Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-3979-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3979-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
From soil to sea: sources and transport of organic carbon traced by tetraether lipids in the monsoonal Godavari River, India
Frédérique M. S. A. Kirkels
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Huub M. Zwart
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Muhammed O. Usman
Geological Institute, ETH Zürich, Zurich, Switzerland
present address: Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
Suning Hou
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Camilo Ponton
Geology and Geophysics, Woods Hole Oceanographic Institution,
Woods Hole, MA, USA
present address: Geology Department, Western Washington University, Bellingham, WA, USA
Liviu Giosan
Geology and Geophysics, Woods Hole Oceanographic Institution,
Woods Hole, MA, USA
Timothy I. Eglinton
Geological Institute, ETH Zürich, Zurich, Switzerland
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Related authors
Frédérique M. S. A. Kirkels, Hugo J. de Boer, Paulina Concha Hernández, Chris R. T. Martes, Marcel T. J. van der Meer, Sayak Basu, Muhammed O. Usman, and Francien Peterse
Biogeosciences, 19, 4107–4127, https://doi.org/10.5194/bg-19-4107-2022, https://doi.org/10.5194/bg-19-4107-2022, 2022
Short summary
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Virgil Drăgușin, Nicolaie Alexandru, Mihai Caminschi, Florina Chitea, Vasile Ersek, Alina Floroiu, Liviu Giosan, Georgiana Alexandra Grigore, Diana Hanganu, Maria Ilie, Dumitru Ioane, Marius Mocuța, Adrian Iulian Pantia, Iulian Popa, Gabriela Sava, Tiberiu Sava, Răsvan Stochici, and Constantin Ungureanu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2385, https://doi.org/10.5194/egusphere-2024-2385, 2024
Short summary
Short summary
We discovered marine sediments on the Black Sea coast in eastern Romania at an altitude of 10 m and reveal that a tectonic block quickly descended 4 m below sea level, allowed for the deposition of sediments, and was then suddenly raised by 10 m sometimes during the last 200–300 years. This type of displacement needs to be taken into account when calculating past sea levels, while their recent and strong character should be seen as hazardous for coastal settlements.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
EGUsphere, https://doi.org/10.5194/egusphere-2024-1648, https://doi.org/10.5194/egusphere-2024-1648, 2024
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Frédérique M. S. A. Kirkels, Hugo J. de Boer, Paulina Concha Hernández, Chris R. T. Martes, Marcel T. J. van der Meer, Sayak Basu, Muhammed O. Usman, and Francien Peterse
Biogeosciences, 19, 4107–4127, https://doi.org/10.5194/bg-19-4107-2022, https://doi.org/10.5194/bg-19-4107-2022, 2022
Short summary
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Ann G. Dunlea, Liviu Giosan, and Yongsong Huang
Clim. Past, 16, 2533–2546, https://doi.org/10.5194/cp-16-2533-2020, https://doi.org/10.5194/cp-16-2533-2020, 2020
Short summary
Short summary
Over the past 20 Myr, there has been a dramatic global increase in plants using C4 photosynthetic pathways. We analyze C and H isotopes in fatty acids of leaf waxes preserved in marine sediment from the Bay of Bengal to examine changes in photosynthesis in the Core Monsoon Zone of the Indian Peninsula over the past 6 Myr. The observed increase in C4 vegetation from 3.5 to 1.5 Ma is synchronous with C4 expansions in northwest Australia and East Africa, suggesting regional hydroclimate controls
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Leticia G. Luz, Thiago P. Santos, Timothy I. Eglinton, Daniel Montluçon, Blanca Ausin, Negar Haghipour, Silvia M. Sousa, Renata H. Nagai, and Renato S. Carreira
Clim. Past, 16, 1245–1261, https://doi.org/10.5194/cp-16-1245-2020, https://doi.org/10.5194/cp-16-1245-2020, 2020
Short summary
Short summary
Two sediment cores retrieved from the SE Brazilian continental margin were studied using multiple organic (alkenones) and inorganic (oxygen isotopes in carbonate shells and water) proxies to reconstruct the sea surface temperature (SST) over the last 50 000 years. The findings indicate the formation of strong thermal gradients in the region during the last climate transition, a feature that may become more frequent in the future scenario of global water circulation changes.
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019, https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Short summary
The carbon stored in soils is the largest reservoir of organic carbon on land. In the context of greenhouse gas emissions and a changing climate, it is very important to understand how stable the carbon in the soil is and why. The deeper parts of the soil have often been overlooked even though they store a lot of carbon. In this paper, we discovered that although deep soil carbon is expected to be old and stable, there can be a significant young component that cycles much faster.
Charlotte Miller, Jemma Finch, Trevor Hill, Francien Peterse, Marc Humphries, Matthias Zabel, and Enno Schefuß
Clim. Past, 15, 1153–1170, https://doi.org/10.5194/cp-15-1153-2019, https://doi.org/10.5194/cp-15-1153-2019, 2019
Short summary
Short summary
Here we reconstruct vegetation and precipitation, in eastern South Africa, over the last 32 000 years, by measuring the stable carbon and hydrogen isotope composition of plant waxes from Mfabeni peat bog (KwaZulu-Natal). Our results indicate that the late Quaternary climate in eastern South Africa did not respond directly to orbital forcing or to changes in sea-surface temperatures. Our findings stress the influence of the Southern Hemisphere westerlies in driving climate change in the region.
Liviu Giosan, William D. Orsi, Marco Coolen, Cornelia Wuchter, Ann G. Dunlea, Kaustubh Thirumalai, Samuel E. Munoz, Peter D. Clift, Jeffrey P. Donnelly, Valier Galy, and Dorian Q. Fuller
Clim. Past, 14, 1669–1686, https://doi.org/10.5194/cp-14-1669-2018, https://doi.org/10.5194/cp-14-1669-2018, 2018
Short summary
Short summary
Climate reorganization during the early neoglacial anomaly (ENA) may explain the Harappan civilization metamorphosis from an urban, expansive culture to a rural, geographically-confined one. Landcover change is a candidate for causing this climate instability. During ENA agriculture along the flood-deficient floodplains of the Indus became too risky, which pushed people out. In the same time the Himalayan piedmont received augmented winter rain and steady summer precipitation, pulling people in.
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018, https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Short summary
Arctic warming mobilizes belowground organic matter in northern high latitudes. This study focused on the size of organic carbon pools and organic matter quality in ice-rich permafrost on the Baldwin Peninsula, West Alaska. We analyzed biogeochemistry and found that three-quarters of the carbon is stored in degraded permafrost deposits. Nonetheless, using biomarker analyses, we showed that the organic matter in undisturbed yedoma permafrost has a higher potential for decomposition.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
Liviu Giosan, Thet Naing, Myo Min Tun, Peter D. Clift, Florin Filip, Stefan Constantinescu, Nitesh Khonde, Jerzy Blusztajn, Jan-Pieter Buylaert, Thomas Stevens, and Swe Thwin
Earth Surf. Dynam., 6, 451–466, https://doi.org/10.5194/esurf-6-451-2018, https://doi.org/10.5194/esurf-6-451-2018, 2018
Short summary
Short summary
Here we provide the first results on the evolution of the Ayeyarwady delta, the last unstudied megadelta of Asia. In addition to its intrinsic value as a founding study on the Holocene development of this region, we advance new ideas on the climate control of monsoonal deltas as well as describe for the first time a feedback mechanism between tectonics and tidal hydrodynamics that can explain the peculiarities of the Ayeyarwady delta.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Blanca Ausín, Diana Zúñiga, Jose A. Flores, Catarina Cavaleiro, María Froján, Nicolás Villacieros-Robineau, Fernando Alonso-Pérez, Belén Arbones, Celia Santos, Francisco de la Granda, Carmen G. Castro, Fátima Abrantes, Timothy I. Eglinton, and Emilia Salgueiro
Biogeosciences, 15, 245–262, https://doi.org/10.5194/bg-15-245-2018, https://doi.org/10.5194/bg-15-245-2018, 2018
Short summary
Short summary
A systematic investigation of the coccolithophore ecology was performed for the first time in the NW Iberian Margin to broaden our knowledge on the use of fossil coccoliths in marine sediment records to infer environmental conditions in the past. Coccolithophores proved to be significant primary producers and their abundance and distribution was favoured by warmer and nutrient–depleted waters during the upwelling regime, seasonally controlled offshore and influenced by coastal processes onshore.
Liviu Giosan, Camilo Ponton, Muhammed Usman, Jerzy Blusztajn, Dorian Q. Fuller, Valier Galy, Negar Haghipour, Joel E. Johnson, Cameron McIntyre, Lukas Wacker, and Timothy I. Eglinton
Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, https://doi.org/10.5194/esurf-5-781-2017, 2017
Short summary
Short summary
A reconstruction of erosion in the core monsoon zone of India provides unintuitive but fundamental insights: in contrast to semiarid regions that experience enhanced erosion during erratic rain events, the monsoon is annual and acts as a veritable
erosional pumpaccelerating when the land cover is minimal. The existence of such a monsoon erosional pump promises to reconcile conflicting views on the land–sea sediment and carbon transfer as well as the monsoon evolution on longer timescales.
Jaap H. Nienhuis, Andrew D. Ashton, Albert J. Kettner, and Liviu Giosan
Earth Surf. Dynam., 5, 585–603, https://doi.org/10.5194/esurf-5-585-2017, https://doi.org/10.5194/esurf-5-585-2017, 2017
Short summary
Short summary
The Ebro Delta in Spain has a distinctive coastline shape, the origin of which has been debated. Here we show with two simple models, one of the Ebro River and one of its delta, that is it possible to reproduce this distinctive shape under constant sediment supply, wave climate, and sea-level conditions. We also find that the majority of the delta grew in the last 2000 years, when a great increase in sediment supply from the Ebro River allowed it to accelerate its growth.
Imke K. Schäfer, Verena Lanny, Jörg Franke, Timothy I. Eglinton, Michael Zech, Barbora Vysloužilová, and Roland Zech
SOIL, 2, 551–564, https://doi.org/10.5194/soil-2-551-2016, https://doi.org/10.5194/soil-2-551-2016, 2016
Short summary
Short summary
For this study we systematically investigated the molecular pattern of leaf waxes in litter and topsoils along a European transect to assess their potential for palaeoenvironmental reconstruction. Our results show that leaf wax patterns depend on the type of vegetation. The vegetation signal is not only found in the litter; it can also be preserved to some degree in the topsoil.
Robert B. Sparkes, Ayça Doğrul Selver, Örjan Gustafsson, Igor P. Semiletov, Negar Haghipour, Lukas Wacker, Timothy I. Eglinton, Helen M. Talbot, and Bart E. van Dongen
The Cryosphere, 10, 2485–2500, https://doi.org/10.5194/tc-10-2485-2016, https://doi.org/10.5194/tc-10-2485-2016, 2016
Short summary
Short summary
The permafrost in eastern Siberia contains large amounts of carbon frozen in soils and sediments. Continuing global warming is thawing the permafrost and releasing carbon to the Arctic Ocean. We used pyrolysis-GCMS, a chemical fingerprinting technique, to study the types of carbon being deposited on the continental shelf. We found large amounts of permafrost-sourced carbon being deposited up to 200 km offshore.
Tessa Sophia van der Voort, Frank Hagedorn, Cameron McIntyre, Claudia Zell, Lorenz Walthert, Patrick Schleppi, Xiaojuan Feng, and Timothy Ian Eglinton
Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, https://doi.org/10.5194/bg-13-3427-2016, 2016
Short summary
Short summary
This study explores heterogeneity in 14C content of soil organic matter (SOM) at different spatial scales and across climatic and geologic gradients, which is essential for a better understanding of SOM stability. Results reveal that despite dissimilar environmental conditions, 14C contents in topsoils is relatively uniform and 14C trends with depth are similar. Plot-scale variability is significant. Statistical analysis found a significant correlation of 14C contents (0–5 cm) and temperature.
F. Peterse, C. M. Moy, and T. I. Eglinton
Biogeosciences, 12, 933–943, https://doi.org/10.5194/bg-12-933-2015, https://doi.org/10.5194/bg-12-933-2015, 2015
Related subject area
Biogeochemistry: Land - Sea Coupling
Distinct Impacts of El Niño-Southern Oscillation and Indian Ocean Dipole on China’s Gross Primary Production
Atmospheric CO2 exchanges measured by eddy covariance over a temperate salt marsh and influence of environmental controlling factors
Characterization of the benthic biogeochemical dynamics after flood events in the Rhône River prodelta: a data–model approach
Recent inorganic carbon increase in a temperate estuary driven by water quality improvement and enhanced by droughts
Alkalinity and nitrate dynamics reveal dominance of anammox in a hyper-turbid estuary
Reconciling the paradox of soil organic carbon erosion by water
The dispersal of fluvially discharged and marine, shelf-produced particulate organic matter in the northern Gulf of Mexico
Carbon dynamics at the river–estuarine transition: a comparison among tributaries of Chesapeake Bay
Dissolved organic matter characterization in soils and streams in a small coastal low-Arctic catchment
Regional-scale phytoplankton dynamics and their association with glacier meltwater runoff in Svalbard
Riverine nitrogen supply to the global ocean and its limited impact on global marine primary production: a feedback study using an Earth system model
Rain-fed streams dilute inorganic nutrients but subsidise organic-matter-associated nutrients in coastal waters of the northeast Pacific Ocean
Ideas and perspectives: Biogeochemistry – some key foci for the future
Spatio-temporal variations in lateral and atmospheric carbon fluxes from the Danube Delta
Technical note: Seamless gas measurements across the land–ocean aquatic continuum – corrections and evaluation of sensor data for CO2, CH4 and O2 from field deployments in contrasting environments
Enrichment of trace metals from acid sulfate soils in sediments of the Kvarken Archipelago, eastern Gulf of Bothnia, Baltic Sea
Organic iron complexes enhance iron transport capacity along estuarine salinity gradients of Baltic estuaries
Particulate organic matter controls benthic microbial N retention and N removal in contrasting estuaries of the Baltic Sea
Export fluxes of dissolved inorganic carbon to the northern Indian Ocean from the Indian monsoonal rivers
The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean
Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico
Reconciling drainage and receiving basin signatures of the Godavari River system
Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments
Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea
Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon
Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment
A global hotspot for dissolved organic carbon in hypermaritime watersheds of coastal British Columbia
Nitrogen transformations along a shallow subterranean estuary
Modelling nutrient retention in the coastal zone of an eutrophic sea
Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost
Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean
Seasonal response of air–water CO2 exchange along the land–ocean aquatic continuum of the northeast North American coast.
Quantification of iron-rich volcanogenic dust emissions and deposition over the ocean from Icelandic dust sources
Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey
Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf
Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments
Antarctic ice sheet fertilises the Southern Ocean
Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea
Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use
Seasonal dissolved inorganic nitrogen and phosphorus budgets for two sub-tropical estuaries in south Florida, USA
Export of 134 Cs and 137 Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011
The fate of riverine nutrients on Arctic shelves
External forcings, oceanographic processes and particle flux dynamics in Cap de Creus submarine canyon, NW Mediterranean Sea
Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident
Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem
The role of alkalinity generation in controlling the fluxes of CO2 during exposure and inundation on tidal flats
Coupling of fog and marine microbial content in the near-shore coastal environment
Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer
Effects of water discharge and sediment load on evolution of modern Yellow River Delta, China, over the period from 1976 to 2009
Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea
Ran Yan, Jun Wang, Weimin Ju, Xiuli Xing, Miao Yu, Meirong Wang, Jingye Tan, Xunmei Wang, Hengmao Wang, and Fei Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1250, https://doi.org/10.5194/egusphere-2024-1250, 2024
Short summary
Short summary
Our study reveal that the effects of El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China's gross primary production (GPP) are basically opposite with obvious seasonal changes. In general, soil moisture primarily influences GPP in fall and summer, while temperature plays a vital role in winter and spring. Quantitatively, China's annual GPP displays modest positive anomalies during La Niña and negative anomalies in El Niño years, driven by significant seasonal variations.
Jérémy Mayen, Pierre Polsenaere, Éric Lamaud, Marie Arnaud, Pierre Kostyrka, Jean-Marc Bonnefond, Philippe Geairon, Julien Gernigon, Romain Chassagne, Thomas Lacoue-Labarthe, Aurore Regaudie de Gioux, and Philippe Souchu
Biogeosciences, 21, 993–1016, https://doi.org/10.5194/bg-21-993-2024, https://doi.org/10.5194/bg-21-993-2024, 2024
Short summary
Short summary
We deployed an atmospheric eddy covariance system to measure continuously the net ecosystem CO2 exchanges (NEE) over a salt marsh and determine the major biophysical drivers. Our results showed an annual carbon sink mainly due to photosynthesis of the marsh plants. Our study also provides relevant information on NEE fluxes during marsh immersion by decreasing daytime CO2 uptake and night-time CO2 emissions at the daily scale, whereas the immersion did not affect the annual marsh C balance.
Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, Edouard Regnier, Gaël Monvoisin, Christian Grenz, Pieter van Beek, and Christophe Rabouille
Biogeosciences, 21, 711–729, https://doi.org/10.5194/bg-21-711-2024, https://doi.org/10.5194/bg-21-711-2024, 2024
Short summary
Short summary
The study provides new insights by examining the short-term impact of winter floods on biogeochemical sediment processes near the Rhône River (NW Mediterranean Sea). This is the first winter monitoring of sediment and porewater in deltaic areas. The coupling of these data with a new model enables us to quantify the evolution of biogeochemical processes. It also provides new perspectives on the benthic carbon cycle in river deltas considering climate change, whereby flooding should intensify.
Louise C. V. Rewrie, Burkard Baschek, Justus E. E. van Beusekom, Arne Körtzinger, Gregor Ollesch, and Yoana G. Voynova
Biogeosciences, 20, 4931–4947, https://doi.org/10.5194/bg-20-4931-2023, https://doi.org/10.5194/bg-20-4931-2023, 2023
Short summary
Short summary
After heavy pollution in the 1980s, a long-term inorganic carbon increase in the Elbe Estuary (1997–2020) was fueled by phytoplankton and organic carbon production in the upper estuary, associated with improved water quality. A recent drought (2014–2020) modulated the trend, extending the water residence time and the dry summer season into May. The drought enhanced production of inorganic carbon in the estuary but significantly decreased the annual inorganic carbon export to coastal waters.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Kristof Van Oost and Johan Six
Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, https://doi.org/10.5194/bg-20-635-2023, 2023
Short summary
Short summary
The direction and magnitude of the net erosion-induced land–atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source–sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Paul A. Bukaveckas
Biogeosciences, 19, 4209–4226, https://doi.org/10.5194/bg-19-4209-2022, https://doi.org/10.5194/bg-19-4209-2022, 2022
Short summary
Short summary
Inland waters play an important role in the global carbon cycle by storing, transforming and transporting carbon from land to sea. Comparatively little is known about carbon dynamics at the river–estuarine transition. A study of tributaries of Chesapeake Bay showed that biological processes exerted a strong effect on carbon transformations. Peak carbon retention occurred during periods of elevated river discharge and was associated with trapping of particulate matter.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Thorben Dunse, Kaixing Dong, Kjetil Schanke Aas, and Leif Christian Stige
Biogeosciences, 19, 271–294, https://doi.org/10.5194/bg-19-271-2022, https://doi.org/10.5194/bg-19-271-2022, 2022
Short summary
Short summary
We investigate the effect of glacier meltwater on phytoplankton dynamics in Svalbard. Phytoplankton forms the basis of the marine food web, and its seasonal dynamics depend on the availability of light and nutrients, both of which are affected by glacier runoff. We use satellite ocean color, an indicator of phytoplankton biomass, and glacier mass balance modeling to find that the overall effect of glacier runoff on marine productivity is positive within the major fjord systems of Svalbard.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 18, 5327–5350, https://doi.org/10.5194/bg-18-5327-2021, https://doi.org/10.5194/bg-18-5327-2021, 2021
Short summary
Short summary
Nitrogen is one of the most important elements for life in the ocean. A major source is the riverine discharge of dissolved nitrogen. While global models often omit rivers as a nutrient source, we included nitrogen from rivers in our Earth system model and found that additional nitrogen affected marine biology not only locally but also in regions far off the coast. Depending on regional conditions, primary production was enhanced or even decreased due to internal feedbacks in the nitrogen cycle.
Kyra A. St. Pierre, Brian P. V. Hunt, Suzanne E. Tank, Ian Giesbrecht, Maartje C. Korver, William C. Floyd, Allison A. Oliver, and Kenneth P. Lertzman
Biogeosciences, 18, 3029–3052, https://doi.org/10.5194/bg-18-3029-2021, https://doi.org/10.5194/bg-18-3029-2021, 2021
Short summary
Short summary
Using 4 years of paired freshwater and marine water chemistry from the Central Coast of British Columbia (Canada), we show that coastal temperate rainforest streams are sources of organic nitrogen, iron, and carbon to the Pacific Ocean but not the inorganic nutrients easily used by marine phytoplankton. This distinction may have important implications for coastal food webs and highlights the need to sample all nutrients in fresh and marine waters year-round to fully understand coastal dynamics.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Marie-Sophie Maier, Cristian R. Teodoru, and Bernhard Wehrli
Biogeosciences, 18, 1417–1437, https://doi.org/10.5194/bg-18-1417-2021, https://doi.org/10.5194/bg-18-1417-2021, 2021
Short summary
Short summary
Based on a 2-year monitoring study, we found that the freshwater system of the Danube Delta, Romania, releases carbon dioxide and methane to the atmosphere. The amount of carbon released depends on the freshwater feature (river branches, channels and lakes), season and hydrologic condition, affecting the exchange with the wetland. Spatial upscaling should therefore consider these factors. Furthermore, the Danube Delta increases the amount of carbon reaching the Black Sea via the Danube River.
Anna Rose Canning, Peer Fietzek, Gregor Rehder, and Arne Körtzinger
Biogeosciences, 18, 1351–1373, https://doi.org/10.5194/bg-18-1351-2021, https://doi.org/10.5194/bg-18-1351-2021, 2021
Short summary
Short summary
The paper describes a novel, fully autonomous, multi-gas flow-through set-up for multiple gases that combines established, high-quality oceanographic sensors in a small and robust system designed for use across all salinities and all types of platforms. We describe the system and its performance in all relevant detail, including the corrections which improve the accuracy of these sensors, and illustrate how simultaneous multi-gas set-ups can provide an extremely high spatiotemporal resolution.
Joonas J. Virtasalo, Peter Österholm, Aarno T. Kotilainen, and Mats E. Åström
Biogeosciences, 17, 6097–6113, https://doi.org/10.5194/bg-17-6097-2020, https://doi.org/10.5194/bg-17-6097-2020, 2020
Short summary
Short summary
Rivers draining the acid sulphate soils of western Finland deliver large amounts of metals (e.g. Cd, Co, Cu, La, Mn, Ni, and Zn) to the coastal sea. To better understand metal enrichment in the sea floor, we analysed metal contents and grain size distribution in nine sediment cores, which increased in the 1960s and 1970s and stayed at high levels afterwards. The enrichment is visible more than 25 km out from the river mouths. Organic aggregates are suggested as the key seaward metal carriers.
Simon David Herzog, Per Persson, Kristina Kvashnina, and Emma Sofia Kritzberg
Biogeosciences, 17, 331–344, https://doi.org/10.5194/bg-17-331-2020, https://doi.org/10.5194/bg-17-331-2020, 2020
Short summary
Short summary
Fe concentrations in boreal rivers are increasing strongly in several regions in Northern Europe. This study focuses on how Fe speciation and interaction with organic matter affect stability of Fe across estuarine salinity gradients. The results confirm a positive relationship between the relative contribution of organically complexed Fe and stability. Moreover, organically complexed Fe was more prevalent at high flow conditions and more dominant further upstream in a catchment.
Ines Bartl, Dana Hellemann, Christophe Rabouille, Kirstin Schulz, Petra Tallberg, Susanna Hietanen, and Maren Voss
Biogeosciences, 16, 3543–3564, https://doi.org/10.5194/bg-16-3543-2019, https://doi.org/10.5194/bg-16-3543-2019, 2019
Short summary
Short summary
Irrespective of variable environmental settings in estuaries, the quality of organic particles is an important factor controlling microbial processes that facilitate a reduction of land-derived nitrogen loads to the open sea. Through the interplay of biogeochemical processing, geomorphology, and hydrodynamics, organic particles may function as a carrier and temporary reservoir of nitrogen, which has a major impact on the efficiency of nitrogen load reduction.
Moturi S. Krishna, Rongali Viswanadham, Mamidala H. K. Prasad, Vuravakonda R. Kumari, and Vedula V. S. S. Sarma
Biogeosciences, 16, 505–519, https://doi.org/10.5194/bg-16-505-2019, https://doi.org/10.5194/bg-16-505-2019, 2019
Short summary
Short summary
An order-of-magnitude variability in DIC was found within the Indian estuaries due to significant variability in size of rivers, precipitation pattern and lithology in the catchments. Indian monsoonal estuaries annually export ∼ 10.3 Tg of DIC to the northern Indian Ocean, of which 75 % enters into the Bay of Bengal. Our results indicated that chemical weathering of carbonate and silicate minerals by soil CO2 is the major source of DIC in the Indian monsoonal rivers.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, https://doi.org/10.5194/bg-16-485-2019, 2019
Short summary
Short summary
Data obtained from sediment trap experiments in the Indian Ocean indicate that lithogenic matter ballast increases organic carbon flux rates on average by 45 % and by up to 62 % at trap locations in the river-influenced regions of the Indian Ocean. Such a strong lithogenic matter ballast effect implies that land use changes and the associated enhanced transport of lithogenic matter may significantly affect the CO2 uptake of the organic carbon pump in the receiving ocean areas.
Yongping Yuan, Ruoyu Wang, Ellen Cooter, Limei Ran, Prasad Daggupati, Dongmei Yang, Raghavan Srinivasan, and Anna Jalowska
Biogeosciences, 15, 7059–7076, https://doi.org/10.5194/bg-15-7059-2018, https://doi.org/10.5194/bg-15-7059-2018, 2018
Short summary
Short summary
Elevated levels of nutrients in surface water, which originate from deposition of atmospheric N, drainage from agricultural fields, and discharges from sewage treatment plants, cause explosive algal blooms that impair water quality. The complex cycling of nutrients through the land, air, and water requires an integrated multimedia modeling system linking air, land surface, and stream processes to assess their sources, transport, and transformation in large river basins for decision making.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Tom Jilbert, Eero Asmala, Christian Schröder, Rosa Tiihonen, Jukka-Pekka Myllykangas, Joonas J. Virtasalo, Aarno Kotilainen, Pasi Peltola, Päivi Ekholm, and Susanna Hietanen
Biogeosciences, 15, 1243–1271, https://doi.org/10.5194/bg-15-1243-2018, https://doi.org/10.5194/bg-15-1243-2018, 2018
Short summary
Short summary
Iron is a common dissolved element in river water, recognizable by its orange-brown colour. Here we show that when rivers reach the ocean much of this iron settles to the sediments by a process known as flocculation. The iron is then used by microbes in coastal sediments, which are important hotspots in the global carbon cycle.
Shin-Ah Lee and Guebuem Kim
Biogeosciences, 15, 1115–1122, https://doi.org/10.5194/bg-15-1115-2018, https://doi.org/10.5194/bg-15-1115-2018, 2018
Short summary
Short summary
The fluorescent dissolved organic matter (FDOM) delivered from riverine discharges significantly affects carbon and biogeochemical cycles in coastal waters. Our results show that the terrestrial concentrations of humic-like FDOM in river water were 60–80 % higher in the summer and fall, while the in situ production of protein-like FDOM was 70–80 % higher in the spring. Our results suggest that there are large seasonal changes in riverine fluxes of FDOM components to the ocean.
Yafei Zhu, Andrew McCowan, and Perran L. M. Cook
Biogeosciences, 14, 4423–4433, https://doi.org/10.5194/bg-14-4423-2017, https://doi.org/10.5194/bg-14-4423-2017, 2017
Short summary
Short summary
We used a 3-D coupled hydrodynamic–biogeochemical water quality model to investigate the effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system. The results highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Kamilla S. Sjøgaard, Alexander H. Treusch, and Thomas B. Valdemarsen
Biogeosciences, 14, 4375–4389, https://doi.org/10.5194/bg-14-4375-2017, https://doi.org/10.5194/bg-14-4375-2017, 2017
Short summary
Short summary
Permanent flooding of low-lying coastal areas is a growing threat due to climate-change-related sea-level rise. To reduce coastal damage, buffer zones can be created by managed coastal realignment where existing dykes are breached and new dykes are built further inland. We studied the impacts on organic matter degradation in soils flooded with seawater by managed coastal realignment and suggest that most of the organic carbon present in coastal soils will be permanently preserved after flooding.
Allison A. Oliver, Suzanne E. Tank, Ian Giesbrecht, Maartje C. Korver, William C. Floyd, Paul Sanborn, Chuck Bulmer, and Ken P. Lertzman
Biogeosciences, 14, 3743–3762, https://doi.org/10.5194/bg-14-3743-2017, https://doi.org/10.5194/bg-14-3743-2017, 2017
Short summary
Short summary
Rivers draining small watersheds of the outer coastal Pacific temperate rainforest export some of the highest yields of dissolved organic carbon (DOC) in the world directly to the ocean. This DOC is largely derived from soils and terrestrial plants. Rainfall, temperature, and watershed characteristics such as wetlands and lakes are important controls on DOC export. This region may be significant for carbon export and linking terrestrial carbon to marine ecosystems.
Mathilde Couturier, Gwendoline Tommi-Morin, Maude Sirois, Alexandra Rao, Christian Nozais, and Gwénaëlle Chaillou
Biogeosciences, 14, 3321–3336, https://doi.org/10.5194/bg-14-3321-2017, https://doi.org/10.5194/bg-14-3321-2017, 2017
Short summary
Short summary
At the land–ocean interface, subterranean estuaries (STEs) are a critical transition pathway of nitrogen. Environmental conditions in the groundwater lead to nitrogen transformation, altering the nitrogen species and concentrations exported to the coastal ocean. This study highlights the role of a STE in processing groundwater-derived N in a shallow boreal STE, far from anthropogenic pressures. Biogeochemical transformations provide new N species from terrestrial origin to the coastal ocean.
Elin Almroth-Rosell, Moa Edman, Kari Eilola, H. E. Markus Meier, and Jörgen Sahlberg
Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016, https://doi.org/10.5194/bg-13-5753-2016, 2016
Short summary
Short summary
Nutrients from land have been discussed to increase eutrophication in the open sea. This model study shows that the coastal zone works as an efficient filter. Water depth and residence time regulate the retention that occurs mostly in the sediment due to processes such as burial and denitrification. On shorter timescales the retention capacity might seem less effective when the land load of nutrients decreases, but with time the coastal zone can import nutrients from the open sea.
B. W. Abbott, J. B. Jones, S. E. Godsey, J. R. Larouche, and W. B. Bowden
Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, https://doi.org/10.5194/bg-12-3725-2015, 2015
Short summary
Short summary
As high latitudes warm, carbon and nitrogen stored in permafrost soil will be vulnerable to erosion and transport to Arctic streams and rivers. We sampled outflow from 83 permafrost collapse features in Alaska. Permafrost collapse caused substantial increases in dissolved organic carbon and inorganic nitrogen but decreased methane concentration by 90%. Upland thermokarst may be a dominant linkage transferring carbon and nutrients from terrestrial to aquatic ecosystems as the Arctic warms.
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin
Biogeosciences, 12, 3385–3402, https://doi.org/10.5194/bg-12-3385-2015, https://doi.org/10.5194/bg-12-3385-2015, 2015
G. G. Laruelle, R. Lauerwald, J. Rotschi, P. A. Raymond, J. Hartmann, and P. Regnier
Biogeosciences, 12, 1447–1458, https://doi.org/10.5194/bg-12-1447-2015, https://doi.org/10.5194/bg-12-1447-2015, 2015
Short summary
Short summary
This study quantifies the exchange of carbon dioxide (CO2) between the atmosphere and the land-ocean aquatic continuum (LOAC) of the northeast North American coast, which consists of rivers, estuaries, and the coastal ocean. Our analysis reveals significant variations of the flux intensity both in time and space across the study area. Ice cover, snowmelt, and the intensity of the estuarine filter are identified as important control factors of the CO2 exchange along the LOAC.
O. Arnalds, H. Olafsson, and P. Dagsson-Waldhauserova
Biogeosciences, 11, 6623–6632, https://doi.org/10.5194/bg-11-6623-2014, https://doi.org/10.5194/bg-11-6623-2014, 2014
Short summary
Short summary
Iceland is one of the largest dust sources on Earth. Based on two separate methods, we estimate dust emissions to range between 30 and 40 million tons annually. Ocean deposition ranges between 5.5 and 13.8 million tons. Calculated iron deposition in oceans around Iceland ranges between 0.56 to 1.4 million tons, which are distributed over wide areas. Iron is a limiting nutrient for primary production in these waters, and dust is likely to affect oceanic Fe levels around Iceland.
N. I. W. Leblans, B. D. Sigurdsson, P. Roefs, R. Thuys, B. Magnússon, and I. A. Janssens
Biogeosciences, 11, 6237–6250, https://doi.org/10.5194/bg-11-6237-2014, https://doi.org/10.5194/bg-11-6237-2014, 2014
Short summary
Short summary
We studied the influence of allochthonous N inputs on primary succession and soil development of a 50-year-old volcanic island, Surtsey. Seabirds increased the ecosystem N accumulation rate inside their colony to ~47 kg ha-1 y-1, compared to 0.7 kg ha-1 y-1 outside it. A strong relationship was found between total ecosystem N stock and both total above- and belowground biomass and SOC stock, which shows how fast external N input can boost primary succession and soil formation.
J.-É. Tremblay, P. Raimbault, N. Garcia, B. Lansard, M. Babin, and J. Gagnon
Biogeosciences, 11, 4853–4868, https://doi.org/10.5194/bg-11-4853-2014, https://doi.org/10.5194/bg-11-4853-2014, 2014
H. E. Reader, C. A. Stedmon, and E. S. Kritzberg
Biogeosciences, 11, 3409–3419, https://doi.org/10.5194/bg-11-3409-2014, https://doi.org/10.5194/bg-11-3409-2014, 2014
R. Death, J. L. Wadham, F. Monteiro, A. M. Le Brocq, M. Tranter, A. Ridgwell, S. Dutkiewicz, and R. Raiswell
Biogeosciences, 11, 2635–2643, https://doi.org/10.5194/bg-11-2635-2014, https://doi.org/10.5194/bg-11-2635-2014, 2014
R. H. Li, S. M. Liu, Y. W. Li, G. L. Zhang, J. L. Ren, and J. Zhang
Biogeosciences, 11, 481–506, https://doi.org/10.5194/bg-11-481-2014, https://doi.org/10.5194/bg-11-481-2014, 2014
E. Asmala, R. Autio, H. Kaartokallio, L. Pitkänen, C. A. Stedmon, and D. N. Thomas
Biogeosciences, 10, 6969–6986, https://doi.org/10.5194/bg-10-6969-2013, https://doi.org/10.5194/bg-10-6969-2013, 2013
C. Buzzelli, Y. Wan, P. H. Doering, and J. N. Boyer
Biogeosciences, 10, 6721–6736, https://doi.org/10.5194/bg-10-6721-2013, https://doi.org/10.5194/bg-10-6721-2013, 2013
S. Nagao, M. Kanamori, S. Ochiai, S. Tomihara, K. Fukushi, and M. Yamamoto
Biogeosciences, 10, 6215–6223, https://doi.org/10.5194/bg-10-6215-2013, https://doi.org/10.5194/bg-10-6215-2013, 2013
V. Le Fouest, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, https://doi.org/10.5194/bg-10-3661-2013, 2013
A. Rumín-Caparrós, A. Sanchez-Vidal, A. Calafat, M. Canals, J. Martín, P. Puig, and R. Pedrosa-Pàmies
Biogeosciences, 10, 3493–3505, https://doi.org/10.5194/bg-10-3493-2013, https://doi.org/10.5194/bg-10-3493-2013, 2013
M. A. Charette, C. F. Breier, P. B. Henderson, S. M. Pike, I. I. Rypina, S. R. Jayne, and K. O. Buesseler
Biogeosciences, 10, 2159–2167, https://doi.org/10.5194/bg-10-2159-2013, https://doi.org/10.5194/bg-10-2159-2013, 2013
B. Deutsch, V. Alling, C. Humborg, F. Korth, and C. M. Mörth
Biogeosciences, 9, 4465–4475, https://doi.org/10.5194/bg-9-4465-2012, https://doi.org/10.5194/bg-9-4465-2012, 2012
P. A. Faber, A. J. Kessler, J. K. Bull, I. D. McKelvie, F. J. R. Meysman, and P. L. M. Cook
Biogeosciences, 9, 4087–4097, https://doi.org/10.5194/bg-9-4087-2012, https://doi.org/10.5194/bg-9-4087-2012, 2012
M. E. Dueker, G. D. O'Mullan, K. C. Weathers, A. R. Juhl, and M. Uriarte
Biogeosciences, 9, 803–813, https://doi.org/10.5194/bg-9-803-2012, https://doi.org/10.5194/bg-9-803-2012, 2012
L. Lassaletta, E. Romero, G. Billen, J. Garnier, H. García-Gómez, and J. V. Rovira
Biogeosciences, 9, 57–70, https://doi.org/10.5194/bg-9-57-2012, https://doi.org/10.5194/bg-9-57-2012, 2012
J. Yu, Y. Fu, Y. Li, G. Han, Y. Wang, D. Zhou, W. Sun, Y. Gao, and F. X. Meixner
Biogeosciences, 8, 2427–2435, https://doi.org/10.5194/bg-8-2427-2011, https://doi.org/10.5194/bg-8-2427-2011, 2011
E. S. Karlsson, A. Charkin, O. Dudarev, I. Semiletov, J. E. Vonk, L. Sánchez-García, A. Andersson, and Ö. Gustafsson
Biogeosciences, 8, 1865–1879, https://doi.org/10.5194/bg-8-1865-2011, https://doi.org/10.5194/bg-8-1865-2011, 2011
Cited articles
Ahmad, S. M., Padmakumari, V. M., and Babu, G. A.: Strontium and neodymium
isotopic compositions in sediments from Godavari, Krishna and Pennar rivers,
Curr. Sci., 97, 1766–1769, 2009.
Amarasinghe, U., Chaudhuri, A., Collins, A. S., Deb, G., and Patranabis-Deb,
S.: Evolving provenance in the Proterozoic Pranhita-Godavari Basin, India,
Geosci. Front., 6, 453–463, 2015.
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S.
C., Alin, S. R., Aalto, R. E., and Yoo, K.: Riverine coupling of
biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol.
Environ., 9, 53–60, 2011.
Babar, M. and Kaplay, R. D.: Godavari River: geomorphology and
socio-economic characteristics, in: The Indian Rivers, edited by: Singh, D. S.,
Springer, Singapore, 319–337, ISBN: 978-981-10-9756-0, https://doi.org/10.1007/978-981-10-2984-4, 2018.
Babechuk, M. G., Widdowson, M., and Kamber, B. S.: Quantifying chemical
weathering intensity and trace element release from two contrasting basalt
profiles, Deccan Traps, India, Chem. Geol., 363, 56–75, 2014.
Balakrishna, K. and Probst, J.: Organic carbon transport and ratio
variations in a large tropical river: Godavari as a case study, India,
Biogeochemistry, 73, 457–473, 2005.
Bale, N. J., Palatinszky, M., Rijpstra, W. I. C., Herbold, C. W., Wagner,
M., and Sinninghe Damsté, J. S.: Membrane lipid composition of the moderately
thermophilic ammonia-oxidizing archaeon “Candidatus Nitrosotenius
uzonensis” at different growth temperatures, Appl. Environ. Microbiol. 85,
e01332-19, https://doi.org/10.1128/AEM.01332-19, 2019.
Bastian, L., Revel, M., Bayon, G., Dufour, A., and Vigier, N.: Abrupt
response of chemical weathering to Late Quaternary hydroclimate changes in
northeast Africa, Sci. Rep., 7, 1–8, 2017.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
2009.
Bianchi, T. S.: The role of terrestrially derived organic carbon in the
coastal ocean: A changing paradigm and the priming effect, P. Natl. Acad. Sci. USA, 108,
19473–19481, 2011.
Biksham, G. and Subramanian, V.: Elemental composition of Godavari sediments
(central and southern Indian subcontinent), Chem. Geol., 70, 275–286, 1988a.
Biksham, G. and Subramanian, V.: Nature of solute transport in the Godavari
basin, India, J. Hydrol., 103, 375–392, 1988b.
Biksham, G. and Subramanian, V.: Sediment transport of the Godavari River
basin and its controlling factors, J. Hydrol., 101, 275–290, 1988c.
Blaga, C. I., Reichart, G. -J., Heiri, O., and Sinninghe Damsté, J. S.:
Tetraether membrane lipid distributions in water-column particulate matter
and sediments: a study of 47 European lakes along a north-south transect, J.
Paleolimnol, 41, 523–540, 2009.
Blattmann, T. M., Liu, Z., Zhang, Y., Zhao, Y., Haghipour, N.,
Montluçon, D. B., Plötze, M., and Eglinton, T. I.: Mineralogical
control on the fate of continentally derived organic matter in the ocean,
Science, 366, 742–745, 2019.
Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice, L., and Dutra-Maia,
P.: Grain size control of river suspended sediment geochemistry: Clues from
Amazon River depth profiles, Geochem. Geophys. Geosyst., 12, 1–24, 2011.
Bouchez, J., Galy, V., Hilton, R. G., Gaillardet, J., Moreira-Turcq, P.,
Pérez, M. A., France-Lanord, C., and Maurice, L.: Source, transport and
fluxes of Amazon River particulate organic carbon: Insights from river
sediment depth-profiles, Geochim. Cosmochim. Ac., 133, 280–298, 2014.
Butman, D. and Raymond, P. A.: Significant efflux of carbon dioxide from
streams and rivers in the United States, Nat. Geosci., 4, 839–842, 2011.
Cao, J., Lian, E., Yang, S., Ge, H., Jin, X., He, J., and Jia, G.: The
distribution of intact polar lipid-derived branched tetraethers along a
freshwater-seawater pH gradient in coastal East China Sea, Chem. Geol., 596,
120808, https://doi.org/10.1016/j.chemgeo.2022.120808, 2022.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., and
Middelburg, J. J.: Plumbing the global carbon cycle: integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 172–185, 2007.
Dang, X., Yang, H., Naafs, B. D. A., Pancost, R. D., and Xie, S.: Evidence of
moisture control on the methylation of branched glycerol dialkyl glycerol
tetraethers in semi-arid and arid soils, Geochim. Cosmochim. Ac., 189,
24–36, 2016.
Das, A. and Krishnaswami, S.: Elemental geochemistry of river sediments from
the Deccan Traps, India: implications to sources of elements and their
mobility during basalt-water interaction, Chem. Geol., 242, 232–254, 2007.
Dearing Crampton-Flood, E., Peterse, F., Munsterman, D., and Sinninghe
Damsté, J. S.: Using tetraether lipids archived in North Sea Basin
sediments to extract North Western European Pliocene continental air
temperatures, Earth Planet. Sci. Lett., 490, 193–205, 2018.
Dearing Crampton-Flood, E., Tierney, J. E., Peterse, F., Kirkels, F. M. S.
A., and Sinninghe Damsté, J. S.: Global soil and peat branched GDGT
compilation dataset, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.907818, 2019a.
Dearing Crampton-Flood, E., Peterse, F., and Sinninghe Damsté, J. S.:
Production of branched tetraethers in the marine realm: Svalbard fjord
sediments revisited, Org. Geochem., 138, 103907, https://doi.org/10.1016/j.orggeochem.2019.103907, 2019b.
Dearing Crampton-Flood, E., Tierney, J. E., Peterse, F., Kirkels, F. M., and
Sinninghe Damsté, J. S.: BayMBT: A Bayesian calibration model for
branched glycerol dialkyl glycerol tetraethers in soils and peats, Geochim. Cosmochim. Ac., 268, 142–159, 2020.
Dearing Crampton-Flood, E., van der Weijst, C. M. H., van der Molen, G.,
Bouquet, M., Yedema, Y., Donders, T. H., Sangiorgi, F., Sluijs, A.,
Sinninghe Damsté, J. S., and Peterse, F.: Identifying marine and
freshwater overprints on soil-derived branched GDGT temperature signals in
Pliocene Mississippi and Amazon River fan sediments, Org. Geochem., 154,
1–11, 2021.
De Jonge, C., Hopmans, E. C., Stadnitskaia, A., Rijpstra, W. I. C., Hofland,
R., Tegelaar, E., and Sinninghe Damsté, J. S.: Identification of novel
penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in
peat using HPLC–MS2, GC–MS and GC–SMB-MS, Org. Geochem., 54, 78–82, 2013.
De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J., Schouten, S. and
Sinninghe Damsté, J. S.: Occurrence and abundance of 6-methyl branched
glycerol dialkyl glycerol tetraethers in soils: Implications for
palaeoclimate reconstruction, Geochim. Cosmochim. Ac., 141, 97–112, 2014a.
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A.,
and Sinninghe Damsté, J. S.: In situ produced branched glycerol dialkyl
glycerol tetraethers in suspended particulate matter from the Yenisei River,
Eastern Siberia, Geochim. Cosmochim. Ac., 125, 476–491, 2014b.
De Jonge, C., Stadnitskaia, A., Fedotov, A., and Sinninghe Damsté, J. S.:
Impact of riverine suspended particulate matter on the branched glycerol
dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga
River in Lake Baikal (Russia), Org. Geochem., 83–84, 241–252, 2015a.
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A.,
Streletskaya, I. D., Vasiliev, A. A., and Sinninghe Damsté, J. S.:
Drastic changes in the distribution of branched tetraether lipids in
suspended matter and sediments from the Yenisei River and Kara Sea
(Siberia): Implications for the use of brGDGT-based proxies in coastal
marine sediments, Geochim. Cosmochim. Ac., 165, 200–225, 2015b.
Dirghangi, S. S., Pagani, M., Hren, M. T., and Tipple, B. J.: Distribution of
glycerol dialkyl glycerol tetraethers in soils from two environmental
transects in the USA, Org. Geochem., 59, 49–60, 2013.
Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H.,
Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., and Haghipour, N.:
Climate control on terrestrial biospheric carbon turnover, P. Natl. Acad. Sci. USA, 118, 1–9,
2021.
Elling, F. J., Könneke, M., Nicol, G. W., Stieglmeier, M., Bayer, B.,
Spieck, E., de la Torre, J. R., Becker, K. W., Thomm, M., Prosser, J. I.,
Herndl, G. J., Schleper, C., and Hinrichs, K. U.: Chemotaxonomic
characterization of the thaumarchaeotal lipodome, Environ. Microbiol., 19,
2681–2700, 2017.
Feakins, S. J., Wu, M. S., Ponton, C., Galy, V., and West, A. J.: Dual
isotope evidence for sedimentary integration of plant wax biomarkers across
an Andes-Amazon elevation transect, Geochim. Cosmochim. Ac., 242, 64–81,
2018.
Feng, X., Feakins, S. J., Liu, Z., Ponton, C., Wang, R. Z., Karkabi, E.,
Galy, V., Berelson, W. M., Nottingham, A. T., and Meir, P.: Source to sink:
Evolution of lignin composition in the Madre de Dios River system with
connection to the Amazon basin and offshore, J. Geophys. Res.-Biogeo.,
121, 1316–1338, 2016.
Freymond, C. V., Peterse, F., Fischer, L. V., Filip, F., Giosan, L., and
Eglinton, T. I.: Branched GDGT signals in fluvial sediments of the Danube
River basin: Method comparison and longitudinal evolution, Org. Geochem.,
103, 88–96, 2017.
Freymond, C. V., Lupker, M., Peterse, F., Haghipour, N., Wacker, L., Filip,
F., Giosan, L., and Eglinton, T. I.: Constraining instantaneous fluxes and
integrated compositions of fluvially discharged organic matter, Geochem.
Geophys. Geosyst., 19, 2453–2462, 2018a.
Freymond, C. V., Kündig, N., Stark, C., Peterse, F., Buggle, B., Lupker,
M., Plötze, M., Blattmann, T. M., Filip, F., and Giosan, L.: Evolution of
biomolecular loadings along a major river system, Geochim. Cosmochim. Ac., 223, 389–404, 2018b.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and Palhol,
F.: Efficient organic carbon burial in the Bengal fan sustained by the
Himalayan erosional system, Nature, 450, 407–411, 2007.
Galy, V., France-Lanord, C., and Lartiges, B.: Loading and fate of
particulate organic carbon from the Himalaya to the Ganga–Brahmaputra
delta, Geochim. Cosmochim. Ac., 72, 1767–1787, 2008.
Galy, V., France-Lanord, C., Beyssac, O., Lartiges, B., and Rhaman, M.:
Organic carbon cycling during Himalayan erosion: processes, fluxes and
consequences for the global carbon cycle, in: Climate Change and Food
Security in South Asia, edited by: Lal, R., Sivakumar, M., Faiz, S., Mustafizur Rahman,
A., and Islam, K., Springer, Dordrecht, 163–181, ISBN: 978-90-481-9515-2,
https://doi.org/10.1007/978-90-481-9516-9, 2010.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export from
the terrestrial biosphere controlled by erosion, Nature, 521, 204–207, 2015.
Giosan, L., Ponton, C., Usman, M., Blusztajn, J., Fuller, D. Q., Galy, V., Haghipour, N., Johnson, J. E., McIntyre, C., Wacker, L., and Eglinton, T. I.: Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation, Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, 2017.
Goñi, M. A., Cathey, M. W., Kim, Y. H., and Voulgaris, G.: Fluxes and
sources of suspended organic matter in an estuarine turbidity maximum region
during low discharge conditions, Estuar. Coast. Shelf Sci., 63, 683–700,
2005.
Govil, P. and Naidu, P. D.: Variations of Indian monsoon precipitation
during the last 32 kyr reflected in the surface hydrography of the Western
Bay of Bengal, Quat. Sci. Rev., 30, 3871–3879, 2011.
Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza,
S., Collins, J. A., and Chiessi, C. M.: Distribution of major elements in
Atlantic surface sediments (36∘ N–49∘ S): Imprint of
terrigenous input and continental weathering, Geochem. Geophys. Geosyst.,
13, 1–23, 2012.
Govin, A., Chiessi, C. M., Zabel, M., Sawakuchi, A. O., Heslop, D., Hörner, T., Zhang, Y., and Mulitza, S.: Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka, Clim. Past, 10, 843–862, https://doi.org/10.5194/cp-10-843-2014, 2014.
Guinoiseau, D., Bouchez, J., Gélabert, A., Louvat, P., Filizola, N., and
Benedetti, M. F.: The geochemical filter of large river confluences, Chem.
Geol., 441, 191–203, 2016.
Gunnell, Y.: Relief and climate in South Asia: the influence of the Western
Ghats on the current climate pattern of peninsular India, Int. J. Climatol.,
17, 1169–1182, 1997.
Guo, J., Glendell, M., Meersmans, J., Kirkels, F., Middelburg, J. J., and Peterse, F.: Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England), Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, 2020.
Gupta, L. P., Subramanian, V., and Ittekkot, V.: Biogeochemistry of
particulate organic matter transported by the Godavari River, India,
Biogeochemistry, 38, 103–128, 1997.
Häggi, C., Sawakuchi, A. O., Chiessi, C. M., Mulitza, S., Mollenhauer,
G., Sawakuchi, H. O., Baker, P. A., Zabel, M., and Schefuß, E.: Origin,
transport and deposition of leaf-wax biomarkers in the Amazon Basin and the
adjacent Atlantic, Geochim. Cosmochim. Ac., 192, 149–165, 2016.
Halamka, T. A., McFarlin, J. M., Younkin, J. M., Depoy, A. D., Dildar, J., and
Kopf, N.: Oxygen limitation can trigger the production of branched GDGTs in
culture, Geochem. Pers. Letters 19, 36–39, 2021.
Hedges, J. I.: Global biogeochemical cycles: progress and problems, Mar.
Chem., 39, 67–93, 1992.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis, Mar. Chem., 49, 81–115, 1995.
Hedges, J. I., Keil, R. G., and Benner, R.: What happens to terrestrial
organic matter in the ocean?, Org. Geochem., 27, 195–212, 1997.
Hemingway, J. D., Schefuß, E., Dinga, B. J., Pryer, H., and Galy, V. V.:
Multiple plant-wax compounds record differential sources and ecosystem
structure in large river catchments, Geochim. Cosmochim. Ac., 184, 20–40,
2016.
Hemingway, J. D., Schefuß, E., Spencer, R. G., Dinga, B. J., Eglinton,
T. I., McIntyre, C., and Galy, V. V.: Hydrologic controls on seasonal and
inter-annual variability of Congo River particulate organic matter source
and reservoir age, Chem. Geol., 466, 454–465, 2017.
Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton,
T. I., Derry, L. A., and Galy, V. V.: Mineral protection regulates long-term
global preservation of natural organic carbon, Nature, 570, 228–231, 2019.
Holtvoeth, J., Kolonic, S., and Wagner, T.: Soil organic matter as an
important contributor to late Quaternary sediments of the tropical West
African continental margin, Geochim. Cosmochim. Ac., 69, 2031–2041, 2005.
Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Sinninghe
Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic
matter in sediments based on branched and isoprenoid tetraether lipids,
Earth Planet. Sci. Lett., 224, 107–116, 2004.
Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: The effect of
improved chromatography on GDGT-based palaeoproxies, Org. Geochem., 93, 1–6,
2016.
Hou, P., Yu, M., Zhao, M., Montluçon, D. B., Su, C., and Eglinton, T. I.:
Terrestrial biomolecular burial efficiencies on continental margins, J.
Geophys. Res.-Biogeo., 125, 1–15, 2020.
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe
Damsté, J. S., and Schouten, S.: An improved method to determine the
absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org.
Geochem., 37, 1036–1041, 2006.
India Water Resources Information System, Government of India, Ministry of
Jal Shatki, Department of Water Resources, River Development and Ganga
Rejuvenation: Discharge data and water levels in the Godavari River basin,
https://indiawris.gov.in/, last access: 1 July 2021.
Jiwarungrueangkul, T., Liu, Z., Stattegger, K., and Sang, P. N.:
Reconstructing chemical weathering intensity in the Mekong River basin since
the Last Glacial Maximum, Paleoceanogr. Paleoclimatol., 34, 1710–1725, 2019.
Just, J., Schefuß, E., Kuhlmann, H., Stuut, J. W., and Pätzold, J.:
Climate induced sub-basin source-area shifts of Zambezi River sediments over
the past 17 ka, Palaeogeogr. Palaeoclimatol. Palaeoecol., 410, 190–199,
2014.
Kalesha, M., Rao, K. S., and Somayajulu, B.: Deposition rates in the Godavari
delta, Mar. Geol., 34, M57–M66, 1980.
Keil, R. G., Mayer, L. M., Quay, P. D., Richey, J. E., and Hedges, J. I.:
Loss of organic matter from riverine particles in deltas, Geochim. Cosmochim. Ac., 61, 1507–1511, 1997.
Keller, G., Adatte, T., Gardin, S., Bartolini, A., and Bajpai, S.: Main
Deccan volcanism phase ends near the K–T boundary: evidence from the
Krishna–Godavari Basin, SE India, Earth Planet. Sci. Lett., 268, 293–311,
2008.
Kim, J. G., Jung, M. Y., Park, S. J., Rijpstra, W. I. C., Sinninghe
Damsté, J. S., Madsen, E. L., Min, D., Kim, J. S., Kim, G. J., and Rhee, S.
K.: Cultivation of a highly enriched ammonia-oxidizing archaeon of
thaumarchaeotal group I.1b from an agricultural soil, Environ. Microbiol.,
14, 1528–1543, 2012.
Kim, J. H., Van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S.:
New indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654, 2010.
Kim, J. H., Zell, C., Moreira-Turcq, P., Pérez, M. A., Abril, G.,
Mortillaro, J., Weijers, J. W., Meziane, T., and Sinninghe Damsté, J. S.:
Tracing soil organic carbon in the lower Amazon River and its tributaries
using GDGT distributions and bulk organic matter properties, Geochim. Cosmochim. Ac., 90, 163–180, 2012.
Kim, J. H., Ludwig, W., Buscail, R., Dorhout, D., and Sinninghe Damsté,
J. S.: Tracing tetraether lipids from source to sink in the Rhône River
system (NW Mediterranean), Front. Earth Sci., 3, 1–22, 2015.
Kirkels, F. M. S. A., Zwart, H., Usman, M., and Peterse, F.: Branched glycerol dialkyl
glycerol tetraethers, crenarchaeol and geochemical parameters in soils, SPM
and riverbed sediments in the Godavari River basin (India), PANGAEA
[data set], https://doi.org/10.1594/PANGAEA.934712, 2021a.
Kirkels, F. M. S. A., Usman, M., Hou, S., Ponton, C., and Peterse, F.: Glycerol dialkyl
glycerol tetraethers in a Holocene sediment core (NGHP-01-16A) in front of
the Godavari River in the Bay of Bengal (India), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.934701, 2021b.
Kirkels, F. M., Ponton, C., Galy, V., West, A. J., Feakins, S. J., and
Peterse, F.: From Andes to Amazon: assessing branched tetraether lipids as
tracers for soil organic carbon in the Madre de Dios River system, J.
Geophys. Res.-Biogeo., 125, 1–18, 2020a.
Kirkels, F. M., Zwart, H. M., Basu, S., Usman, M. O., and Peterse, F.:
Seasonal and spatial variability in δ18O and δD values
in waters of the Godavari River basin: insights into hydrological processes,
J. Hydrol. Reg. Stud., 30, 1–25, 2020b.
Kirkels, F. M. S. A., Zwart, H., Usman, M. O., and Peterse, F.: Isoprenoid
glycerol dialkyl glycerol tetraether (isoGDGT) lipids in soils, SPM, and
riverbed sediments in the Godavari Basin (India), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.946817, 2022.
Komada, T., Anderson, M. R., and Dorfmeier, C. L.: Carbonate removal from
coastal sediments for the determination of organic carbon and its isotopic
signatures, δ13C and Δ14C: comparison of fumigation and
direct acidification by hydrochloric acid, Limnol. Oceanogr.-Meth., 6,
254–262, 2008.
Lê, S., Josse, J., and Husson, F.: FactoMineR: an R package for
multivariate analysis, J. Stat. Softw., 25, 1–18, 2008.
Leithold, E. L., Blair, N. E., and Wegmann, K. W.: Source-to-sink sedimentary
systems and global carbon burial: A river runs through it, Earth-Sci. Rev.,
153, 30–42, 2016.
Li, Z., Peterse, F., Wu, Y., Bao, H., Eglinton, T. I., and Zhang, J.: Sources
of organic matter in Changjiang (Yangtze River) bed sediments: preliminary
insights from organic geochemical proxies, Org. Geochem., 85, 11–21, 2015.
Lupker, M., France-Lanord, C., Lavé, J., Bouchez, J., Galy, V.,
Métivier, F., Gaillardet, J., Lartiges, B., and Mugnier, J.: A
Rouse-based method to integrate the chemical composition of river sediments:
application to the Ganga basin, J. Geophys. Res. Earth, 116, 1–24,
2011.
Manikyamba, C., Ganguly, S., Santosh, M., Saha, A., and Lakshminarayana, G.:
Geochemistry and petrogenesis of Rajahmundry trap basalts of
Krishna-Godavari Basin, India, Geosci. Front., 6, 437–451, 2015.
Märki, L., Lupker, M., Gajurel, A. P., Gies, H., Haghipour, N., Gallen,
S., France-Lanord, C., Lavé, J., and Eglinton, T.: Molecular tracing of
riverine soil organic matter from the Central Himalaya, Geophys. Res. Lett.,
47, 1–10, 2020.
Martínez-Sosa, P. and Tierney, J. E.: Lacustrine brGDGT response to
microcosm and mesocosm incubations, Org. Geochem., 127, 12–22, 2019.
Martínez-Sosa, P., Tierney, J. E., and Meredith, L. K.: Controlled
lacustrine microcosms show a brGDGT response to environmental perturbations,
Org. Geochem., 145, 104041, https://doi.org/10.1016/j.orggeochem.2020.104041, 2020.
Mayer, L. M.: Surface area control of organic carbon accumulation in
continental shelf sediments, Geochim. Cosmochim. Ac., 58, 1271–1284, 1994.
Mazumdar, A., Kocherla, M., Carvalho, M. A., Peketi, A., Joshi, R. K.,
Mahalaxmi, P., Joao, H. M., and Jisha, R.: Geochemical characterization of
the Krishna-Godavari and Mahanadi offshore basin (Bay of Bengal) sediments:
a comparative study of provenance, Mar. Pet. Geol., 60, 18–33, 2015.
Meert, J. G., Pandit, M. K., Pradhan, V. R., Banks, J., Sirianni, R.,
Stroud, M., Newstead, B., and Gifford, J.: Precambrian crustal evolution of
Peninsular India: a 3.0 billion year odyssey, J. Asian Earth Sci., 39,
483–515, 2010.
Menges, J., Hovius, N., Andermann, C., Lupker, M., Haghipour, N., Märki,
L., and Sachse, D.: Variations in organic carbon sourcing along a
trans-Himalayan river determined by a Bayesian mixing approach, Geochim. Cosmochim. Ac., 286, 159–176, 2020.
Moyen, J., Martin, H., Jayananda, M., and Auvray, B.: Late Archaean granites:
a typology based on the Dharwar Craton (India), Precambrian Res., 127,
103–123, 2003.
Naafs, B. D. A., Inglis, G. N., Zheng, Y., Amesbury, M. J., Biester, H.,
Bindler, R., Blewett, J., Burrows, M. A., del Castillo Torres, D., Chambers,
F. M., Cohen, A. D., Evershed, R. P., Feakins, S. J., Galka, M.,
Gallego-Sala, A., Gandois, L., Gray, D. M., Hatcher, P. G., Honorio
Coronado, E. N., Hughes, P. D. M., Huguet, A., Könönen, M.,
Laggoun-Défarge, F., Lähteenoja, O., Lamentowicz, M.,
Marchant, R., McClymont, E., Pontevedra-Pombal, X., Ponton, C., Pourmand,
A., Rizzutti, A. M., Rochefort, L., Schellekens, J., De Vleeschouwer, F., and Pancost, R. D.: Introducing global peat-specific temperature and pH
calibrations based on brGDGT bacterial lipids, Geochim. Cosmochim. Acta 208,
285–302, 2017.
Peterse, F. and Eglinton, T. I.: Grain size associations of branched
tetraether lipids in soils and riverbank sediments: Influence of
hydrodynamic sorting processes, Front. Earth Sci., 5, 1–8, 2017.
Peterse, F., Kim, J., Schouten, S., Kristensen, D. K., Koç, N., and
Sinninghe Damsté, J. S.: Constraints on the application of the MBT/CBT
palaeothermometer at high latitude environments (Svalbard, Norway), Org.
Geochem., 40, 692–699, 2009.
Peterse, F., Nicol, G. W., Schouten, S., and Sinninghe Damsté, J. S.:
Influence of soil pH on the abundance and distribution of core and intact
polar lipid-derived branched GDGTs in soil, Org. Geochem. 41, 1171–1175, 2010.
Pitcher, A., Rychlik, N., Hopmans, E. C., Spieck, E., Rijpstra, W. I. C.,
Ossebaar, J., Schouten, S., Wagner, M, and Sinninghe Damsté, J. S.:
Crenarchaeol dominates the membrane lipids of Candidatus Nitrosospheaera
gargensis, a thermophilic Group I.1b Archaeon, ISME J., 4, 542–552, 2010.
Pitcher, A., Hopmans, E. C., Mosier, A. C., Park, S. J., Rhee, S. K.,
Fancis, C. A., Schouten, S., and Sinninghe Damsté, J. S.: Core and intact
polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing
Archaea enriched from marine and estuarine sediments, Appl. Environ.
Microbiol., 77, 3468–3477, 2011.
Ponton, C., Giosan, L., Eglinton, T. I., Fuller, D. Q., Johnson, J. E.,
Kumar, P., and Collett, T. S.: Holocene aridification of India, Geophys. Res.
Lett., 39, L03704–L03709, 2012.
Pradhan, U. K., Wu, Y., Shirodkar, P. V., Zhang, J., and Zhang, G.:
Multi-proxy evidence for compositional change of organic matter in the
largest tropical (peninsular) river basin of India, J. Hydrol., 519,
999–1009, 2014.
Rao, K. N., Saito, Y., Nagakumar, K. C. V., Demudu, G., Rajawat, A. S.,
Kubo, S., and Li, Z.: Palaeogeography and evolution of the Godavari delta,
east coast of India during the Holocene: an example of wave-dominated and
fan-delta settings, Palaeogeogr. Palaeoclimatol. Palaeoecol., 440, 213–233,
2015.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., and
Andersson, A. J.: Anthropogenic perturbation of the carbon fluxes from land
to ocean, Nat. Geosci., 6, 597–607, 2013.
Sarma, V., Paul, Y. S., Vani, D. G., and Murty, V.: Impact of river discharge
on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD)
years in the western Bay of Bengal, Cont. Shelf Res., 107, 132–140, 2015.
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V., and Sinninghe
Damsté, J. S.: Analytical methodology for TEX86 paleothermometry by
high-performance liquid chromatography/atmospheric pressure chemical
ionization-mass spectrometry, Anal. Chem., 79, 2940–2944, 2007.
Singh, P. K., Singh, M. P., Prachiti, P. K., Kalpana, M. S., Manikyamba, C.,
Lakshminarayana, G., Singh, A. K., and Naik, A. S.: Petrographic
characteristics and carbon isotopic composition of Permian coal:
Implications on depositional environment of Sattupalli coalfield, Godavari
Valley, India, Int. J. Coal Geol., 90–91, 34–42, 2012.
Sinninghe Damsté, J. S.: Spatial heterogeneity of sources of branched
tetraethers in shelf systems: The geochemistry of tetraethers in the Berau
River delta (Kalimantan, Indonesia), Geochim. Cosmochim. Ac., 186, 13–31,
2016.
Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., Van Duin, A. C.,
and Geenevasen, J. A.: Crenarchaeol, J. Lipid Res., 43, 1641–1651, 2002.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Weijers, J.
W., Foesel, B. U., Overmann, J., and Dedysh, S. N.: 13, 16-Dimethyl
octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid
of Acidobacteria subdivisions 1 and 3, Appl. Environ. Microbiol., 77,
4147–4154, 2011.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Jung, M.
Y., Kim, J. G., Rhee, S. K., Stieglmeier, M., and Schleper, C.: Intact polar and
core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b
Thaumarchaeota in soil, Appl. Environ. Microbiol. 78, 6866–6874, 2012.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Foesel, B.
U., Wüst, P. K., Overmann, J., Tank, M., Bryant, D. A., Dunfield, P. F.,
and Houghton, K.: Ether-and ester-bound iso-diabolic acid and other lipids
in members of Acidobacteria subdivision 4, Appl. Environ. Microbiol., 80,
5207–5218, 2014.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Foesel, B. U., Huber, K.
J., Overmann, J., Nakagawa, S., Kim, J. J., Dunfield, P. F., Dedysh, S. N.,
and Villanueva, L.: An overview of the occurrence of ether-and ester-linked
iso-diabolic acid membrane lipids in microbial cultures of the
Acidobacteria: Implications for brGDGT paleoproxies for temperature and pH,
Org. Geochem., 124, 63–76, 2018.
Sparkes, R. B., Doğrul Selver, A., Bischoff, J., Talbot, H. M., Gustafsson, Ö., Semiletov, I. P., Dudarev, O. V., and van Dongen, B. E.: GDGT distributions on the East Siberian Arctic Shelf: implications for organic carbon export, burial and degradation, Biogeosciences, 12, 3753–3768, https://doi.org/10.5194/bg-12-3753-2015, 2015.
Sridhar, P. N., Ali, M. M., Vethamony, P., Babu, M. T., Ramana, I. V., and
Jayakumar, S.: Seasonal occurrence of unique sediment plume in the Bay of
Bengal, Eos, 89, 22–23, 2008.
Stuut, J. W., Kasten, S., Lamy, F., and Hebbeln, D.: Sources and modes of
terrigenous sediment input to the Chilean continental slope, Quat. Int, 161,
67–76, 2007.
Sun, S., Schefuß, E., Mulitza, S., Chiessi, C. M., Sawakuchi, A. O., Zabel, M., Baker, P. A., Hefter, J., and Mollenhauer, G.: Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments, Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, 2017.
Syvitski, J. P. and Saito, Y.: Morphodynamics of deltas under the influence
of humans, Global Planet. Change, 57, 261–282, 2007.
Tao, S., Eglinton, T. I., Montluçon, D. B., McIntyre, C., and Zhao, M.:
Pre-aged soil organic carbon as a major component of the Yellow River
suspended load: Regional significance and global relevance, Earth Planet.
Sci. Lett., 414, 77–86, 2015.
Usman, M. O., Kirkels, F. M. S. A., Zwart, H. M., Basu, S., Ponton, C., Blattmann, T. M., Ploetze, M., Haghipour, N., McIntyre, C., Peterse, F., Lupker, M., Giosan, L., and Eglinton, T. I.: Reconciling drainage and receiving basin signatures of the Godavari River system, Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, 2018.
van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., Feng, X., and Eglinton, T. I.: Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients, Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, 2016.
van Soelen, E. E., Kim, J., Santos, R. V., Dantas, E. L., de Almeida, F. V.,
Pires, J. P., Roddaz, M., and Sinninghe Damsté, J. S.: A 30 Ma history of
the Amazon River inferred from terrigenous sediments and organic matter on
the Ceará Rise, Earth Planet. Sci. Lett., 474, 40–48, 2017.
Vonk, J. E., van Dongen, B. E., and Gustafsson, Ö: Lipid biomarker
investigation of the origin and diagenetic state of sub-arctic terrestrial
organic matter presently exported into the northern Bothnian Bay, Mar.
Chem., 112, 1–10, 2008.
Vonk, J. E., Sánchez-García, L., Semiletov, I., Dudarev, O., Eglinton, T., Andersson, A., and Gustafsson, Ö.: Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea, Biogeosciences, 7, 3153–3166, https://doi.org/10.5194/bg-7-3153-2010, 2010.
Warden, L., Kim, J.-H., Zell, C., Vis, G.-J., de Stigter, H., Bonnin, J., and Sinninghe Damsté, J. S.: Examining the provenance of branched GDGTs in the Tagus River drainage basin and its outflow into the Atlantic Ocean over the Holocene to determine their usefulness for paleoclimate applications, Biogeosciences, 13, 5719–5738, https://doi.org/10.5194/bg-13-5719-2016, 2016.
Warden, L., Moros, M., Weber, Y., and Sinninghe Damsté, J. S.: Change in
provenance of branched glycerol dialkyl glycerol tetraethers over the
Holocene in the Baltic Sea and its impact on continental climate
reconstruction, Org. Geochem., 121, 138–154, 2018.
Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E.,
Keil, R. G., and Sawakuchi, H. O.: Where carbon goes when water flows: carbon
cycling across the aquatic continuum, Front. Mar. Sci., 4, 1–27, 2017.
Weijers, J. W., Schouten, S., Hopmans, E. C., Geenevasen, J. A., David, O.
R., Coleman, J. M., Pancost, R. D., and Sinninghe Damsté, J. S.: Membrane
lipids of mesophilic anaerobic bacteria thriving in peats have typical
archaeal traits, Environ. Microbiol., 8, 648–657, 2006.
Weijers, J. W., Schouten, S., van den Donker, Jurgen C, Hopmans, E. C., and
Sinninghe Damsté, J. S.: Environmental controls on bacterial tetraether
membrane lipid distribution in soils, Geochim. Cosmochim. Ac., 71, 703–713,
2007a.
Weijers, J. W., Schefuß, E., Schouten, S., and Sinninghe Damsté, J.
S.: Coupled thermal and hydrological evolution of tropical Africa over the
last deglaciation, Science, 315, 1701–1704, 2007b.
Weijers, J. W., Schouten, S., Schefuß, E., Schneider, R. R., and
Sinninghe Damsté, J. S.: Disentangling marine, soil and plant organic
carbon contributions to continental margin sediments: a multi-proxy approach
in a 20,000 year sediment record from the Congo deep-sea fan, Geochim. Cosmochim. Ac., 73, 119–132, 2009a.
Weijers, J. W., Panoto, E., van Bleijswijk, J., Schouten, S., Rijpstra, W.
I. C., Balk, M., Stams, A. J., and Sinninghe Damsté, J. S.: Constraints
on the biological source (s) of the orphan branched tetraether membrane
lipids, Geomicrobiol. J., 26, 402–414, 2009b.
WRB FAO (World Reference Base for Soil Resources, Food and Agriculture
Organisation of the United Nations): IUSS Working Group WRB, World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106. FAO, Rome, Italy, ISBN: 978-92-5-108369-7, 2015.
Xiao, W., Wang, Y., Zhou, S., Hu, L., Yang, H., and Xu, Y.: Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs, Biogeosciences, 13, 5883–5894, https://doi.org/10.5194/bg-13-5883-2016, 2016.
Xiao, W., Wang, Y., Liu, Y., Zhang, X., Shi, L., and Xu, Y.: Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication, Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020, 2020.
Xie, S., Pancost, R. D., Chen, L., Evershed, R. P., Yang, H., Zhang, K.,
Huang, J., and Xu, Y.: Microbial lipid records of highly alkaline deposits
and enhanced aridity associated with significant uplift of the Tibetan
Plateau in the Late Miocene, Geology, 40, 291–294, 2012.
Xu, Y., Jia, Z., Xiao, W., Fang, J., Wang, Y., Luo, M., Wenzhöfer, F.,
Rowden, A. A., and Glud, R. N.: Glycerol dialkyl glycerol tetraethers in
surface sediments from three Pacific trenches: Distribution, source and
environmental implications, Org. Geochem., 147, 1–12, 2020.
Yang, G., Zhang, C. L., Xie, S., Chen, Z., Gao, M., Ge, Z., and Yang, Z.:
Microbial glycerol dialkyl glycerol tetraethers from river water and soil
near the Three Gorges Dam on the Yangtze River, Org. Geochem., 56, 40–50,
2013.
Yang, H., Pancost, R. D., Dang, X., Zhou, X., Evershed, R. P., Xiao, G.,
Tang, C., Gao, L., Guo, Z., and Xie, S.: Correlations between microbial
tetraether lipids and environmental variables in Chinese soils: Optimizing
the paleo-reconstructions in semi-arid and arid regions, Geochim. Cosmochim. Ac., 126, 49–69, 2014.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh,
A.: APHRODITE: Constructing a long-term daily gridded precipitation dataset
for Asia based on a dense network of rain gauges, B. Am. Meteorol. Soc.,
93, 1401–1415, 2012.
Zell, C., Kim, J., Abril, G., Sobrinho, R., Dorhout, D., Moreira-Turcq, P.,
and Sinninghe Damsté, J.: Impact of seasonal hydrological variation on
the distributions of tetraether lipids along the Amazon River in the central
Amazon basin: implications for the MBT/CBT paleothermometer and the BIT
index, Front. Microbiol., 4, 1–14, 2013a.
Zell, C., Kim, J., Moreira-Turcq, P., Abril, G., Hopmans, E. C., Bonnet, M.,
Sobrinho, R. L., and Sinninghe Damsté, J. S.: Disentangling the origins
of branched tetraether lipids and crenarchaeol in the lower Amazon River:
Implications for GDGT-based proxies, Limnol. Oceanogr., 58, 343–353, 2013b.
Zell, C., Kim, J.-H., Balsinha, M., Dorhout, D., Fernandes, C., Baas, M., and Sinninghe Damsté, J. S.: Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT CBT paleothermometer, Biogeosciences, 11, 5637–5655, https://doi.org/10.5194/bg-11-5637-2014, 2014a.
Zell, C., Kim, J., Hollander, D., Lorenzoni, L., Baker, P., Silva, C. G.,
Nittrouer, C., and Sinninghe Damsté, J. S.: Sources and distributions of
branched and isoprenoid tetraether lipids on the Amazon shelf and fan:
Implications for the use of GDGT-based proxies in marine sediments, Geochim. Cosmochim. Ac., 139, 293–312, 2014b.
Zell, C., Kim, J., Dorhout, D., Baas, M., and Sinninghe Damsté, J. S.:
Sources and distributions of branched tetraether lipids and crenarchaeol
along the Portuguese continental margin: Implications for the BIT index,
Cont. Shelf Res., 96, 34–44, 2015.
Zhu, C., Weijers, J. W., Wagner, T., Pan, J., Chen, J., and Pancost, R. D.:
Sources and distributions of tetraether lipids in surface sediments across a
large river-dominated continental margin, Org. Geochem., 42, 376–386, 2011.
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of...
Altmetrics
Final-revised paper
Preprint