Articles | Volume 19, issue 19
https://doi.org/10.5194/bg-19-4747-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4747-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tracking vegetation phenology of pristine northern boreal peatlands by combining digital photography with CO2 flux and remote sensing data
Maiju Linkosalmi
CORRESPONDING AUTHOR
Climate System Research, Finnish Meteorological Institute,
00560 Helsinki, Finland
Juha-Pekka Tuovinen
Climate System Research, Finnish Meteorological Institute,
00560 Helsinki, Finland
Olli Nevalainen
Climate System Research, Finnish Meteorological Institute,
00560 Helsinki, Finland
Mikko Peltoniemi
Bioeconomy and Environment, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
Cemal M. Taniş
Arctic Space Centre, Finnish Meteorological Institute, 00560
Helsinki, Finland
Ali N. Arslan
Arctic Space Centre, Finnish Meteorological Institute, 00560
Helsinki, Finland
Juuso Rainne
Climate System Research, Finnish Meteorological Institute,
00560 Helsinki, Finland
Annalea Lohila
Climate System Research, Finnish Meteorological Institute,
00560 Helsinki, Finland
Tuomas Laurila
Climate System Research, Finnish Meteorological Institute,
00560 Helsinki, Finland
Mika Aurela
Climate System Research, Finnish Meteorological Institute,
00560 Helsinki, Finland
Related authors
Sari Juutinen, Mika Aurela, Juha-Pekka Tuovinen, Viktor Ivakhov, Maiju Linkosalmi, Aleksi Räsänen, Tarmo Virtanen, Juha Mikola, Johanna Nyman, Emmi Vähä, Marina Loskutova, Alexander Makshtas, and Tuomas Laurila
Biogeosciences, 19, 3151–3167, https://doi.org/10.5194/bg-19-3151-2022, https://doi.org/10.5194/bg-19-3151-2022, 2022
Short summary
Short summary
We measured CO2 and CH4 fluxes in heterogenous Arctic tundra in eastern Siberia. We found that tundra wetlands with sedge and grass vegetation contributed disproportionately to the landscape's ecosystem CO2 uptake and CH4 emissions to the atmosphere. Moreover, we observed high CH4 consumption in dry tundra, particularly in barren areas, offsetting part of the CH4 emissions from the wetlands.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Timo Penttilä, Maiju Linkosalmi, Juha Mikola, Tuomas Laurila, and Mika Aurela
Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, https://doi.org/10.5194/bg-18-873-2021, 2021
Short summary
Short summary
We studied ecosystem- and plant-community-level carbon (C) exchange between subarctic mire and the atmosphere during 2017–2018. We found strong spatial variation in CO2 and CH4 dynamics between the main plant communities. The earlier onset of growing season in 2018 strengthened the CO2 sink of the ecosystem, but this gain was counterbalanced by a later drought period. Variation in water table level, soil temperature and vegetation explained most of the variation in ecosystem-level C exchange.
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
Biogeosciences, 22, 4061–4086, https://doi.org/10.5194/bg-22-4061-2025, https://doi.org/10.5194/bg-22-4061-2025, 2025
Short summary
Short summary
We explored the possibilities of a Bayesian-based data assimilation algorithm to improve the wetland CH4 flux estimates by a dynamic vegetation model. By assimilating CH4 observations from 14 wetland sites, we calibrated model parameters and estimated large-scale annual emissions from northern wetlands. Our findings indicate that this approach leads to more reliable estimates of CH4 dynamics, which will improve our understanding of the climate change feedback from wetland CH4 emissions.
Ali Hosingholizade, Yousef Erfanifard, Seyed Kazem Alavipanah, Virginia García Millan, Saied Pirasteh, and Ali Nadir Arslan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 611–617, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-611-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-611-2025, 2025
Tuuli Miinalainen, Amanda Ojasalo, Holly Croft, Mika Aurela, Mikko Peltoniemi, Silvia Caldararu, Sönke Zaehle, and Tea Thum
EGUsphere, https://doi.org/10.5194/egusphere-2025-2987, https://doi.org/10.5194/egusphere-2025-2987, 2025
Short summary
Short summary
Estimating the future carbon budget requires an accurate understanding of the interlinkages between the land carbon and nitrogen cycles. We use a remote sensing leaf chlorophyll product to evaluate a terrestrial biosphere model, QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system). Our study showcases how the latest advancements in remote sensing-based vegetation monitoring can be harnessed for improving and evaluating process-based vegetation models.
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
Biogeosciences, 22, 3235–3251, https://doi.org/10.5194/bg-22-3235-2025, https://doi.org/10.5194/bg-22-3235-2025, 2025
Short summary
Short summary
Our research explores diverse ecosystems’ roles in climate cooling via the concept of CarbonSink+ potential. We measured CO2 uptake and local aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that, while forests are vital with regard to CarbonSink+ potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resources to mitigate global warming.
Jette Elena Stoebke, David Wårlind, Stefan Olin, Annemarie Eckes-Shephard, Bogdan Brzeziecki, Mikko Peltoniemi, and Thomas A. M. Pugh
EGUsphere, https://doi.org/10.5194/egusphere-2025-2995, https://doi.org/10.5194/egusphere-2025-2995, 2025
Short summary
Short summary
Forests are shaped by how trees compete for resources like sunlight. We improved a widely used vegetation model to better capture how light filters through the forest canopy, especially after tree death or harvesting. By assigning trees explicit positions, the model captures forest structure and change more realistically. This advances our understanding of tree competition and forest responses to management, providing a better tool to predict future forest dynamics.
Teemu Juselius-Rajamäki, Sanna Piilo, Susanna Salminen-Paatero, Emilia Tuomaala, Tarmo Virtanen, Atte Korhola, Anna Autio, Hannu Marttila, Pertti Ala-Aho, Annalea Lohila, and Minna Väliranta
Biogeosciences, 22, 3047–3071, https://doi.org/10.5194/bg-22-3047-2025, https://doi.org/10.5194/bg-22-3047-2025, 2025
Short summary
Short summary
Vegetation can be used to infer the potential climate feedback of peatlands. New studies have shown the recent expansion of peatlands, but their plant community succession has not been studied. Although generally described as dry bog-type vegetation, our results show that peatland margins in a subarctic fen began as wet fen with high methane emissions and shifted to bog-type peatland area only after the Little Ice Age. Thus, they have acted as a carbon source for most of their history.
Elisa Kamir, Samuel Morin, Guillaume Evin, Penelope Gehring, Bodo Wichura, and Ali Nadir Arslan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-225, https://doi.org/10.5194/essd-2025-225, 2025
Preprint under review for ESSD
Short summary
Short summary
This article describes a dataset of annual snow depth maximum across Europe, from 1961 to 2015, based on a regional reanalysis. It evaluates the performance of the dataset, against in-situ snow depth observations. This dataset is found to perform well in most environments, with challenges at high elevation and some coastal areas. Assessing the quality of this dataset is necessary in order to use it as a baseline to infer future changes of extreme snow loads under climate change.
Ali Nadir Arslan and Cemal Melih Tanis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-6-2025, 53–59, https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-53-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-53-2025, 2025
Jung Jun Lin and Ali Nadir Arslan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-6-2025, 207–212, https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-207-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-6-2025-207-2025, 2025
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martínez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
Biogeosciences, 22, 1277–1300, https://doi.org/10.5194/bg-22-1277-2025, https://doi.org/10.5194/bg-22-1277-2025, 2025
Short summary
Short summary
The emissions of greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured from a clear-cut peatland forest site. The measurements covered the whole year of 2022, which was the second growing season after the clear-cut. The site was a strong GHG source, and the highest emissions came from CO2, followed by N2O and CH4. A statistical model that included information on different surfaces at the site was developed to unravel surface-type-specific GHG fluxes.
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
Biogeosciences, 22, 725–749, https://doi.org/10.5194/bg-22-725-2025, https://doi.org/10.5194/bg-22-725-2025, 2025
Short summary
Short summary
Cities aim for carbon neutrality and seek to understand urban vegetation's role as a carbon sink. Direct measurements are challenging, so models are used to estimate the urban carbon cycle. We evaluated model performance at estimating carbon sequestration in lawns, park trees, and urban forests in Helsinki, Finland. Models captured seasonal and annual variations well. Trees had higher sequestration rates than lawns, and irrigation often enhanced carbon sinks.
Emmihenna Jääskeläinen, Miska Luoto, Pauli Putkiranta, Mika Aurela, and Tarmo Virtanen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-390, https://doi.org/10.5194/hess-2024-390, 2025
Revised manuscript under review for HESS
Short summary
Short summary
The challenge with current satellite-based soil moisture products is their coarse resolution. Therefore, we used machine-learning model to improve spatial resolution of well-known SMAP soil moisture data, by using in situ soil moisture observations and additional soil and vegetation properties. Comparisons against independent data set show that the model estimated soil moisture values have better agreement with in situ observations compared to other SMAP-related soil moisture data.
Otso Peräkylä, Erkka Rinne, Ekaterina Ezhova, Anna Lintunen, Annalea Lohila, Juho Aalto, Mika Aurela, Pasi Kolari, and Markku Kulmala
Biogeosciences, 22, 153–179, https://doi.org/10.5194/bg-22-153-2025, https://doi.org/10.5194/bg-22-153-2025, 2025
Short summary
Short summary
Forests are seen as good for climate. Yet, in areas with snow, trees break up the white snow surface and absorb more sunlight than open areas. This has a warming effect, negating some of the climate benefit of trees. We studied two site pairs in Finland, both with an open peatland and a forest. We found that the later the snow melts, the more extra energy the forest absorbs as compared to the peatland. This has implications for the future, as snow cover duration is affected by global warming.
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024, https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Short summary
Drainage of boreal peatlands strongly influences soil methane fluxes, with important implications for climatic impacts. Here we simulate methane fluxes in forestry-drained and restored peatlands during the 21st century. We found that restoration turned peatlands into a source of methane, but the magnitude varied regionally. In forests, changes in the water table level influenced methane fluxes, and in general, the sink was weaker under rotational forestry compared to continuous cover forestry.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Martti Honkanen, Mika Aurela, Juha Hatakka, Lumi Haraguchi, Sami Kielosto, Timo Mäkelä, Jukka Seppälä, Simo-Matti Siiriä, Ken Stenbäck, Juha-Pekka Tuovinen, Pasi Ylöstalo, and Lauri Laakso
Biogeosciences, 21, 4341–4359, https://doi.org/10.5194/bg-21-4341-2024, https://doi.org/10.5194/bg-21-4341-2024, 2024
Short summary
Short summary
The exchange of CO2 between the sea and the atmosphere was studied in the Archipelago Sea, Baltic Sea, in 2017–2021, using an eddy covariance technique. The sea acted as a net source of CO2 with an average yearly emission of 27.1 gC m-2 yr-1, indicating that the marine ecosystem respired carbon that originated elsewhere. The yearly CO2 emission varied between 18.2–39.2 gC m-2 yr-1, mostly due to the yearly variation of ecosystem carbon uptake.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024, https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Short summary
Current and future nitrous oxide (N2O) emissions are difficult to estimate due to their high variability in space and time. Several years of N2O fluxes from drained boreal peatland forest indicate high importance of summer precipitation, winter temperature, and snow conditions in controlling annual N2O emissions. The results indicate increasing year-to-year variation in N2O emissions in changing climate with more extreme seasonal weather conditions.
Jalisha Theanutti Kallingal, Marko Scholze, Paul Anthony Miller, Johan Lindström, Janne Rinne, Mika Aurela, Patrik Vestin, and Per Weslien
EGUsphere, https://doi.org/10.5194/egusphere-2024-373, https://doi.org/10.5194/egusphere-2024-373, 2024
Preprint archived
Short summary
Short summary
Our study employs an Adaptive MCMC algorithm (GRaB-AM) to constrain process parameters in the wetlands emission module of the LPJ-GUESS model, using CH4 EC flux observations from 14 diverse wetlands. We aim to derive a single set of parameters capable of representing the diversity of northern wetlands. By reducing uncertainties in model parameters and improving simulation accuracy, our research contributes to more reliable projections of future wetland CH4 emissions and their climate impact.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Paolo Cristofanelli, Cosimo Fratticioli, Lynn Hazan, Mali Chariot, Cedric Couret, Orestis Gazetas, Dagmar Kubistin, Antti Laitinen, Ari Leskinen, Tuomas Laurila, Matthias Lindauer, Giovanni Manca, Michel Ramonet, Pamela Trisolino, and Martin Steinbacher
Atmos. Meas. Tech., 16, 5977–5994, https://doi.org/10.5194/amt-16-5977-2023, https://doi.org/10.5194/amt-16-5977-2023, 2023
Short summary
Short summary
We investigated the application of two automatic methods for detecting spikes due to local emissions in greenhouse gas (GHG) observations at a subset of sites from the ICOS Atmosphere network. We analysed the sensitivity to the spike frequency of using different methods and settings. We documented the impact of the de-spiking on different temporal aggregations (i.e. hourly, monthly and seasonal averages) of CO2, CH4 and CO 1 min time series.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Lauri Heiskanen, Juha-Pekka Tuovinen, Henriikka Vekuri, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences, 20, 545–572, https://doi.org/10.5194/bg-20-545-2023, https://doi.org/10.5194/bg-20-545-2023, 2023
Short summary
Short summary
We measured and modelled the CO2 and CH4 fluxes of the terrestrial and aquatic ecosystems of the subarctic landscape for 2 years. The landscape was an annual CO2 sink and a CH4 source. The forest had the largest contribution to the landscape-level CO2 sink and the peatland to the CH4 emissions. The lakes released 24 % of the annual net C uptake of the landscape back to the atmosphere. The C fluxes were affected most by the rainy peak growing season of 2017 and the drought event in July 2018.
Yao Gao, Eleanor J. Burke, Sarah E. Chadburn, Maarit Raivonen, Mika Aurela, Lawrence B. Flanagan, Krzysztof Fortuniak, Elyn Humphreys, Annalea Lohila, Tingting Li, Tiina Markkanen, Olli Nevalainen, Mats B. Nilsson, Włodzimierz Pawlak, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-229, https://doi.org/10.5194/bg-2022-229, 2022
Manuscript not accepted for further review
Short summary
Short summary
We coupled a process-based peatland CH4 emission model HIMMELI with a state-of-art land surface model JULES. The performance of the coupled model was evaluated at six northern wetland sites. The coupled model is considered to be more appropriate in simulating wetland CH4 emission. In order to improve the simulated CH4 emission, the model requires better representation of the peat soil carbon and hydrologic processes in JULES and the methane production and transportation processes in HIMMELI.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
Sari Juutinen, Mika Aurela, Juha-Pekka Tuovinen, Viktor Ivakhov, Maiju Linkosalmi, Aleksi Räsänen, Tarmo Virtanen, Juha Mikola, Johanna Nyman, Emmi Vähä, Marina Loskutova, Alexander Makshtas, and Tuomas Laurila
Biogeosciences, 19, 3151–3167, https://doi.org/10.5194/bg-19-3151-2022, https://doi.org/10.5194/bg-19-3151-2022, 2022
Short summary
Short summary
We measured CO2 and CH4 fluxes in heterogenous Arctic tundra in eastern Siberia. We found that tundra wetlands with sedge and grass vegetation contributed disproportionately to the landscape's ecosystem CO2 uptake and CH4 emissions to the atmosphere. Moreover, we observed high CH4 consumption in dry tundra, particularly in barren areas, offsetting part of the CH4 emissions from the wetlands.
Miska Olin, Magdalena Okuljar, Matti P. Rissanen, Joni Kalliokoski, Jiali Shen, Lubna Dada, Markus Lampimäki, Yusheng Wu, Annalea Lohila, Jonathan Duplissy, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 8097–8115, https://doi.org/10.5194/acp-22-8097-2022, https://doi.org/10.5194/acp-22-8097-2022, 2022
Short summary
Short summary
Atmospheric new particle formation is an important source of the total particle number concentration in the atmosphere. Several parameters for predicting new particle formation events have been suggested before, but the results have been inconclusive. This study proposes an another predicting parameter, related to a specific type of highly oxidized organic molecules, especially for similar locations to the measurement site in this study, which was a coastal agricultural site in Finland.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Olli Nevalainen, Olli Niemitalo, Istem Fer, Antti Juntunen, Tuomas Mattila, Olli Koskela, Joni Kukkamäki, Layla Höckerstedt, Laura Mäkelä, Pieta Jarva, Laura Heimsch, Henriikka Vekuri, Liisa Kulmala, Åsa Stam, Otto Kuusela, Stephanie Gerin, Toni Viskari, Julius Vira, Jari Hyväluoma, Juha-Pekka Tuovinen, Annalea Lohila, Tuomas Laurila, Jussi Heinonsalo, Tuula Aalto, Iivari Kunttu, and Jari Liski
Geosci. Instrum. Method. Data Syst., 11, 93–109, https://doi.org/10.5194/gi-11-93-2022, https://doi.org/10.5194/gi-11-93-2022, 2022
Short summary
Short summary
Better monitoring of soil carbon sequestration is needed to understand the best carbon farming practices in different soils and climate conditions. We, the Field Observatory Network (FiON), have therefore established a methodology for monitoring and forecasting agricultural carbon sequestration by combining offline and near-real-time field measurements, weather data, satellite imagery, and modeling. To disseminate our work, we built a website called the Field Observatory (fieldobservatory.org).
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021, https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Short summary
Ship emissions play an important role in the deposition of gaseous compounds and nanoparticles (Ntot), affecting climate, human health (especially in coastal areas), and eutrophication. Micrometeorological methods showed that ship emissions were mainly responsible for the deposition of Ntot, whereas they only accounted for a minor proportion of CO2 deposition. An uncertainty analysis applied to the fluxes and fuel sulfur content results demonstrated the reliability of the results.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Laura Heimsch, Annalea Lohila, Juha-Pekka Tuovinen, Henriikka Vekuri, Jussi Heinonsalo, Olli Nevalainen, Mika Korkiakoski, Jari Liski, Tuomas Laurila, and Liisa Kulmala
Biogeosciences, 18, 3467–3483, https://doi.org/10.5194/bg-18-3467-2021, https://doi.org/10.5194/bg-18-3467-2021, 2021
Short summary
Short summary
CO2 and H2O fluxes were measured at a newly established eddy covariance site in southern Finland for 2 years from 2018 to 2020. This agricultural grassland site focuses on the conversion from intensive towards more sustainable agricultural management. The first summer experienced prolonged dry periods, and notably larger fluxes were observed in the second summer. The field acted as a net carbon sink during both study years.
Thomas Thorp, Stephen R. Arnold, Richard J. Pope, Dominick V. Spracklen, Luke Conibear, Christoph Knote, Mikhail Arshinov, Boris Belan, Eija Asmi, Tuomas Laurila, Andrei I. Skorokhod, Tuomo Nieminen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 4677–4697, https://doi.org/10.5194/acp-21-4677-2021, https://doi.org/10.5194/acp-21-4677-2021, 2021
Short summary
Short summary
We compare modelled near-surface pollutants with surface and satellite observations to better understand the controls on the regional concentrations of pollution in western Siberia for late spring and summer in 2011. We find two commonly used emission inventories underestimate human emissions when compared to observations. Transport emissions are the main source of pollutants within the region during this period, whilst fire emissions peak during June and are only significant south of 60° N.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Timo Penttilä, Maiju Linkosalmi, Juha Mikola, Tuomas Laurila, and Mika Aurela
Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, https://doi.org/10.5194/bg-18-873-2021, 2021
Short summary
Short summary
We studied ecosystem- and plant-community-level carbon (C) exchange between subarctic mire and the atmosphere during 2017–2018. We found strong spatial variation in CO2 and CH4 dynamics between the main plant communities. The earlier onset of growing season in 2018 strengthened the CO2 sink of the ecosystem, but this gain was counterbalanced by a later drought period. Variation in water table level, soil temperature and vegetation explained most of the variation in ecosystem-level C exchange.
Marco Bongio, Ali Nadir Arslan, Cemal Melih Tanis, and Carlo De Michele
The Cryosphere, 15, 369–387, https://doi.org/10.5194/tc-15-369-2021, https://doi.org/10.5194/tc-15-369-2021, 2021
Short summary
Short summary
The capability of time-lapse photography to retrieve snow depth time series was tested. We demonstrated that this method can be efficiently used in three different case studies: two in the Italian Alps and one in a forested region of Finland, with an accuracy comparable to the most common methods such as ultrasonic sensors or manual measurements. We hope that this simple method based only on a camera and a graduated stake can enable snow depth measurements in dangerous and inaccessible sites.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Hui Zhang, Eeva-Stiina Tuittila, Aino Korrensalo, Aleksi Räsänen, Tarmo Virtanen, Mika Aurela, Timo Penttilä, Tuomas Laurila, Stephanie Gerin, Viivi Lindholm, and Annalea Lohila
Biogeosciences, 17, 6247–6270, https://doi.org/10.5194/bg-17-6247-2020, https://doi.org/10.5194/bg-17-6247-2020, 2020
Short summary
Short summary
We studied the impact of a stream on peatland microhabitats and CH4 emissions in a northern boreal fen. We found that there were higher water levels, lower peat temperatures, and greater oxygen concentrations close to the stream; these supported the highest biomass production but resulted in the lowest CH4 emissions. Further from the stream, the conditions were drier and CH4 emissions were also low. CH4 emissions were highest at an intermediate distance from the stream.
Cited articles
Ahrends, H. E., Etzold, S., Kutsch, W. L., Stoeckli, R., Bruegger, R.,
Jeanneret, F., Wanner, H., Buchmann, N., and Eugster, W.: Tree phenology and
carbon dioxide fluxes: use of digital photography for process-based
interpretation at the ecosystem scale, 39, 261–274,
https://doi.org/10.3354/cr00811, 2009.
Aurela, M., Tuovinen, J.-P., and Laurila, T.: Carbon dioxide exchange in a
subarctic peatland ecosystem in northern Europe measured by the eddy
covariance technique, J. Geophys. Res.-Atmos., 103,
11289–11301, https://doi.org/10.1029/98JD00481, 1998.
Aurela, M., Tuovinen, J.-P., and Laurila, T.: Net CO2 exchange of subarctic
mountain birch ecosystem, Theor. Appl. Climatol., 70, 135–148,
https://doi.org/10.1007/s007040170011, 2001.
Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Riutta, T., and
Laurila, T.: Carbon dioxide exchange on a northern boreal fen, Boreal Env. Res., 14, 699–710,
2009.
Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Penttilä, T., and
Laurila, T.: Carbon dioxide and energy flux measurements in four
northern-boreal ecosystems at Pallas, Boreal Environ. Res., 20,
455–473, 2015.
Aurela, M., Linkosalmi, M., Tanis, C., Melih, A., Ali, N., Rainne, J., Kolari, P., Böttcher, K., and Peltoniemi, M.: Phenological time lapse images from ground camera MC111 in Sodankylä, peatland Peatland (2014–2021), Zenodo [data set], https://doi.org/10.5281/zenodo.5813991, 2022a.
Aurela, M., Tanis, C. M., Arslan, A. N., Linkosalmi, M., Rainne, J., Kolari, P., Böttcher, K., and Peltoniemi, M.: Phenological time lapse images from ground camera MC129 in Lompolojänkkä Peatland (2015–2021), Zenodo [data set], https://doi.org/10.5281/zenodo.5814049, 2022b.
Aurela, M., Tanis, C. M., Arslan, A. N., Linkosalmi, M., Rainne, J., Kolari, P., Böttcher, K., and Peltoniemi, M.: Phenological time lapse images from ground camera MC128 in Kaamanen Peatland (2015–2021), Zenodo [data set], https://doi.org/10.5281/zenodo.5814044, 2022c.
Barr, A. G., Black, T. A., Hogg, E. H., GRIFFIS, T. J., Morgenstern, K.,
Kljun, N., Theede, A., and Nesic, Z.: Climatic controls on the carbon and
water balances of a boreal aspen forest, 1994–2003, Global Change Biol.,
13, 561–576, https://doi.org/10.1111/j.1365-2486.2006.01220.x,
2007.
Bauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P.
E., Bowden, J. D., Hoffman, F. M., and Reynolds, R. F.: Photoperiodic
regulation of the seasonal pattern of photosynthetic capacity and the
implications for carbon cycling, P. Natl. Acad. Sci. USA, 109, 8612,
https://doi.org/10.1073/pnas.1119131109, 2012.
Berninger, F.: Effects of Drought and Phenology on GPP in Pinus sylvestris:
A Simulation Study Along a Geographical Gradient, Funct. Ecol., 11, 33–42, 1997.
Black, T. A., Chen, W. J., Barr, A. G., Arain, M. A., Chen, Z., Nesic, Z.,
Hogg, E. H., Neumann, H. H., and Yang, P. C.: Increased carbon sequestration
by a boreal deciduous forest in years with a warm spring, Geophys. Res. Lett., 27, 1271–1274,
https://doi.org/10.1029/1999GL011234, 2000.
Bonan, G.: Ecological Climatology: Concepts and Applications, 3rd ed.,
Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9781107339200, 2015.
Bryant, R. G. and Baird, A. J.: The spectral behaviour of Sphagnum canopies
under varying hydrological conditions, Geophys. Res. Lett., 30, 1134,
https://doi.org/10.1029/2002GL016053, 2003.
Cheng, Y., Vrieling, A., Fava, F., Meroni, M., Marshall, M., and Gachoki,
S.: Phenology of short vegetation cycles in a Kenyan rangeland from
PlanetScope and Sentinel-2, Remote Sens. Environ., 248, 112004,
https://doi.org/10.1016/j.rse.2020.112004, 2020.
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J.
C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D.,
Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B.,
Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A.,
Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R.,
Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y.,
Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S.,
Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S.,
Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H.,
Treseder, K. K., Welker, J. M., and Bradford, M. A.: Quantifying global soil
carbon losses in response to warming, Nature, 540, 104–108,
https://doi.org/10.1038/nature20150, 2016.
Davidson, S. J., Goud, E. M., Malhotra, A., Estey, C. O., Korsah, P., and
Strack, M.: Linear Disturbances Shift Boreal Peatland Plant Communities
Toward Earlier Peak Greenness, J. Geophys. Res.-Biogeo., 126, e2021JG006403,
https://doi.org/10.1029/2021JG006403, 2021.
Delbart, N., Picard, G., Le Toan, T., Kergoat, L., Quegan, S., Woodward, I.,
Dye, D., and Fedotova, V.: Spring phenology in boreal Eurasia over a nearly
century time scale, Global Change Biol., 14, 603–614,
https://doi.org/10.1111/j.1365-2486.2007.01505.x, 2008.
Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L., and Daube, B. C.:
A long-term record of carbon exchange in a boreal black spruce forest:
means, responses to interannual variability, and decadal trends, Global Change Biol., 13, 577–590,
https://doi.org/10.1111/j.1365-2486.2006.01221.x, 2007.
Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Sonnentag, O.,
Humphreys, E., Hufkens, K., Ryu, Y., Verfaillie, J., Morra di Cella, U., and
Richardson, A. D.: NDVI derived from near-infrared-enabled digital cameras:
Applicability across different plant functional types, Agr. Forest Meteorol., 249, 275–285,
https://doi.org/10.1016/j.agrformet.2017.11.003, 2018.
Gorham, E.: Northern Peatlands: Role in the Carbon Cycle and Probable
Responses to Climatic Warming, Ecol. Appl., 1, 182–195,
https://doi.org/10.2307/1941811, 1991.
Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., and Wofsy, S. C.:
Measurements of carbon sequestration by long-term eddy covariance: methods
and a critical evaluation of accuracy, Global Change Biol., 2, 169–182,
https://doi.org/10.1111/j.1365-2486.1996.tb00070.x, 1996.
Harenda, K. M., Lamentowicz, M., Samson, M., and Chojnicki, B. H.: The Role
of Peatlands and Their Carbon Storage Function in the Context of Climate
Change, in: Interdisciplinary Approaches for Sustainable Development Goals:
Economic Growth, Social Inclusion and Environmental Protection, edited by:
Zielinski, T., Sagan, I., and Surosz, W., Springer International Publishing,
Cham, 169–187,
https://doi.org/10.1007/978-3-319-71788-3_12, 2018.
Heiskanen, L., Tuovinen, J.-P., Räsänen, A., Virtanen, T., Juutinen, S., Lohila, A., Penttilä, T., Linkosalmi, M., Mikola, J., Laurila, T., and Aurela, M.: Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons, Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, 2021.
Ide, R. and Oguma, H.: Use of digital cameras for phenological observations,
Ecol. Info., 5, 339–347,
https://doi.org/10.1016/j.ecoinf.2010.07.002, 2010.
Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M., and
Peichl, M.: Partitioning of the net CO2 exchange using an automated chamber
system reveals plant phenology as key control of production and respiration
fluxes in a boreal peatland, Global Change Biol., 24, 3436–3451,
https://doi.org/10.1111/gcb.14292, 2018.
Keeling, C. D., Chin, J. F. S., and Whorf, T. P.: Increased activity of
northern vegetation inferred from atmospheric CO2 measurements, Nature, 382,
146–149, https://doi.org/10.1038/382146a0, 1996.
Keenan, T. F., Gray, J., Friedl, M. A., Toomey, M., Bohrer, G., Hollinger,
D. Y., Munger, J. W., O'Keefe, J., Schmid, H. P., Wing, I. S., Yang, B., and
Richardson, A. D.: Net carbon uptake has increased through warming-induced
changes in temperate forest phenology, Nat. Clim. Change, 4, 598–604,
https://doi.org/10.1038/nclimate2253, 2014.
Knox, S. H., Dronova, I., Sturtevant, C., Oikawa, P. Y., Matthes, J. H.,
Verfaillie, J., and Baldocchi, D.: Using digital camera and Landsat imagery
with eddy covariance data to model gross primary production in restored
wetlands, Agr. Forest Meteorol., 237, 233–245,
https://doi.org/10.1016/j.agrformet.2017.02.020, 2017.
Koebsch, F., Sonnentag, O., Järveoja, J., Peltoniemi, M., Alekseychik,
P., Aurela, M., Arslan, A. N., Dinsmore, K., Gianelle, D., Helfter, C.,
Jackowicz-Korczynski, M., Korrensalo, A., Leith, F., Linkosalmi, M., Lohila,
A., Lund, M., Maddison, M., Mammarella, I., Mander, Ü., Minkkinen, K.,
Pickard, A., Pullens, J. W. M., Tuittila, E.-S., Nilsson, M. B., and Peichl,
M.: Refining the role of phenology in regulating gross ecosystem
productivity across European peatlands, Global Change Biol., 26, 876–887,
https://doi.org/10.1111/gcb.14905, 2020.
Körner, C. and Basler, D.: Phenology Under Global Warming,
Science, 327, 1461–1462,
https://doi.org/10.1126/science.1186473, 2010.
Larcher, W.: Physiological
Plant Ecology: Ecophysiology and Stress Physiology of Functional
Groups, 4th Edition, Springer, 514, ISBN: 978-3-540-43516-7, 2003.
Lehtonen, I. and Pirinen, P.: 2018: An exceptionally warm thermal growing
season in Finland, 1,
https://doi.org/10.35614/ISSN-2341-6408-IK-2019-03-RL, 2019.
Lees, K. J., Quaife, T., Artz, R. R. E., Khomik, M., and Clark, J. M.:
Potential for using remote sensing to estimate carbon fluxes across northern
peatlands – A review, Sci. Total Environ., 615, 857–874,
https://doi.org/10.1016/j.scitotenv.2017.09.103, 2018.
Linkosalmi, M., Aurela, M.-, Tuovinen, J.-P., Peltoniemi, M., Tanis, C. M.,
Arslan, A. N., Kolari, P., Böttcher, K., Aalto, T., Rainne, J., Hatakka,
J., and Laurila, T.: Digital photography for assessing the link between
vegetation phenology and CO2 exchange in two contrasting northern
ecosystems, Geosci. Instrum. Method. Data Syst., 5, 417–426, https://doi.org/10.5194/gi-5-417-2016,
2016.
Linkosalo, T., Häkkinen, R., Terhivuo, J., Tuomenvirta, H., and Hari,
P.: The time series of flowering and leaf bud burst of boreal trees
(1846–2005) support the direct temperature observations of climatic
warming, Agr. Forest Meteorol., 149, 453–461,
https://doi.org/10.1016/j.agrformet.2008.09.006, 2009.
Lohila, A., Aurela, M., Hatakka, J., Pihlatie, M., Minkkinen, K.,
Penttilä, T., and Laurila, T.: Responses of N2O fluxes to temperature,
water table and N deposition in a northern boreal fen, Europ. J. Soil Sci., 61, 651–661,
https://doi.org/10.1111/j.1365-2389.2010.01265.x, 2010.
Lund, M., Christensen, T. R., Lindroth, A., and Schubert, P.: Effects of
drought conditions on the carbon dioxide dynamics in a temperate peatland, Environ. Res. Lett., 7, 045704, https://doi.org/10.1088/1748-9326/7/4/045704, 2012.
Maanavilja, L., Riutta, T., Aurela, M., Pulkkinen, M., Laurila, T., and
Tuittila, E.-S.: Spatial variation in CO2 exchange at a northern aapa mire,
Biogeochemistry, 104, 325–345,
https://doi.org/10.1007/s10533-010-9505-7, 2011.
Menzel, A., Helm, R., and Zang, C.: Patterns of late spring frost leaf
damage and recovery in a European beech (Fagus sylvatica L.) stand in
south-eastern Germany based on repeated digital photographs, Front. Plant Sci., 6, 110, https://doi.org/10.3389/fpls.2015.00110, 2015.
Meroni, M., Verstraete, M. M., Rembold, F., Urbano, F., and Kayitakire, F.:
A phenology-based method to derive biomass production anomalies for food
security monitoring in the Horn of Africa, Null, 35, 2472–2492,
https://doi.org/10.1080/01431161.2014.883090, 2014.
Migliavacca, M., Galvagno, M., Cremonese, E., Rossini, M., Meroni, M.,
Sonnentag, O., Cogliati, S., Manca, G., Diotri, F., Busetto, L., Cescatti,
A., Colombo, R., Fava, F., Morra di Cella, U., Pari, E., Siniscalco, C., and
Richardson, A. D.: Using digital repeat photography and eddy covariance data
to model grassland phenology and photosynthetic CO2 uptake, Agr. Forest Meteorol., 151, 1325–1337,
https://doi.org/10.1016/j.agrformet.2011.05.012, 2011.
Migliavacca, M., Sonnentag, O., Keenan, T. F., Cescatti, A., O'Keefe, J., and Richardson, A. D.: On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model, Biogeosciences, 9, 2063–2083, https://doi.org/10.5194/bg-9-2063-2012, 2012.
Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I., Graham, E.
A., Abatzoglou, J., Wilson, B. E., Breshears, D. D., Henebry, G. M., Hanes,
J. M., and Liang, L.: Tracking the Rhythm of the Seasons in the Face of
Global Change: Phenological Research in the 21st Century, Front. Ecol. Environ., 7, 253–260, 2009.
Nordli, Ø., Wielgolaski, F. E., Bakken, A. K., Hjeltnes, S. H., Måge,
F., Sivle, A., and Skre, O.: Regional trends for bud burst and flowering of
woody plants in Norway as related to climate change, Int. J. Biometeorol., 52, 625–639,
https://doi.org/10.1007/s00484-008-0156-5, 2008.
Öquist, G. and Huner, N. P. A.: Photosynthesis of Overwintering
Evergreen Plants, Annu. Rev. Plant Biol., 54, 329–355,
https://doi.org/10.1146/annurev.arplant.54.072402.115741, 2003.
Peichl, M., Sonnentag, O., and Nilsson, M. B.: Bringing Color into the
Picture: Using Digital Repeat Photography to Investigate Phenology Controls
of the Carbon Dioxide Exchange in a Boreal Mire, Ecosystems, 18, 115–131,
https://doi.org/10.1007/s10021-014-9815-z, 2015.
Peichl, M., Gažovič, M., Vermeij, I., de Goede, E., Sonnentag, O.,
Limpens, J., and Nilsson, M. B.: Peatland vegetation composition and
phenology drive the seasonal trajectory of maximum gross primary production,
Sci. Rep., 8, 8012,
https://doi.org/10.1038/s41598-018-26147-4, 2018.
Peltoniemi, M., Aurela, M., Böttcher, K., Kolari, P., Loehr, J., Karhu, J., Linkosalmi, M., Tanis, C. M., Tuovinen, J.-P., and Arslan, A. N.: Webcam network and image database for studies of phenological changes of vegetation and snow cover in Finland, image time series from 2014 to 2016, Earth Syst. Sci. Data, 10, 173–184, https://doi.org/10.5194/essd-10-173-2018, 2018.
Pudas, E., Leppälä, M., Tolvanen, A., Poikolainen, J.,
Venäläinen, A., and Kubin, E.: Trends in phenology of Betula
pubescens across the boreal zone in Finland, Int. J. Biometeorol., 52, 251–259,
https://doi.org/10.1007/s00484-007-0126-3, 2008.
Räsänen, A., Aurela, M., Juutinen, S., Kumpula, T., Lohila, A.,
Penttilä, T., and Virtanen, T.: Detecting northern peatland vegetation
patterns at ultra-high spatial resolution, Remote Sens. Ecol. Conserv., 6, 457–471, https://doi.org/10.1002/rse2.140,
2020.
Richardson, A. D.: Tracking seasonal rhythms of plants in diverse ecosystems
with digital camera imagery, New Phytol., 222, 1742–1750,
https://doi.org/10.1111/nph.15591, 2019.
Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y.,
Ollinger, S. V., and Smith, M.-L.: Use of digital webcam images to track
spring green-up in a deciduous broadleaf forest, Oecologia, 152, 323–334,
https://doi.org/10.1007/s00442-006-0657-z, 2007.
Richardson, A. D., Hollinger, D. Y., Dail, D. B., Lee, J. T., Munger, J. W.,
and O'Keefe, J.: Influence of spring phenology on seasonal and annual carbon
balance in two contrasting New England forests, Tree Physiol., 29,
321–331, 2009.
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O.,
and Toomey, M.: Climate change, phenology, and phenological control of
vegetation feedbacks to the climate system, Agr. Forest Meteorol., 169, 156–173,
https://doi.org/10.1016/j.agrformet.2012.09.012, 2013.
Rinne, J., Tuovinen, J.-P., Klemedtsson, L., Aurela, M., Holst, J., Lohila,
A., Weslien, P., Vestin, P., Łakomiec, P., Peichl, M., Tuittila, E.-S.,
Heiskanen, L., Laurila, T., Li, X., Alekseychik, P., Mammarella, I.,
Ström, L., Crill, P., and Nilsson, M. B.: Effect of the 2018 European
drought on methane and carbon dioxide exchange of northern mire ecosystems,
Philos. T. Roy. Soc. B, 375,
20190517, https://doi.org/10.1098/rstb.2019.0517, 2020.
Sonnentag, O., Chen, J. M., Roberts, D. A., Talbot, J., Halligan, K., and
Govind, A.: Mapping tree and shrub leaf area indices in an ombrotrophic
peatland through multiple endmember spectral unmixing, Int. J. Remote Sens., 109, 342–360,
https://doi.org/10.1016/j.rse.2007.01.010, 2007.
Sonnentag, O., Detto, M., Vargas, R., Ryu, Y., Runkle, B. R. K., Kelly, M.,
and Baldocchi, D. D.: Tracking the structural and functional development of
a perennial pepperweed (Lepidium latifolium L.) infestation using a
multi-year archive of webcam imagery and eddy covariance measurements,
Agr. Forest Meteorol., 151, 916–926,
https://doi.org/10.1016/j.agrformet.2011.02.011, 2011.
Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M.,
Braswell, B. H., Milliman, T., O'Keefe, J., and Richardson, A. D.: Digital
repeat photography for phenological research in forest ecosystems,
Agr. Forest Meteorol., 152, 159–177,
https://doi.org/10.1016/j.agrformet.2011.09.009, 2012.
Tanis, C. M., Peltoniemi, M., Linkosalmi, M., Aurela, M., Böttcher, K.,
Manninen, T., and Arslan, A. N.: A System for Acquisition, Processing and
Visualization of Image Time Series from Multiple Camera Networks, Data, 3, 233,
https://doi.org/10.3390/data3030023, 2018.
Tanis, C. M.: FMI Image Processing Toolbox (FMIPROT), [code], https://github.com/tanisc/FMIPROT, 2020.
Tanis, C. M. and Arslan, A. N.: Finnish Meteorological Institute Image Processing Toolbox (Fmiprot), [code], https://fmiprot.fmi.fi/?page=FMIPROT (last access: 28 September 2022), 2021.
Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S.,
Sonnentag, O., Baldocchi, D. D., Bernacchi, C. J., Biraud, S. C., Bohrer,
G., Brzostek, E., Burns, S. P., Coursolle, C., Hollinger, D. Y., Margolis,
H. A., McCaughey, H., Monson, R. K., Munger, J. W., Pallardy, S., Phillips,
R. P., Torn, M. S., Wharton, S., Zeri, M., and Richardson, A. D.: Greenness
indices from digital cameras predict the timing and seasonal dynamics of
canopy-scale photosynthesis, Ecol. Appl., 25, 99–115,
https://doi.org/10.1890/14-0005.1, 2015.
Turunen, J., Tomppo, E., Tolonen, K., and Reinikainen, A.: Estimating carbon
accumulation rates of undrained mires in Finland–application to boreal and
subarctic regions, Holocene, 12, 69–80,
https://doi.org/10.1191/0959683602hl522rp, 2002.
Vrieling, A., Meroni, M., Darvishzadeh, R., Skidmore, A. K., Wang, T.,
Zurita-Milla, R., Oosterbeek, K., O'Connor, B., and Paganini, M.: Vegetation
phenology from Sentinel-2 and field cameras for a Dutch barrier island,
Remote Sens. Environ., 215, 517–529,
https://doi.org/10.1016/j.rse.2018.03.014, 2018.
White, M. A. and Nemani, R. R.: Canopy duration has little influence on
annual carbon storage in the deciduous broad leaf forest, Global Change Biol., 9, 967–972,
https://doi.org/10.1046/j.1365-2486.2003.00585.x, 2003.
Wingate, L., Ogée, J., Cremonese, E., Filippa, G., Mizunuma, T., Migliavacca, M., Moisy, C., Wilkinson, M., Moureaux, C., Wohlfahrt, G., Hammerle, A., Hörtnagl, L., Gimeno, C., Porcar-Castell, A., Galvagno, M., Nakaji, T., Morison, J., Kolle, O., Knohl, A., Kutsch, W., Kolari, P., Nikinmaa, E., Ibrom, A., Gielen, B., Eugster, W., Balzarolo, M., Papale, D., Klumpp, K., Köstner, B., Grünwald, T., Joffre, R., Ourcival, J.-M., Hellstrom, M., Lindroth, A., George, C., Longdoz, B., Genty, B., Levula, J., Heinesch, B., Sprintsin, M., Yakir, D., Manise, T., Guyon, D., Ahrends, H., Plaza-Aguilar, A., Guan, J. H., and Grace, J.: Interpreting canopy development and physiology using a European phenology camera network at flux sites, Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, 2015.
Wipf, S.: Phenology, growth, and fecundity of eight subarctic tundra species
in response to snowmelt manipulations, Plant Ecol., 207, 53–66,
https://doi.org/10.1007/s11258-009-9653-9, 2010.
Wipf, S. and Rixen, C.: A review of snow manipulation experiments in Arctic
and alpine tundra ecosystems, POLAR, 29, 95–109,
https://doi.org/10.3402/polar.v29i1.6054, 2010.
Short summary
Vegetation greenness was monitored with digital cameras in three northern peatlands during five growing seasons. The greenness index derived from the images was highest at the most nutrient-rich site. Greenness indicated the main phases of phenology and correlated with CO2 uptake, though this was mainly related to the common seasonal cycle. The cameras and Sentinel-2 satellite showed consistent results, but more frequent satellite data are needed for reliable detection of phenological phases.
Vegetation greenness was monitored with digital cameras in three northern peatlands during five...
Altmetrics
Final-revised paper
Preprint