Articles | Volume 19, issue 17
https://doi.org/10.5194/bg-19-3979-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3979-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
From soil to sea: sources and transport of organic carbon traced by tetraether lipids in the monsoonal Godavari River, India
Frédérique M. S. A. Kirkels
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Huub M. Zwart
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Muhammed O. Usman
Geological Institute, ETH Zürich, Zurich, Switzerland
present address: Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
Suning Hou
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Camilo Ponton
Geology and Geophysics, Woods Hole Oceanographic Institution,
Woods Hole, MA, USA
present address: Geology Department, Western Washington University, Bellingham, WA, USA
Liviu Giosan
Geology and Geophysics, Woods Hole Oceanographic Institution,
Woods Hole, MA, USA
Timothy I. Eglinton
Geological Institute, ETH Zürich, Zurich, Switzerland
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Related authors
Frédérique M. S. A. Kirkels, Hugo J. de Boer, Paulina Concha Hernández, Chris R. T. Martes, Marcel T. J. van der Meer, Sayak Basu, Muhammed O. Usman, and Francien Peterse
Biogeosciences, 19, 4107–4127, https://doi.org/10.5194/bg-19-4107-2022, https://doi.org/10.5194/bg-19-4107-2022, 2022
Short summary
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
Clim. Past, 21, 343–355, https://doi.org/10.5194/cp-21-343-2025, https://doi.org/10.5194/cp-21-343-2025, 2025
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
Virgil Drăgușin, Nicolaie Alexandru, Mihai Caminschi, Florina Chitea, Vasile Ersek, Alina Floroiu, Liviu Giosan, Georgiana Alexandra Grigore, Diana Hanganu, Maria Ilie, Dumitru Ioane, Marius Mocuța, Adrian Iulian Pantia, Iulian Popa, Gabriela Sava, Tiberiu Sava, Răsvan Stochici, and Constantin Ungureanu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2385, https://doi.org/10.5194/egusphere-2024-2385, 2024
Preprint archived
Short summary
Short summary
We discovered marine sediments on the Black Sea coast in eastern Romania at an altitude of 10 m and reveal that a tectonic block quickly descended 4 m below sea level, allowed for the deposition of sediments, and was then suddenly raised by 10 m sometimes during the last 200–300 years. This type of displacement needs to be taken into account when calculating past sea levels, while their recent and strong character should be seen as hazardous for coastal settlements.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Frédérique M. S. A. Kirkels, Hugo J. de Boer, Paulina Concha Hernández, Chris R. T. Martes, Marcel T. J. van der Meer, Sayak Basu, Muhammed O. Usman, and Francien Peterse
Biogeosciences, 19, 4107–4127, https://doi.org/10.5194/bg-19-4107-2022, https://doi.org/10.5194/bg-19-4107-2022, 2022
Short summary
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Ann G. Dunlea, Liviu Giosan, and Yongsong Huang
Clim. Past, 16, 2533–2546, https://doi.org/10.5194/cp-16-2533-2020, https://doi.org/10.5194/cp-16-2533-2020, 2020
Short summary
Short summary
Over the past 20 Myr, there has been a dramatic global increase in plants using C4 photosynthetic pathways. We analyze C and H isotopes in fatty acids of leaf waxes preserved in marine sediment from the Bay of Bengal to examine changes in photosynthesis in the Core Monsoon Zone of the Indian Peninsula over the past 6 Myr. The observed increase in C4 vegetation from 3.5 to 1.5 Ma is synchronous with C4 expansions in northwest Australia and East Africa, suggesting regional hydroclimate controls
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Cited articles
Ahmad, S. M., Padmakumari, V. M., and Babu, G. A.: Strontium and neodymium
isotopic compositions in sediments from Godavari, Krishna and Pennar rivers,
Curr. Sci., 97, 1766–1769, 2009.
Amarasinghe, U., Chaudhuri, A., Collins, A. S., Deb, G., and Patranabis-Deb,
S.: Evolving provenance in the Proterozoic Pranhita-Godavari Basin, India,
Geosci. Front., 6, 453–463, 2015.
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S.
C., Alin, S. R., Aalto, R. E., and Yoo, K.: Riverine coupling of
biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol.
Environ., 9, 53–60, 2011.
Babar, M. and Kaplay, R. D.: Godavari River: geomorphology and
socio-economic characteristics, in: The Indian Rivers, edited by: Singh, D. S.,
Springer, Singapore, 319–337, ISBN: 978-981-10-9756-0, https://doi.org/10.1007/978-981-10-2984-4, 2018.
Babechuk, M. G., Widdowson, M., and Kamber, B. S.: Quantifying chemical
weathering intensity and trace element release from two contrasting basalt
profiles, Deccan Traps, India, Chem. Geol., 363, 56–75, 2014.
Balakrishna, K. and Probst, J.: Organic carbon transport and ratio
variations in a large tropical river: Godavari as a case study, India,
Biogeochemistry, 73, 457–473, 2005.
Bale, N. J., Palatinszky, M., Rijpstra, W. I. C., Herbold, C. W., Wagner,
M., and Sinninghe Damsté, J. S.: Membrane lipid composition of the moderately
thermophilic ammonia-oxidizing archaeon “Candidatus Nitrosotenius
uzonensis” at different growth temperatures, Appl. Environ. Microbiol. 85,
e01332-19, https://doi.org/10.1128/AEM.01332-19, 2019.
Bastian, L., Revel, M., Bayon, G., Dufour, A., and Vigier, N.: Abrupt
response of chemical weathering to Late Quaternary hydroclimate changes in
northeast Africa, Sci. Rep., 7, 1–8, 2017.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600,
2009.
Bianchi, T. S.: The role of terrestrially derived organic carbon in the
coastal ocean: A changing paradigm and the priming effect, P. Natl. Acad. Sci. USA, 108,
19473–19481, 2011.
Biksham, G. and Subramanian, V.: Elemental composition of Godavari sediments
(central and southern Indian subcontinent), Chem. Geol., 70, 275–286, 1988a.
Biksham, G. and Subramanian, V.: Nature of solute transport in the Godavari
basin, India, J. Hydrol., 103, 375–392, 1988b.
Biksham, G. and Subramanian, V.: Sediment transport of the Godavari River
basin and its controlling factors, J. Hydrol., 101, 275–290, 1988c.
Blaga, C. I., Reichart, G. -J., Heiri, O., and Sinninghe Damsté, J. S.:
Tetraether membrane lipid distributions in water-column particulate matter
and sediments: a study of 47 European lakes along a north-south transect, J.
Paleolimnol, 41, 523–540, 2009.
Blattmann, T. M., Liu, Z., Zhang, Y., Zhao, Y., Haghipour, N.,
Montluçon, D. B., Plötze, M., and Eglinton, T. I.: Mineralogical
control on the fate of continentally derived organic matter in the ocean,
Science, 366, 742–745, 2019.
Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice, L., and Dutra-Maia,
P.: Grain size control of river suspended sediment geochemistry: Clues from
Amazon River depth profiles, Geochem. Geophys. Geosyst., 12, 1–24, 2011.
Bouchez, J., Galy, V., Hilton, R. G., Gaillardet, J., Moreira-Turcq, P.,
Pérez, M. A., France-Lanord, C., and Maurice, L.: Source, transport and
fluxes of Amazon River particulate organic carbon: Insights from river
sediment depth-profiles, Geochim. Cosmochim. Ac., 133, 280–298, 2014.
Butman, D. and Raymond, P. A.: Significant efflux of carbon dioxide from
streams and rivers in the United States, Nat. Geosci., 4, 839–842, 2011.
Cao, J., Lian, E., Yang, S., Ge, H., Jin, X., He, J., and Jia, G.: The
distribution of intact polar lipid-derived branched tetraethers along a
freshwater-seawater pH gradient in coastal East China Sea, Chem. Geol., 596,
120808, https://doi.org/10.1016/j.chemgeo.2022.120808, 2022.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., and
Middelburg, J. J.: Plumbing the global carbon cycle: integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 172–185, 2007.
Dang, X., Yang, H., Naafs, B. D. A., Pancost, R. D., and Xie, S.: Evidence of
moisture control on the methylation of branched glycerol dialkyl glycerol
tetraethers in semi-arid and arid soils, Geochim. Cosmochim. Ac., 189,
24–36, 2016.
Das, A. and Krishnaswami, S.: Elemental geochemistry of river sediments from
the Deccan Traps, India: implications to sources of elements and their
mobility during basalt-water interaction, Chem. Geol., 242, 232–254, 2007.
Dearing Crampton-Flood, E., Peterse, F., Munsterman, D., and Sinninghe
Damsté, J. S.: Using tetraether lipids archived in North Sea Basin
sediments to extract North Western European Pliocene continental air
temperatures, Earth Planet. Sci. Lett., 490, 193–205, 2018.
Dearing Crampton-Flood, E., Tierney, J. E., Peterse, F., Kirkels, F. M. S.
A., and Sinninghe Damsté, J. S.: Global soil and peat branched GDGT
compilation dataset, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.907818, 2019a.
Dearing Crampton-Flood, E., Peterse, F., and Sinninghe Damsté, J. S.:
Production of branched tetraethers in the marine realm: Svalbard fjord
sediments revisited, Org. Geochem., 138, 103907, https://doi.org/10.1016/j.orggeochem.2019.103907, 2019b.
Dearing Crampton-Flood, E., Tierney, J. E., Peterse, F., Kirkels, F. M., and
Sinninghe Damsté, J. S.: BayMBT: A Bayesian calibration model for
branched glycerol dialkyl glycerol tetraethers in soils and peats, Geochim. Cosmochim. Ac., 268, 142–159, 2020.
Dearing Crampton-Flood, E., van der Weijst, C. M. H., van der Molen, G.,
Bouquet, M., Yedema, Y., Donders, T. H., Sangiorgi, F., Sluijs, A.,
Sinninghe Damsté, J. S., and Peterse, F.: Identifying marine and
freshwater overprints on soil-derived branched GDGT temperature signals in
Pliocene Mississippi and Amazon River fan sediments, Org. Geochem., 154,
1–11, 2021.
De Jonge, C., Hopmans, E. C., Stadnitskaia, A., Rijpstra, W. I. C., Hofland,
R., Tegelaar, E., and Sinninghe Damsté, J. S.: Identification of novel
penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in
peat using HPLC–MS2, GC–MS and GC–SMB-MS, Org. Geochem., 54, 78–82, 2013.
De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J., Schouten, S. and
Sinninghe Damsté, J. S.: Occurrence and abundance of 6-methyl branched
glycerol dialkyl glycerol tetraethers in soils: Implications for
palaeoclimate reconstruction, Geochim. Cosmochim. Ac., 141, 97–112, 2014a.
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A.,
and Sinninghe Damsté, J. S.: In situ produced branched glycerol dialkyl
glycerol tetraethers in suspended particulate matter from the Yenisei River,
Eastern Siberia, Geochim. Cosmochim. Ac., 125, 476–491, 2014b.
De Jonge, C., Stadnitskaia, A., Fedotov, A., and Sinninghe Damsté, J. S.:
Impact of riverine suspended particulate matter on the branched glycerol
dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga
River in Lake Baikal (Russia), Org. Geochem., 83–84, 241–252, 2015a.
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A.,
Streletskaya, I. D., Vasiliev, A. A., and Sinninghe Damsté, J. S.:
Drastic changes in the distribution of branched tetraether lipids in
suspended matter and sediments from the Yenisei River and Kara Sea
(Siberia): Implications for the use of brGDGT-based proxies in coastal
marine sediments, Geochim. Cosmochim. Ac., 165, 200–225, 2015b.
Dirghangi, S. S., Pagani, M., Hren, M. T., and Tipple, B. J.: Distribution of
glycerol dialkyl glycerol tetraethers in soils from two environmental
transects in the USA, Org. Geochem., 59, 49–60, 2013.
Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H.,
Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., and Haghipour, N.:
Climate control on terrestrial biospheric carbon turnover, P. Natl. Acad. Sci. USA, 118, 1–9,
2021.
Elling, F. J., Könneke, M., Nicol, G. W., Stieglmeier, M., Bayer, B.,
Spieck, E., de la Torre, J. R., Becker, K. W., Thomm, M., Prosser, J. I.,
Herndl, G. J., Schleper, C., and Hinrichs, K. U.: Chemotaxonomic
characterization of the thaumarchaeotal lipodome, Environ. Microbiol., 19,
2681–2700, 2017.
Feakins, S. J., Wu, M. S., Ponton, C., Galy, V., and West, A. J.: Dual
isotope evidence for sedimentary integration of plant wax biomarkers across
an Andes-Amazon elevation transect, Geochim. Cosmochim. Ac., 242, 64–81,
2018.
Feng, X., Feakins, S. J., Liu, Z., Ponton, C., Wang, R. Z., Karkabi, E.,
Galy, V., Berelson, W. M., Nottingham, A. T., and Meir, P.: Source to sink:
Evolution of lignin composition in the Madre de Dios River system with
connection to the Amazon basin and offshore, J. Geophys. Res.-Biogeo.,
121, 1316–1338, 2016.
Freymond, C. V., Peterse, F., Fischer, L. V., Filip, F., Giosan, L., and
Eglinton, T. I.: Branched GDGT signals in fluvial sediments of the Danube
River basin: Method comparison and longitudinal evolution, Org. Geochem.,
103, 88–96, 2017.
Freymond, C. V., Lupker, M., Peterse, F., Haghipour, N., Wacker, L., Filip,
F., Giosan, L., and Eglinton, T. I.: Constraining instantaneous fluxes and
integrated compositions of fluvially discharged organic matter, Geochem.
Geophys. Geosyst., 19, 2453–2462, 2018a.
Freymond, C. V., Kündig, N., Stark, C., Peterse, F., Buggle, B., Lupker,
M., Plötze, M., Blattmann, T. M., Filip, F., and Giosan, L.: Evolution of
biomolecular loadings along a major river system, Geochim. Cosmochim. Ac., 223, 389–404, 2018b.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and Palhol,
F.: Efficient organic carbon burial in the Bengal fan sustained by the
Himalayan erosional system, Nature, 450, 407–411, 2007.
Galy, V., France-Lanord, C., and Lartiges, B.: Loading and fate of
particulate organic carbon from the Himalaya to the Ganga–Brahmaputra
delta, Geochim. Cosmochim. Ac., 72, 1767–1787, 2008.
Galy, V., France-Lanord, C., Beyssac, O., Lartiges, B., and Rhaman, M.:
Organic carbon cycling during Himalayan erosion: processes, fluxes and
consequences for the global carbon cycle, in: Climate Change and Food
Security in South Asia, edited by: Lal, R., Sivakumar, M., Faiz, S., Mustafizur Rahman,
A., and Islam, K., Springer, Dordrecht, 163–181, ISBN: 978-90-481-9515-2,
https://doi.org/10.1007/978-90-481-9516-9, 2010.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T.: Global carbon export from
the terrestrial biosphere controlled by erosion, Nature, 521, 204–207, 2015.
Giosan, L., Ponton, C., Usman, M., Blusztajn, J., Fuller, D. Q., Galy, V., Haghipour, N., Johnson, J. E., McIntyre, C., Wacker, L., and Eglinton, T. I.: Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation, Earth Surf. Dynam., 5, 781–789, https://doi.org/10.5194/esurf-5-781-2017, 2017.
Goñi, M. A., Cathey, M. W., Kim, Y. H., and Voulgaris, G.: Fluxes and
sources of suspended organic matter in an estuarine turbidity maximum region
during low discharge conditions, Estuar. Coast. Shelf Sci., 63, 683–700,
2005.
Govil, P. and Naidu, P. D.: Variations of Indian monsoon precipitation
during the last 32 kyr reflected in the surface hydrography of the Western
Bay of Bengal, Quat. Sci. Rev., 30, 3871–3879, 2011.
Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza,
S., Collins, J. A., and Chiessi, C. M.: Distribution of major elements in
Atlantic surface sediments (36∘ N–49∘ S): Imprint of
terrigenous input and continental weathering, Geochem. Geophys. Geosyst.,
13, 1–23, 2012.
Govin, A., Chiessi, C. M., Zabel, M., Sawakuchi, A. O., Heslop, D., Hörner, T., Zhang, Y., and Mulitza, S.: Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka, Clim. Past, 10, 843–862, https://doi.org/10.5194/cp-10-843-2014, 2014.
Guinoiseau, D., Bouchez, J., Gélabert, A., Louvat, P., Filizola, N., and
Benedetti, M. F.: The geochemical filter of large river confluences, Chem.
Geol., 441, 191–203, 2016.
Gunnell, Y.: Relief and climate in South Asia: the influence of the Western
Ghats on the current climate pattern of peninsular India, Int. J. Climatol.,
17, 1169–1182, 1997.
Guo, J., Glendell, M., Meersmans, J., Kirkels, F., Middelburg, J. J., and Peterse, F.: Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England), Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, 2020.
Gupta, L. P., Subramanian, V., and Ittekkot, V.: Biogeochemistry of
particulate organic matter transported by the Godavari River, India,
Biogeochemistry, 38, 103–128, 1997.
Häggi, C., Sawakuchi, A. O., Chiessi, C. M., Mulitza, S., Mollenhauer,
G., Sawakuchi, H. O., Baker, P. A., Zabel, M., and Schefuß, E.: Origin,
transport and deposition of leaf-wax biomarkers in the Amazon Basin and the
adjacent Atlantic, Geochim. Cosmochim. Ac., 192, 149–165, 2016.
Halamka, T. A., McFarlin, J. M., Younkin, J. M., Depoy, A. D., Dildar, J., and
Kopf, N.: Oxygen limitation can trigger the production of branched GDGTs in
culture, Geochem. Pers. Letters 19, 36–39, 2021.
Hedges, J. I.: Global biogeochemical cycles: progress and problems, Mar.
Chem., 39, 67–93, 1992.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis, Mar. Chem., 49, 81–115, 1995.
Hedges, J. I., Keil, R. G., and Benner, R.: What happens to terrestrial
organic matter in the ocean?, Org. Geochem., 27, 195–212, 1997.
Hemingway, J. D., Schefuß, E., Dinga, B. J., Pryer, H., and Galy, V. V.:
Multiple plant-wax compounds record differential sources and ecosystem
structure in large river catchments, Geochim. Cosmochim. Ac., 184, 20–40,
2016.
Hemingway, J. D., Schefuß, E., Spencer, R. G., Dinga, B. J., Eglinton,
T. I., McIntyre, C., and Galy, V. V.: Hydrologic controls on seasonal and
inter-annual variability of Congo River particulate organic matter source
and reservoir age, Chem. Geol., 466, 454–465, 2017.
Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton,
T. I., Derry, L. A., and Galy, V. V.: Mineral protection regulates long-term
global preservation of natural organic carbon, Nature, 570, 228–231, 2019.
Holtvoeth, J., Kolonic, S., and Wagner, T.: Soil organic matter as an
important contributor to late Quaternary sediments of the tropical West
African continental margin, Geochim. Cosmochim. Ac., 69, 2031–2041, 2005.
Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Sinninghe
Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic
matter in sediments based on branched and isoprenoid tetraether lipids,
Earth Planet. Sci. Lett., 224, 107–116, 2004.
Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: The effect of
improved chromatography on GDGT-based palaeoproxies, Org. Geochem., 93, 1–6,
2016.
Hou, P., Yu, M., Zhao, M., Montluçon, D. B., Su, C., and Eglinton, T. I.:
Terrestrial biomolecular burial efficiencies on continental margins, J.
Geophys. Res.-Biogeo., 125, 1–15, 2020.
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe
Damsté, J. S., and Schouten, S.: An improved method to determine the
absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org.
Geochem., 37, 1036–1041, 2006.
India Water Resources Information System, Government of India, Ministry of
Jal Shatki, Department of Water Resources, River Development and Ganga
Rejuvenation: Discharge data and water levels in the Godavari River basin,
https://indiawris.gov.in/, last access: 1 July 2021.
Jiwarungrueangkul, T., Liu, Z., Stattegger, K., and Sang, P. N.:
Reconstructing chemical weathering intensity in the Mekong River basin since
the Last Glacial Maximum, Paleoceanogr. Paleoclimatol., 34, 1710–1725, 2019.
Just, J., Schefuß, E., Kuhlmann, H., Stuut, J. W., and Pätzold, J.:
Climate induced sub-basin source-area shifts of Zambezi River sediments over
the past 17 ka, Palaeogeogr. Palaeoclimatol. Palaeoecol., 410, 190–199,
2014.
Kalesha, M., Rao, K. S., and Somayajulu, B.: Deposition rates in the Godavari
delta, Mar. Geol., 34, M57–M66, 1980.
Keil, R. G., Mayer, L. M., Quay, P. D., Richey, J. E., and Hedges, J. I.:
Loss of organic matter from riverine particles in deltas, Geochim. Cosmochim. Ac., 61, 1507–1511, 1997.
Keller, G., Adatte, T., Gardin, S., Bartolini, A., and Bajpai, S.: Main
Deccan volcanism phase ends near the K–T boundary: evidence from the
Krishna–Godavari Basin, SE India, Earth Planet. Sci. Lett., 268, 293–311,
2008.
Kim, J. G., Jung, M. Y., Park, S. J., Rijpstra, W. I. C., Sinninghe
Damsté, J. S., Madsen, E. L., Min, D., Kim, J. S., Kim, G. J., and Rhee, S.
K.: Cultivation of a highly enriched ammonia-oxidizing archaeon of
thaumarchaeotal group I.1b from an agricultural soil, Environ. Microbiol.,
14, 1528–1543, 2012.
Kim, J. H., Van der Meer, J., Schouten, S., Helmke, P., Willmott, V.,
Sangiorgi, F., Koç, N., Hopmans, E. C., and Sinninghe Damsté, J. S.:
New indices and calibrations derived from the distribution of crenarchaeal
isoprenoid tetraether lipids: Implications for past sea surface temperature
reconstructions, Geochim. Cosmochim. Ac., 74, 4639–4654, 2010.
Kim, J. H., Zell, C., Moreira-Turcq, P., Pérez, M. A., Abril, G.,
Mortillaro, J., Weijers, J. W., Meziane, T., and Sinninghe Damsté, J. S.:
Tracing soil organic carbon in the lower Amazon River and its tributaries
using GDGT distributions and bulk organic matter properties, Geochim. Cosmochim. Ac., 90, 163–180, 2012.
Kim, J. H., Ludwig, W., Buscail, R., Dorhout, D., and Sinninghe Damsté,
J. S.: Tracing tetraether lipids from source to sink in the Rhône River
system (NW Mediterranean), Front. Earth Sci., 3, 1–22, 2015.
Kirkels, F. M. S. A., Zwart, H., Usman, M., and Peterse, F.: Branched glycerol dialkyl
glycerol tetraethers, crenarchaeol and geochemical parameters in soils, SPM
and riverbed sediments in the Godavari River basin (India), PANGAEA
[data set], https://doi.org/10.1594/PANGAEA.934712, 2021a.
Kirkels, F. M. S. A., Usman, M., Hou, S., Ponton, C., and Peterse, F.: Glycerol dialkyl
glycerol tetraethers in a Holocene sediment core (NGHP-01-16A) in front of
the Godavari River in the Bay of Bengal (India), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.934701, 2021b.
Kirkels, F. M., Ponton, C., Galy, V., West, A. J., Feakins, S. J., and
Peterse, F.: From Andes to Amazon: assessing branched tetraether lipids as
tracers for soil organic carbon in the Madre de Dios River system, J.
Geophys. Res.-Biogeo., 125, 1–18, 2020a.
Kirkels, F. M., Zwart, H. M., Basu, S., Usman, M. O., and Peterse, F.:
Seasonal and spatial variability in δ18O and δD values
in waters of the Godavari River basin: insights into hydrological processes,
J. Hydrol. Reg. Stud., 30, 1–25, 2020b.
Kirkels, F. M. S. A., Zwart, H., Usman, M. O., and Peterse, F.: Isoprenoid
glycerol dialkyl glycerol tetraether (isoGDGT) lipids in soils, SPM, and
riverbed sediments in the Godavari Basin (India), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.946817, 2022.
Komada, T., Anderson, M. R., and Dorfmeier, C. L.: Carbonate removal from
coastal sediments for the determination of organic carbon and its isotopic
signatures, δ13C and Δ14C: comparison of fumigation and
direct acidification by hydrochloric acid, Limnol. Oceanogr.-Meth., 6,
254–262, 2008.
Lê, S., Josse, J., and Husson, F.: FactoMineR: an R package for
multivariate analysis, J. Stat. Softw., 25, 1–18, 2008.
Leithold, E. L., Blair, N. E., and Wegmann, K. W.: Source-to-sink sedimentary
systems and global carbon burial: A river runs through it, Earth-Sci. Rev.,
153, 30–42, 2016.
Li, Z., Peterse, F., Wu, Y., Bao, H., Eglinton, T. I., and Zhang, J.: Sources
of organic matter in Changjiang (Yangtze River) bed sediments: preliminary
insights from organic geochemical proxies, Org. Geochem., 85, 11–21, 2015.
Lupker, M., France-Lanord, C., Lavé, J., Bouchez, J., Galy, V.,
Métivier, F., Gaillardet, J., Lartiges, B., and Mugnier, J.: A
Rouse-based method to integrate the chemical composition of river sediments:
application to the Ganga basin, J. Geophys. Res. Earth, 116, 1–24,
2011.
Manikyamba, C., Ganguly, S., Santosh, M., Saha, A., and Lakshminarayana, G.:
Geochemistry and petrogenesis of Rajahmundry trap basalts of
Krishna-Godavari Basin, India, Geosci. Front., 6, 437–451, 2015.
Märki, L., Lupker, M., Gajurel, A. P., Gies, H., Haghipour, N., Gallen,
S., France-Lanord, C., Lavé, J., and Eglinton, T.: Molecular tracing of
riverine soil organic matter from the Central Himalaya, Geophys. Res. Lett.,
47, 1–10, 2020.
Martínez-Sosa, P. and Tierney, J. E.: Lacustrine brGDGT response to
microcosm and mesocosm incubations, Org. Geochem., 127, 12–22, 2019.
Martínez-Sosa, P., Tierney, J. E., and Meredith, L. K.: Controlled
lacustrine microcosms show a brGDGT response to environmental perturbations,
Org. Geochem., 145, 104041, https://doi.org/10.1016/j.orggeochem.2020.104041, 2020.
Mayer, L. M.: Surface area control of organic carbon accumulation in
continental shelf sediments, Geochim. Cosmochim. Ac., 58, 1271–1284, 1994.
Mazumdar, A., Kocherla, M., Carvalho, M. A., Peketi, A., Joshi, R. K.,
Mahalaxmi, P., Joao, H. M., and Jisha, R.: Geochemical characterization of
the Krishna-Godavari and Mahanadi offshore basin (Bay of Bengal) sediments:
a comparative study of provenance, Mar. Pet. Geol., 60, 18–33, 2015.
Meert, J. G., Pandit, M. K., Pradhan, V. R., Banks, J., Sirianni, R.,
Stroud, M., Newstead, B., and Gifford, J.: Precambrian crustal evolution of
Peninsular India: a 3.0 billion year odyssey, J. Asian Earth Sci., 39,
483–515, 2010.
Menges, J., Hovius, N., Andermann, C., Lupker, M., Haghipour, N., Märki,
L., and Sachse, D.: Variations in organic carbon sourcing along a
trans-Himalayan river determined by a Bayesian mixing approach, Geochim. Cosmochim. Ac., 286, 159–176, 2020.
Moyen, J., Martin, H., Jayananda, M., and Auvray, B.: Late Archaean granites:
a typology based on the Dharwar Craton (India), Precambrian Res., 127,
103–123, 2003.
Naafs, B. D. A., Inglis, G. N., Zheng, Y., Amesbury, M. J., Biester, H.,
Bindler, R., Blewett, J., Burrows, M. A., del Castillo Torres, D., Chambers,
F. M., Cohen, A. D., Evershed, R. P., Feakins, S. J., Galka, M.,
Gallego-Sala, A., Gandois, L., Gray, D. M., Hatcher, P. G., Honorio
Coronado, E. N., Hughes, P. D. M., Huguet, A., Könönen, M.,
Laggoun-Défarge, F., Lähteenoja, O., Lamentowicz, M.,
Marchant, R., McClymont, E., Pontevedra-Pombal, X., Ponton, C., Pourmand,
A., Rizzutti, A. M., Rochefort, L., Schellekens, J., De Vleeschouwer, F., and Pancost, R. D.: Introducing global peat-specific temperature and pH
calibrations based on brGDGT bacterial lipids, Geochim. Cosmochim. Acta 208,
285–302, 2017.
Peterse, F. and Eglinton, T. I.: Grain size associations of branched
tetraether lipids in soils and riverbank sediments: Influence of
hydrodynamic sorting processes, Front. Earth Sci., 5, 1–8, 2017.
Peterse, F., Kim, J., Schouten, S., Kristensen, D. K., Koç, N., and
Sinninghe Damsté, J. S.: Constraints on the application of the MBT/CBT
palaeothermometer at high latitude environments (Svalbard, Norway), Org.
Geochem., 40, 692–699, 2009.
Peterse, F., Nicol, G. W., Schouten, S., and Sinninghe Damsté, J. S.:
Influence of soil pH on the abundance and distribution of core and intact
polar lipid-derived branched GDGTs in soil, Org. Geochem. 41, 1171–1175, 2010.
Pitcher, A., Rychlik, N., Hopmans, E. C., Spieck, E., Rijpstra, W. I. C.,
Ossebaar, J., Schouten, S., Wagner, M, and Sinninghe Damsté, J. S.:
Crenarchaeol dominates the membrane lipids of Candidatus Nitrosospheaera
gargensis, a thermophilic Group I.1b Archaeon, ISME J., 4, 542–552, 2010.
Pitcher, A., Hopmans, E. C., Mosier, A. C., Park, S. J., Rhee, S. K.,
Fancis, C. A., Schouten, S., and Sinninghe Damsté, J. S.: Core and intact
polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing
Archaea enriched from marine and estuarine sediments, Appl. Environ.
Microbiol., 77, 3468–3477, 2011.
Ponton, C., Giosan, L., Eglinton, T. I., Fuller, D. Q., Johnson, J. E.,
Kumar, P., and Collett, T. S.: Holocene aridification of India, Geophys. Res.
Lett., 39, L03704–L03709, 2012.
Pradhan, U. K., Wu, Y., Shirodkar, P. V., Zhang, J., and Zhang, G.:
Multi-proxy evidence for compositional change of organic matter in the
largest tropical (peninsular) river basin of India, J. Hydrol., 519,
999–1009, 2014.
Rao, K. N., Saito, Y., Nagakumar, K. C. V., Demudu, G., Rajawat, A. S.,
Kubo, S., and Li, Z.: Palaeogeography and evolution of the Godavari delta,
east coast of India during the Holocene: an example of wave-dominated and
fan-delta settings, Palaeogeogr. Palaeoclimatol. Palaeoecol., 440, 213–233,
2015.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N.,
Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., and
Andersson, A. J.: Anthropogenic perturbation of the carbon fluxes from land
to ocean, Nat. Geosci., 6, 597–607, 2013.
Sarma, V., Paul, Y. S., Vani, D. G., and Murty, V.: Impact of river discharge
on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD)
years in the western Bay of Bengal, Cont. Shelf Res., 107, 132–140, 2015.
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V., and Sinninghe
Damsté, J. S.: Analytical methodology for TEX86 paleothermometry by
high-performance liquid chromatography/atmospheric pressure chemical
ionization-mass spectrometry, Anal. Chem., 79, 2940–2944, 2007.
Singh, P. K., Singh, M. P., Prachiti, P. K., Kalpana, M. S., Manikyamba, C.,
Lakshminarayana, G., Singh, A. K., and Naik, A. S.: Petrographic
characteristics and carbon isotopic composition of Permian coal:
Implications on depositional environment of Sattupalli coalfield, Godavari
Valley, India, Int. J. Coal Geol., 90–91, 34–42, 2012.
Sinninghe Damsté, J. S.: Spatial heterogeneity of sources of branched
tetraethers in shelf systems: The geochemistry of tetraethers in the Berau
River delta (Kalimantan, Indonesia), Geochim. Cosmochim. Ac., 186, 13–31,
2016.
Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., Van Duin, A. C.,
and Geenevasen, J. A.: Crenarchaeol, J. Lipid Res., 43, 1641–1651, 2002.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Weijers, J.
W., Foesel, B. U., Overmann, J., and Dedysh, S. N.: 13, 16-Dimethyl
octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid
of Acidobacteria subdivisions 1 and 3, Appl. Environ. Microbiol., 77,
4147–4154, 2011.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Jung, M.
Y., Kim, J. G., Rhee, S. K., Stieglmeier, M., and Schleper, C.: Intact polar and
core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b
Thaumarchaeota in soil, Appl. Environ. Microbiol. 78, 6866–6874, 2012.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Foesel, B.
U., Wüst, P. K., Overmann, J., Tank, M., Bryant, D. A., Dunfield, P. F.,
and Houghton, K.: Ether-and ester-bound iso-diabolic acid and other lipids
in members of Acidobacteria subdivision 4, Appl. Environ. Microbiol., 80,
5207–5218, 2014.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Foesel, B. U., Huber, K.
J., Overmann, J., Nakagawa, S., Kim, J. J., Dunfield, P. F., Dedysh, S. N.,
and Villanueva, L.: An overview of the occurrence of ether-and ester-linked
iso-diabolic acid membrane lipids in microbial cultures of the
Acidobacteria: Implications for brGDGT paleoproxies for temperature and pH,
Org. Geochem., 124, 63–76, 2018.
Sparkes, R. B., Doğrul Selver, A., Bischoff, J., Talbot, H. M., Gustafsson, Ö., Semiletov, I. P., Dudarev, O. V., and van Dongen, B. E.: GDGT distributions on the East Siberian Arctic Shelf: implications for organic carbon export, burial and degradation, Biogeosciences, 12, 3753–3768, https://doi.org/10.5194/bg-12-3753-2015, 2015.
Sridhar, P. N., Ali, M. M., Vethamony, P., Babu, M. T., Ramana, I. V., and
Jayakumar, S.: Seasonal occurrence of unique sediment plume in the Bay of
Bengal, Eos, 89, 22–23, 2008.
Stuut, J. W., Kasten, S., Lamy, F., and Hebbeln, D.: Sources and modes of
terrigenous sediment input to the Chilean continental slope, Quat. Int, 161,
67–76, 2007.
Sun, S., Schefuß, E., Mulitza, S., Chiessi, C. M., Sawakuchi, A. O., Zabel, M., Baker, P. A., Hefter, J., and Mollenhauer, G.: Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments, Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, 2017.
Syvitski, J. P. and Saito, Y.: Morphodynamics of deltas under the influence
of humans, Global Planet. Change, 57, 261–282, 2007.
Tao, S., Eglinton, T. I., Montluçon, D. B., McIntyre, C., and Zhao, M.:
Pre-aged soil organic carbon as a major component of the Yellow River
suspended load: Regional significance and global relevance, Earth Planet.
Sci. Lett., 414, 77–86, 2015.
Usman, M. O., Kirkels, F. M. S. A., Zwart, H. M., Basu, S., Ponton, C., Blattmann, T. M., Ploetze, M., Haghipour, N., McIntyre, C., Peterse, F., Lupker, M., Giosan, L., and Eglinton, T. I.: Reconciling drainage and receiving basin signatures of the Godavari River system, Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, 2018.
van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., Feng, X., and Eglinton, T. I.: Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients, Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, 2016.
van Soelen, E. E., Kim, J., Santos, R. V., Dantas, E. L., de Almeida, F. V.,
Pires, J. P., Roddaz, M., and Sinninghe Damsté, J. S.: A 30 Ma history of
the Amazon River inferred from terrigenous sediments and organic matter on
the Ceará Rise, Earth Planet. Sci. Lett., 474, 40–48, 2017.
Vonk, J. E., van Dongen, B. E., and Gustafsson, Ö: Lipid biomarker
investigation of the origin and diagenetic state of sub-arctic terrestrial
organic matter presently exported into the northern Bothnian Bay, Mar.
Chem., 112, 1–10, 2008.
Vonk, J. E., Sánchez-García, L., Semiletov, I., Dudarev, O., Eglinton, T., Andersson, A., and Gustafsson, Ö.: Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea, Biogeosciences, 7, 3153–3166, https://doi.org/10.5194/bg-7-3153-2010, 2010.
Warden, L., Kim, J.-H., Zell, C., Vis, G.-J., de Stigter, H., Bonnin, J., and Sinninghe Damsté, J. S.: Examining the provenance of branched GDGTs in the Tagus River drainage basin and its outflow into the Atlantic Ocean over the Holocene to determine their usefulness for paleoclimate applications, Biogeosciences, 13, 5719–5738, https://doi.org/10.5194/bg-13-5719-2016, 2016.
Warden, L., Moros, M., Weber, Y., and Sinninghe Damsté, J. S.: Change in
provenance of branched glycerol dialkyl glycerol tetraethers over the
Holocene in the Baltic Sea and its impact on continental climate
reconstruction, Org. Geochem., 121, 138–154, 2018.
Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E.,
Keil, R. G., and Sawakuchi, H. O.: Where carbon goes when water flows: carbon
cycling across the aquatic continuum, Front. Mar. Sci., 4, 1–27, 2017.
Weijers, J. W., Schouten, S., Hopmans, E. C., Geenevasen, J. A., David, O.
R., Coleman, J. M., Pancost, R. D., and Sinninghe Damsté, J. S.: Membrane
lipids of mesophilic anaerobic bacteria thriving in peats have typical
archaeal traits, Environ. Microbiol., 8, 648–657, 2006.
Weijers, J. W., Schouten, S., van den Donker, Jurgen C, Hopmans, E. C., and
Sinninghe Damsté, J. S.: Environmental controls on bacterial tetraether
membrane lipid distribution in soils, Geochim. Cosmochim. Ac., 71, 703–713,
2007a.
Weijers, J. W., Schefuß, E., Schouten, S., and Sinninghe Damsté, J.
S.: Coupled thermal and hydrological evolution of tropical Africa over the
last deglaciation, Science, 315, 1701–1704, 2007b.
Weijers, J. W., Schouten, S., Schefuß, E., Schneider, R. R., and
Sinninghe Damsté, J. S.: Disentangling marine, soil and plant organic
carbon contributions to continental margin sediments: a multi-proxy approach
in a 20,000 year sediment record from the Congo deep-sea fan, Geochim. Cosmochim. Ac., 73, 119–132, 2009a.
Weijers, J. W., Panoto, E., van Bleijswijk, J., Schouten, S., Rijpstra, W.
I. C., Balk, M., Stams, A. J., and Sinninghe Damsté, J. S.: Constraints
on the biological source (s) of the orphan branched tetraether membrane
lipids, Geomicrobiol. J., 26, 402–414, 2009b.
WRB FAO (World Reference Base for Soil Resources, Food and Agriculture
Organisation of the United Nations): IUSS Working Group WRB, World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106. FAO, Rome, Italy, ISBN: 978-92-5-108369-7, 2015.
Xiao, W., Wang, Y., Zhou, S., Hu, L., Yang, H., and Xu, Y.: Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs, Biogeosciences, 13, 5883–5894, https://doi.org/10.5194/bg-13-5883-2016, 2016.
Xiao, W., Wang, Y., Liu, Y., Zhang, X., Shi, L., and Xu, Y.: Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication, Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020, 2020.
Xie, S., Pancost, R. D., Chen, L., Evershed, R. P., Yang, H., Zhang, K.,
Huang, J., and Xu, Y.: Microbial lipid records of highly alkaline deposits
and enhanced aridity associated with significant uplift of the Tibetan
Plateau in the Late Miocene, Geology, 40, 291–294, 2012.
Xu, Y., Jia, Z., Xiao, W., Fang, J., Wang, Y., Luo, M., Wenzhöfer, F.,
Rowden, A. A., and Glud, R. N.: Glycerol dialkyl glycerol tetraethers in
surface sediments from three Pacific trenches: Distribution, source and
environmental implications, Org. Geochem., 147, 1–12, 2020.
Yang, G., Zhang, C. L., Xie, S., Chen, Z., Gao, M., Ge, Z., and Yang, Z.:
Microbial glycerol dialkyl glycerol tetraethers from river water and soil
near the Three Gorges Dam on the Yangtze River, Org. Geochem., 56, 40–50,
2013.
Yang, H., Pancost, R. D., Dang, X., Zhou, X., Evershed, R. P., Xiao, G.,
Tang, C., Gao, L., Guo, Z., and Xie, S.: Correlations between microbial
tetraether lipids and environmental variables in Chinese soils: Optimizing
the paleo-reconstructions in semi-arid and arid regions, Geochim. Cosmochim. Ac., 126, 49–69, 2014.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh,
A.: APHRODITE: Constructing a long-term daily gridded precipitation dataset
for Asia based on a dense network of rain gauges, B. Am. Meteorol. Soc.,
93, 1401–1415, 2012.
Zell, C., Kim, J., Abril, G., Sobrinho, R., Dorhout, D., Moreira-Turcq, P.,
and Sinninghe Damsté, J.: Impact of seasonal hydrological variation on
the distributions of tetraether lipids along the Amazon River in the central
Amazon basin: implications for the MBT/CBT paleothermometer and the BIT
index, Front. Microbiol., 4, 1–14, 2013a.
Zell, C., Kim, J., Moreira-Turcq, P., Abril, G., Hopmans, E. C., Bonnet, M.,
Sobrinho, R. L., and Sinninghe Damsté, J. S.: Disentangling the origins
of branched tetraether lipids and crenarchaeol in the lower Amazon River:
Implications for GDGT-based proxies, Limnol. Oceanogr., 58, 343–353, 2013b.
Zell, C., Kim, J.-H., Balsinha, M., Dorhout, D., Fernandes, C., Baas, M., and Sinninghe Damsté, J. S.: Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT CBT paleothermometer, Biogeosciences, 11, 5637–5655, https://doi.org/10.5194/bg-11-5637-2014, 2014a.
Zell, C., Kim, J., Hollander, D., Lorenzoni, L., Baker, P., Silva, C. G.,
Nittrouer, C., and Sinninghe Damsté, J. S.: Sources and distributions of
branched and isoprenoid tetraether lipids on the Amazon shelf and fan:
Implications for the use of GDGT-based proxies in marine sediments, Geochim. Cosmochim. Ac., 139, 293–312, 2014b.
Zell, C., Kim, J., Dorhout, D., Baas, M., and Sinninghe Damsté, J. S.:
Sources and distributions of branched tetraether lipids and crenarchaeol
along the Portuguese continental margin: Implications for the BIT index,
Cont. Shelf Res., 96, 34–44, 2015.
Zhu, C., Weijers, J. W., Wagner, T., Pan, J., Chen, J., and Pancost, R. D.:
Sources and distributions of tetraether lipids in surface sediments across a
large river-dominated continental margin, Org. Geochem., 42, 376–386, 2011.
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of...
Altmetrics
Final-revised paper
Preprint