ocean CO2 sink and ocean acidification: an observation-based reconstruction of surface
ocean inorganic carbon variables, J. Oceanogr., 77, 323–358,
https://doi.org/10.1007/s10872-020-00571-5, 2020. a, b, c
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
1535 pp., 2013. a
Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L., and Gloor,
M.: A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide:
2. Regional results, Global Biogeochem. Cy., 21, GB1020,
https://doi.org/10.1029/2006GB002703, 2007. a, b
Jena CarboScope: Ocean-Atmosphere CO2 Exchange, http://www.bgc-jena.mpg.de/CarboScope/?ID=oc_v2021, last access: 26 August 2021. a
Jones, S. D., Quéré, C. L., Rödenbeck, C., Manning, A. C., and Olsen, A.:
A statistical gap-filling method to interpolate global monthly surface ocean
carbon dioxide data, J. Adv. Model. Earth Syst., 7, 1554–1575,
https://doi.org/10.1002/2014MS000416, 2015. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437–471, 1996. a
Keeling, C. D.: The Influence of Mauna Loa Observatory on the Development of
Atmospheric CO2 Research, in: Mauna Loa Observatory: a 20th anniversary
report, edited by: Miller, J., Silver Spring, Md., U.S. Dept. of Commerce,
National Oceanic and Atmospheric Administration, Environmental Research
Laboratories, 35–54, 1978. a
Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., Sasse, T. P., and Zeng, J.: A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink, Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, 2013. a, b, c, d
Landschützer, P., Gruber, N., and Bakker, D. C. E.: Decadal variations and
trends of the global ocean carbon sink, Global Biogeochem. Cy., 30,
1396–1417, https://doi.org/10.1002/2015GB005359, 2016. a
Laws, E., Falkowski, P., Smith, W., Ducklow, H., and Mccarthy, J.: Temperature
effects on export production in the open ocean, Global Biogeochem. Cy.,
14, 1231–1246, https://doi.org/10.1029/1999GB001229, 2000. a
Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C.,
Park, G.-H., Wanninkhof, R., Feely, R. A., and Key, R. M.: Global
relationships of total alkalinity with salinity and temperature in surface
waters of the world's oceans, Geophys. Res. Lett., 33, L19605,
https://doi.org/10.1029/2006GL027207, 2006. a, b, c
Le Quéré, C., Orr, J. C., Monfray, P., and Aumont, O.: Interannual
variability of the oceanic sink of CO2 from 1979 through 1997, Global Biogeochem. Cy., 14, 1247–1265, 2000. a
Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J.,
Langenfelds, R., Gomez, A., Labuschagne, C., Ramonet, M., Nakazawa, T.,
Metzl, N., Gillett, N., and Heimann, M.: Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change, Science, 316, 1735–1738,
https://doi.org/10.1126/science.1136188, 2007. a, b
Majkut, J. D., Sarmiento, J. L., and Rodgers, K. B.: A growing oceanic carbon
uptake: Results from an inversion study of surface pCO2 data, Global
Biogeochem. Cy., 28, 335–351, 2014. a
Maritorena, S., d'Andon, O. H. F., Mangin, A., and Siegel, D. A.: Merged
satellite ocean color data products using a bio-optical model:
Characteristics, benefits and issues, Remote Sens. Environ., 114,
1791–1804, https://doi.org/10.1016/j.rse.2010.04.002, 2010. a
Nakaoka, S., Telszewski, M., Nojiri, Y., Yasunaka, S., Miyazaki, C., Mukai, H., and Usui, N.: Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique, Biogeosciences, 10, 6093–6106, https://doi.org/10.5194/bg-10-6093-2013, 2013. a
Newsam, G. N. and Enting, I. G.: Inverse problems in atmospheric constituent
studies: I. Determination of surface sources under a diffusive transport
approximation, Res. Meas. Ap., 4, 1037–1054, 1988. a
Orr, J. C. and Epitalon, J.-M.: Improved routines to model the ocean carbonate
system: mocsy 2.0, Geosci. Model Dev., 8, 485–499,
https://doi.org/10.5194/gmd-8-485-2015, 2015. a, b
Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions, Biogeosciences, 10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, 2013. a
Rayner, P., Enting, I., Francey, R., and Langenfelds, R.: Reconstructing the
recent carbon cycle from atmospheric CO2, δ13CO2 and
O2 N2 observations, Tellus B, 51, 213–232, 1999. a
Resplandy, L., Keeling, R. F., Rödenbeck, C., Stephens, B. B., Khatiwala, S.,
Rodgers, K. B., Long, M. C., Bopp, L., and Tans, P. P.: Revision of global
carbon fluxes based on a reassessment of oceanic and riverine carbon
transport, Nat. Geosci., 11, 504–509, https://doi.org/10.1038/s41561-018-0151-3, 2018. a, b
Robertson, J. E. and Watson, A. J.: Thermal skin effect of the surface ocean
and its implications for CO2 uptake, Nature, 358, 738–740, 1992. a
Rödenbeck, C.: Estimating CO2 sources and sinks from atmospheric mixing
ratio measurements using a global inversion of atmospheric transport, Tech.
Rep. 6, Max Planck Institute for Biogeochemistry, Jena, Germany, 2005. a
Rödenbeck, C., Houweling, S., Gloor, M., and Heimann, M.: CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport, Atmos. Chem. Phys., 3, 1919–1964, https://doi.org/10.5194/acp-3-1919-2003, 2003. a
Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A.,
Sabine, C., and Heimann, M.: Global surface-ocean pCO2 and sea–air
CO2 flux variability from an observation-driven ocean mixed-layer
scheme, Ocean Sci., 9, 193–216, https://doi.org/10.5194/os-9-193-2013,
2013. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Rödenbeck, C., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., Cassar, N., Reum, F., Keeling, R. F., and Heimann, M.: Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme, Biogeosciences, 11, 4599–4613, https://doi.org/10.5194/bg-11-4599-2014, 2014. a, b, c, d
Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R.,
Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park,
G.-H., Peylin, P., Rodgers, K. B., Sasse, T. P., Schuster, U., Shutler,
J. D., Valsala, V., Wanninkhof, R., and Zeng, J.: Data-based estimates of the
ocean carbon sink variability – first results of the Surface Ocean pCO2
Mapping intercomparison (SOCOM), Biogeosciences, 12, 7251–7278,
https://doi.org/10.5194/bg-12-7251-2015, 2015. a
Rödenbeck, C., Zaehle, S., Keeling, R., and Heimann, M.: History of El Nino
impacts on the global carbon cycle 1957–2016: A quantification from
atmospheric CO2 data, Philos. T. R. Soc. B, 373, 20170303, https://doi.org/10.1098/rstb.2017.0303,
2018a. a
Rödenbeck, C., Zaehle, S., Keeling, R., and Heimann, M.: How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data, Biogeosciences, 15, 2481–2498, https://doi.org/10.5194/bg-15-2481-2018, 2018b. a, b
Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton Univ.
Press, 2006. a
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M.,
Olafsson, J., Arnarson, T. S., Tillbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2 and net
sea-air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577,
2009. a
Thacker, W. C.: Regression-based estimates of the rate of accumulation of
anthropogenic CO2 in the ocean: A fresh look, Mar. Chem., 132/133,
44–55, https://doi.org/10.1016/j.marchem.2012.02.004, 2012. a
Titchner, H. A. and Rayner, N. A.: The Met Office Hadley Centre sea ice and sea
surface temperature data set, version 2: 1. Sea ice concentrations, J.
Geophys. Res.-Atmos., 119, 2864–2889, https://doi.org/10.1002/2013JD020316, 2014. a, b
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G.,
Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Boening, C., Bozec,
A., Chassignet, E., Curchitser, E., Dias, F. B., Durack, P. J., Griffies,
S. M., Harada, Y., Ilicak, M., Josey, S., Kobayashi, C., Kobayashi, S.,
Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S., Masina, S., Scheinert,
M., Tomita, H., Valdivieso, M., and Yamazaki, D.: input4MIPs.CMIP6.OMIP.MRI,
https://doi.org/10.22033/ESGF/input4MIPs.10460, 2018.
a, b
Valsala, K. V. and Maksyutov, S.: Simulation and assimilation of global ocean
pCO2 and air-sea CO2 fluxes using ship observations of surface ocean pCO2 in
a simplified Biogeochemical offline model, Tellus B, 62, 821–840, 2010. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res.-Ocean., 97, 7373–7382, 1992. a
Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbiére, A.,
González-Dávila, M., Friedrich, T., Hauck, J., Heinze, C., Johannessen,
T., Körtzinger, A., Metzl, N., Olafsson, J., Olsen, A., Oschlies, A.,
Padin, X. A., Pfeil, B., Santana-Casiano, J. M., Steinhoff, T., Telszewski,
M., Rios, A. F., Wallace, D. W. R., and Wanninkhof, R.: Tracking the Variable
North Atlantic Sink for Atmospheric CO2, Science, 326, 1391–1393, 2009. a
Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C.,
Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.: Revised estimates
of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory,
Nat. Commun., 11, 4422, https://doi.org/10.1038/s41467-020-18203-3, 2020. a, b, c
Weiss, R.: Carbon dioxide in water and seawater: the solubility of a non-ideal
gas, Mar. Chem., 2, 203–205, 1974. a
Woolf, D. K., Land, P. E., Shutler, J. D., Goddijn-Murphy, L. M., and Donlon,
C. J.: On the calculation of air-sea fluxes of CO2 in the presence of
temperature and salinity gradients, J. Geophys. Res.-Ocean., 121, 1229–1248,
2016. a
Yu, L. and Weller, R. A.: Objectively Analyzed air-sea heat Fluxes (OAFlux) for
the global oceans, Bull. Am. Meteorol. Soc., 88, 527–539, 2007. a
Zeng, J., Nojiri, Y., Nakaoka, S., Nakajima, H., and Shirai, T.: Surface ocean
CO2 in 1990–2011 modelled using a feed-forward neural network,
Geosci. Data J., 2, 47–51, 2015. a
Short summary
The ocean is an important part of the global carbon cycle, taking up about a quarter of the anthropogenic CO2 emitted by burning of fossil fuels and thus slowing down climate change. However, the CO2 uptake by the ocean is, in turn, affected by variability and trends in climate. Here we use carbon measurements in the surface ocean to quantify the response of the oceanic CO2 exchange to environmental conditions and discuss possible mechanisms underlying this response.
The ocean is an important part of the global carbon cycle, taking up about a quarter of the...
Altmetrics
Final-revised paper
Preprint