Articles | Volume 20, issue 7
https://doi.org/10.5194/bg-20-1505-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1505-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calcification response of planktic foraminifera to environmental change in the western Mediterranean Sea during the industrial era
Thibauld M. Béjard
CORRESPONDING AUTHOR
Área de Paleontología, Departamento de Geología,
Universidad de Salamanca, 37008 Salamanca, Spain
Andrés S. Rigual-Hernández
Área de Paleontología, Departamento de Geología,
Universidad de Salamanca, 37008 Salamanca, Spain
José A. Flores
Área de Paleontología, Departamento de Geología,
Universidad de Salamanca, 37008 Salamanca, Spain
Javier P. Tarruella
Área de Paleontología, Departamento de Geología,
Universidad de Salamanca, 37008 Salamanca, Spain
Xavier Durrieu de Madron
CEFREM, CNRS-Université de Perpignan Via Domitia, Perpignan, France
Isabel Cacho
GRC Geociències Marines, Departament de Dinàmica de la Terra i
de l'Oceà, Facultat de Ciències de la Terra, Universitat de
Barcelona, Barcelona, Spain
Neghar Haghipour
Earth Sciences Department, ETH Zurich, 8092 Zurich, Switzerland
Aidan Hunter
British Antarctic Survey, Natural Environment Research Council,
Cambridge, UK
Francisco J. Sierro
Área de Paleontología, Departamento de Geología,
Universidad de Salamanca, 37008 Salamanca, Spain
Related authors
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José-Abel Flores, Anna Sanchez-Vidal, Irene Llamas-Cano, and Francisco J. Sierro
Biogeosciences, 21, 4051–4076, https://doi.org/10.5194/bg-21-4051-2024, https://doi.org/10.5194/bg-21-4051-2024, 2024
Short summary
Short summary
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of planktonic foraminifera is crucial. In the Sicily Channel, fluxes are higher during winter and positively linked with chlorophyll a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Juan Luis Bernal-Wormull, Ana Moreno, Yuri Dublyansky, Christoph Spötl, Reyes Giménez, Carlos Pérez-Mejías, Miguel Bartolomé, Martin Arriolabengoa, Eneko Iriarte, Isabel Cacho, Richard Lawrence Edwards, and Hai Cheng
Clim. Past, 21, 1235–1261, https://doi.org/10.5194/cp-21-1235-2025, https://doi.org/10.5194/cp-21-1235-2025, 2025
Short summary
Short summary
In this paper we present a record of temperature changes during the last deglaciation and the Holocene using isotopes of fluid inclusions in stalagmites from the northeastern region of the Iberian Peninsula. This innovative climate proxy for this study region provides a quantitative understanding of the abrupt temperature changes in southern Europe in the last 16 500 years before present.
Andrés S. Rigual-Hernández, Amy Leventer, Manuel Fernández-Barba, José A. Flores, Gabriel Navarro, Johan Etourneau, Dimitris Evangelinos, Megan Duffy, Carlota Escutia, Fernando Bohoyo, Manon Sabourdy, Francisco J. Jimenez-Espejo, and María Ángeles Bárcena
EGUsphere, https://doi.org/10.5194/egusphere-2025-2892, https://doi.org/10.5194/egusphere-2025-2892, 2025
Short summary
Short summary
We studied phytoplankton in the Drake Passage and northern Antarctic Peninsula during a marine heatwave in summer 2020. Warmer waters transported by an anticyclonic eddy caused increased temperatures. This led to higher diatom abundance and an increase in the relative contribution of a small diatom species in the southern Drake Passage while reducing coccolithophore populations north of the polar front. The consequences on marine ecosystems remain uncertain.
Lukas Jonkers, Tonke Strack, Montserrat Alonso-Garcia, Simon D'haenens, Robert Huber, Michal Kucera, Iván Hernández-Almeida, Chloe L. C. Jones, Brett Metcalfe, Rajeev Saraswat, Lóránd Silye, Sanjay K. Verma, Muhamad Naim Abd Malek, Gerald Auer, Cátia F. Barbosa, Maria A. Barcena, Karl-Heinz Baumann, Flavia Boscolo-Galazzo, Joeven Austine S. Calvelo, Lucilla Capotondi, Martina Caratelli, Jorge Cardich, Humberto Carvajal-Chitty, Markéta Chroustová, Helen K. Coxall, Renata M. de Mello, Anne de Vernal, Paula Diz, Kirsty M. Edgar, Helena L. Filipsson, Ángela Fraguas, Heather L. Furlong, Giacomo Galli, Natalia L. García Chapori, Robyn Granger, Jeroen Groeneveld, Adil Imam, Rebecca Jackson, David Lazarus, Julie Meilland, Marína Molčan Matejová, Raphael Morard, Caterina Morigi, Sven N. Nielsen, Diana Ochoa, Maria Rose Petrizzo, Andrés S. Rigual-Hernández, Marina C. Rillo, Matthew L. Staitis, Gamze Tanık, Raúl Tapia, Nishant Vats, Bridget S. Wade, and Anna E. Weinmann
J. Micropalaeontol., 44, 145–168, https://doi.org/10.5194/jm-44-145-2025, https://doi.org/10.5194/jm-44-145-2025, 2025
Short summary
Short summary
Our study provides guidelines improving the reuse of marine microfossil assemblage data, which are valuable for understanding past ecosystems and environmental change. Based on a survey of 113 researchers, we identified key data attributes required for effective reuse. Analysis of a selection of datasets available online reveals a gap between the attributes scientists consider essential and the data currently available, highlighting the need for clearer data documentation and sharing practices.
Helena Fos, Jesús Peña-Izquierdo, David Amblas, Marta Arjona-Camas, Laia Romero, Victor Estella-Pérez, Cristian Florindo-Lopez, Antoni Calafat-Frau, Marc Cerdà-Domènech, Pere Puig, Xavier Durrieu de Madron, and Anna Sanchez-Vidal
EGUsphere, https://doi.org/10.22541/essoar.174060515.57729804/v2, https://doi.org/10.22541/essoar.174060515.57729804/v2, 2025
Short summary
Short summary
Dense Shelf Water Cascading (DSWC) is an oceanographic process where dense shelf water rapidly spills over the shelf edge and cascades into the deep ocean. Using a high-resolution model that incorporates real observations from the water column and sea surface (MedSea Reanalysis), this study compares over 30 years of simulated intense DSWC with actual observations in the NW Mediterranean. We identified all the cascading events since 1987, with results closely matching the observations.
Marta Arjona-Camas, Xavier Durrieu de Madron, François Bourrin, Helena Fos, Anna Sanchez-Vidal, and David Amblas
EGUsphere, https://doi.org/10.5194/egusphere-2025-1310, https://doi.org/10.5194/egusphere-2025-1310, 2025
Short summary
Short summary
This study examines dense shelf-water and sediment transport in the Cap de Creus Canyon during the mild winter of 2021–2022, using multiplatform-observational data and the MedSea Reanalysis model. Results show dense shelf waters on the shelf and upper canyon, contributing to Western Intermediate Water. The canyon acts as a partial sink, with most dense water transport occurring along the coast. These events are expected to increase with climate change, favoring intermediate-water formation.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Judit Torner, Isabel Cacho, Heather Stoll, Ana Moreno, Joan O. Grimalt, Francisco J. Sierro, Joan J. Fornós, Hai Cheng, and R. Lawrence Edwards
Clim. Past, 21, 465–487, https://doi.org/10.5194/cp-21-465-2025, https://doi.org/10.5194/cp-21-465-2025, 2025
Short summary
Short summary
We offer a clearer view of the timing of three relevant past glacial terminations. By analyzing the climatic signal recorded in stalagmite and linking it with marine records, we revealed differences in the intensity and duration of the ice melting associated with these three key deglaciations. This study shows that some deglaciations began earlier than previously thought; this improves our understanding of natural climate processes, helping us to contextualize current climate change.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautschi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech., 18, 319–325, https://doi.org/10.5194/amt-18-319-2025, https://doi.org/10.5194/amt-18-319-2025, 2025
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing between fossil methane and biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. We made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Xavier Durrieu de Madron, Paul Blin, Mireille Pujo-Pay, Vincent Taillandier, and Pascal Conan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3436, https://doi.org/10.5194/egusphere-2024-3436, 2024
Short summary
Short summary
This study investigated the effects of salt fingering on particle and solute distribution in the Tyrrhenian Sea. Density interfaces associated with thermohaline staircases slow the settling of suspended particles and promote aggregation. This affects particle size distribution and creates nutrient and oxygen gradients, affecting microbial activity and nutrient cycling. The research highlights the potential role of salt fingers in deep ocean biogeochemical processes.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, Javier P. Tarruella, José-Abel Flores, Anna Sanchez-Vidal, Irene Llamas-Cano, and Francisco J. Sierro
Biogeosciences, 21, 4051–4076, https://doi.org/10.5194/bg-21-4051-2024, https://doi.org/10.5194/bg-21-4051-2024, 2024
Short summary
Short summary
The Mediterranean Sea is regarded as a climate change hotspot. Documenting the population of planktonic foraminifera is crucial. In the Sicily Channel, fluxes are higher during winter and positively linked with chlorophyll a concentration and cool temperatures. A comparison with other Mediterranean sites shows the transitional aspect of the studied zone. Finally, modern populations significantly differ from those in the sediment, highlighting a possible effect of environmental change.
Elizabeth R. Lasluisa, Oriol Oms, Eduard Remacha, Alba González-Lanchas, Hug Blanchar-Roca, and José Abel Flores
J. Micropalaeontol., 43, 55–68, https://doi.org/10.5194/jm-43-55-2024, https://doi.org/10.5194/jm-43-55-2024, 2024
Short summary
Short summary
We studied sediment samples containing marine plankton under the polarized microscope from the Sabiñánigo sandstone formation, a geological formation located in the Jaca Basin in Spain. The main result of this work was a more precise age for the formation, the Bartonian age, in the Middle Eocene period. In addition, we obtained information on the temperature of the ocean water in which the plankton lived, resulting in the surface ocean waters in this area being warm and poor in nutrients.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Oliver Kost, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Laura Endres, Negar Haghipour, and Heather Stoll
Hydrol. Earth Syst. Sci., 27, 2227–2255, https://doi.org/10.5194/hess-27-2227-2023, https://doi.org/10.5194/hess-27-2227-2023, 2023
Short summary
Short summary
Cave monitoring studies including cave drip water are unique opportunities to sample water which has percolated through the soil and rock. The change in drip water chemistry is resolved over the course of 16 months, inferring seasonal and hydrological variations in soil and karst processes at the water–air and water–rock interface. Such data sets improve the understanding of hydrological and hydrochemical processes and ultimately advance the interpretation of geochemical stalagmite records.
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Ana Moreno, Miguel Iglesias, Cesar Azorin-Molina, Carlos Pérez-Mejías, Miguel Bartolomé, Carlos Sancho, Heather Stoll, Isabel Cacho, Jaime Frigola, Cinta Osácar, Arsenio Muñoz, Antonio Delgado-Huertas, Ileana Bladé, and Françoise Vimeux
Atmos. Chem. Phys., 21, 10159–10177, https://doi.org/10.5194/acp-21-10159-2021, https://doi.org/10.5194/acp-21-10159-2021, 2021
Short summary
Short summary
We present a large and unique dataset of the rainfall isotopic composition at seven sites from northern Iberia to characterize their variability at daily and monthly timescales and to assess the role of climate and geographic factors in the modulation of δ18O values. We found that the origin, moisture uptake along the trajectory and type of precipitation play a key role. These results will help to improve the interpretation of δ18O paleorecords from lacustrine carbonates or speleothems.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Cited articles
Aldridge, D., Beer, C. J., and Purdie, D. A.: Calcification in the
planktonic foraminifera; Globigerina bulloides; linked to phosphate concentrations in surface
waters of the North Atlantic Ocean, Biogeosciences, 9, 1725–1739,
https://doi.org/10.5194/bg-9-1725-2012, 2012.
Álvarez, M., Sanleón-Bartolomé, H., Tanhua, T., Mintrop, L.,
Luchetta, A., Cantoni, C., Schroeder, K., and Civitarese, G.: The CO2
system in the Mediterranean Sea: a basin wide perspective, Ocean Sci., 10,
69–92, https://doi.org/10.5194/os-10-69-2014, 2014.
Azibeiro, L. A., Kučera, M., Jonkers, L., Cloke-Hayes, A., and Sierro,
F. J.: Nutrients and hydrography explain the composition of recent
Mediterranean planktonic foraminiferal assemblages, Mar.
Micropaleontol., 179, 102201,
https://doi.org/10.1016/j.marmicro.2022.102201, 2023.
Barker, S. and Elderfield, H.: Foraminiferal Calcification Response to
Glacial-Interglacial Changes in Atmospheric CO2, Science, 297,
833–836, https://doi.org/10.1126/science.1072815, 2002.
Bé, A. W. H., Hutson, W. H., and Be, A. W. H.: Ecology of Planktonic
Foraminifera and Biogeographic Patterns of Life and Fossil Assemblages in
the Indian Ocean, Micropaleontology, 23, 369–414,
https://doi.org/10.2307/1485406, 1977.
Beaufort, L., Probert, I., and Buchet, N.: Effects of acidification and
primary production on coccolith weight: Implications for carbonate transfer
from the surface to the deep ocean: oceanic carbonate transfer, Geochem.
Geophy. Geosy., 8, Q08011, https://doi.org/10.1029/2006GC001493, 2007.
Beer, C. J., Schiebel, R., and Wilson, P. A.: Technical Note: On
methodologies for determining the size-normalised weight of planktic
foraminifera, Biogeosciences, 7, 2193–2198,
https://doi.org/10.5194/bg-7-2193-2010, 2010a.
Beer, C. J., Schiebel, R., and Wilson, P. A.: Testing planktic foraminiferal
shell weight as a surface water [CO ] proxy using plankton net
samples, Geology, 38, 103–106, https://doi.org/10.1130/G30150.1, 2010b.
Béjard, T. M.: Supplementary data, Planktic foraminifera calcification in the NW Mediterranean, Mendeley Data [data set and code], V1, https://doi.org/10.17632/4t9x554dwz.1, 2022.
Bergamasco, A. and Malanotte-Rizzoli, P.: The circulation of the
Mediterranean Sea: a historical review of experimental investigations,
Adv. Oceanogr. Limnol., 1, 11–28,
https://doi.org/10.1080/19475721.2010.491656, 2010.
Berger, W. H.: Planktonic Foraminifera: Selective solution and the
lysocline, Mar. Geol., 8, 111–138, 1970.
Bethoux, J. P., Gentili, B., Morin, P., Nicolas, E., Pierre, C., and
Ruiz-Pino, D.: The Mediterranean Sea: a miniature ocean for climatic and
environmental studies and a key for the climatic functioning of the North
Atlantic, Prog. Oceanogr., 44, 131–146,
https://doi.org/10.1016/S0079-6611(99)00023-3, 1999.
Bijma, J., Hönisch, B., and Zeebe, R. E.: Impact of the ocean carbonate
chemistry on living foraminiferal shell weight: Comment on “Carbonate ion
concentration in glacial-age deep waters of the Caribbean Sea” by W. S.
Broecker and E. Clark: COMMENT, Geochem. Geophy. Geosy., 3, 1–7,
https://doi.org/10.1029/2002GC000388, 2002.
Bird, C., Darling, K. F., Russell, A. D., Davis, C. V., Fehrenbacher, J.,
Free, A., Wyman, M., and Ngwenya, B. T.: Cyanobacterial endobionts within a
major marine planktonic calcifier (Globigerina bulloides, Foraminifera) revealed by 16S rRNA
metabarcoding, Biogeosciences, 14, 901–920,
https://doi.org/10.5194/bg-14-901-2017, 2017.
Burke, J. E., Renema, W., Henehan, M. J., Elder, L. E., Davis, C. V., Maas,
A. E., Foster, G. L., Schiebel, R., and Hull, P. M.: Factors influencing
test porosity in planktonic foraminifera, Biogeosciences, 15, 6607–6619,
https://doi.org/10.5194/bg-15-6607-2018, 2018.
Chapman, M. R.: Seasonal production patterns of planktonic foraminifera in
the NE Atlantic Ocean: Implications for paleotemperature and hydrographic
reconstructions: currents, Paleoceanography, 25,
https://doi.org/10.1029/2008PA001708, 2010.
Cisneros, M., Cacho, I., Frigola, J., Canals, M., Masqué, P., Martrat,
B., Casado, M., Grimalt, J. O., Pena, L. D., Margaritelli, G., and Lirer,
F.: Sea surface temperature variability in the central-western Mediterranean
Sea during the last 2700 years: a multi-proxy and multi-record approach,
Clim. Past, 12, 849–869, https://doi.org/10.5194/cp-12-849-2016, 2016.
Coppola, L., Raimbault, P., Mortier, L., and Testor, P.: Monitoring the environment in the northwestern Mediterranean Sea, Eos, 100, https://doi.org/10.1029/2019EO125951, 2019.
Coppola, L., Diamond Riquier, E., and Carval, T: Dyfamed observatory
data, https://doi.org/10.17882/43749, 2021.
Davis, C. V., Rivest, E. B., Hill, T. M., Gaylord, B., Russell, A. D., and
Sanford, E.: Ocean acidification compromises a planktic calcifier with
implications for global carbon cycling, Sci. Rep., 7, 2225,
https://doi.org/10.1038/s41598-017-01530-9, 2017.
de Moel, H., Ganssen, G. M., Peeters, F. J. C., Jung, S. J. A., Kroon, D., Brummer, G. J. A., and Zeebe, R. E.: Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?, Biogeosciences, 6, 1917–1925, https://doi.org/10.5194/bg-6-1917-2009, 2009.
de Villiers, S.: Optimum growth conditions as opposed to calcite saturation
as a control on the calcification rate and shell-weight of marine
foraminifera, Mar. Biol., 144, 45–49,
https://doi.org/10.1007/s00227-003-1183-8, 2004.
Dickson, A. G.: Standard potential of the reaction: AgCl(s) + iH,(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSOh in
synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127,
1990.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants
for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34,
1733–1743, 1987.
Dittert, N., Baumann, K.-H., Bickert, T., Henrich, R., Huber, R., Kinkel, H., and Meggers, H.: Carbonate Dissolution in the Deep-Sea: Methods, Quantification and Paleoceanographic Application, in: Use of Proxies in Paleoceanography, edited by: Fischer, G. and Wefer, G., Springer Berlin Heidelberg, Berlin, Heidelberg, 255–284, https://doi.org/10.1007/978-3-642-58646-0_10, 1999.
Dolman, A. M., Groeneveld, J., Mollenhauer, G., Ho, S. L., and Laepple, T.:
Estimating Bioturbation From Replicated Small-Sample Radiocarbon Ages,
Paleoceanogr. Paleocl., 36, 7, https://doi.org/10.1029/2020PA004142,
2021.
Durrieu de Madron, X., Zervakis, V., Theocharis, A., and Georgopoulos, D.:
Comments on “Cascades of dense water around the world ocean”, Prog.
Oceanogr., 64, 83–90, https://doi.org/10.1016/j.pocean.2004.08.004,
2005.
Durrieu de Madron, X., Houpert, L., Puig, P., Sanchez-Vidal, A., Testor, P.,
Bosse, A., Estournel, C., Somot, S., Bourrin, F., Bouin, M. N., Beauverger,
M., Beguery, L., Calafat, A., Canals, M., Cassou, C., Coppola, L., Dausse,
D., D'Ortenzio, F., Font, J., Heussner, S., Kunesch, S., Lefevre, D., Le
Goff, H., Martín, J., Mortier, L., Palanques, A., and Raimbault, P.:
Interaction of dense shelf water cascading and open-sea convection in the
northwestern Mediterranean during winter 2012: shelf cascading and open-sea
convection, Geophys. Res. Lett., 40, 1379–1385,
https://doi.org/10.1002/grl.50331, 2013.
Durrieu de Madron, X., Ramondenc, S., Berline, L., Houpert, L., Bosse, A.,
Martini, S., Guidi, L., Conan, P., Curtil, C., Delsaut, N., Kunesch, S.,
Ghiglione, J. F., Marsaleix, P., Pujo-Pay, M., Séverin, T., Testor, P.,
Tamburini, C., and the ANTARES collaboration: Deep sediment resuspension and
thick nepheloid layer generation by open-ocean convection: BNL generation by
open-ocean convection, J. Geophys. Res.-Ocean., 122, 2291–2318,
https://doi.org/10.1002/2016JC012062, 2017.
Estrada, M., Marrasé, C., Latasa, M., Berdalet, E., Delgado, M., and
Riera, T.: Variability of deep chlorophyll maximum characteristics in the
Northwestern Mediterranean, Mar. Ecol. Prog. Ser., 92, 289–300,
https://doi.org/10.3354/meps092289, 1993.
Figuerola, B., Hancock, A. M., Bax, N., Cummings, V. J., Downey, R.,
Griffiths, H. J., Smith, J., and Stark, J. S.: A Review and Meta-Analysis of
Potential Impacts of Ocean Acidification on Marine Calcifiers From the
Southern Ocean, Front. Mar. Sci., 8, 584445,
https://doi.org/10.3389/fmars.2021.584445, 2021.
Fox, L., Stukins, S., Hill, T., and Miller, C. G.: Quantifying the Effect of
Anthropogenic Climate Change on Calcifying Plankton, Sci. Rep., 10, 1620,
https://doi.org/10.1038/s41598-020-58501-w, 2020.
Hassoun, A. E. R., Gemayel, E., Krasakopoulou, E., Goyet, C., Abboud-Abi
Saab, M., Guglielmi, V., Touratier, F., and Falco, C.: Acidification of the
Mediterranean Sea from anthropogenic carbon penetration, Deep-Sea Res.
Pt. I, 102, 1–15,
https://doi.org/10.1016/j.dsr.2015.04.005, 2015.
Hassoun, A. E. R., Bantelman, A., Canu, D., Comeau, S., Galdies, C.,
Gattuso, J.-P., Giani, M., Grelaud, M., Hendriks, I. E., Ibello, V.,
Idrissi, M., Krasakopoulou, E., Shaltout, N., Solidoro, C., Swarzenski, P.
W., and Ziveri, P.: Ocean acidification research in the Mediterranean Sea:
Status, trends and next steps, Front. Mar. Sci., 9, 892670,
https://doi.org/10.3389/fmars.2022.892670, 2022.
Head, M. J., Steffen, W., Fagerlind, D., Waters, C. N., Poirier, C., Syvitski, J., Zalasiewicz, J. A., Barnosky, A. D., Cearreta, A., Jeandel, C., Leinfelder, R., McNeill, J. R., Rose, N. L., Summerhayes, C., Wagreich, M., and Zinke, J.: The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch, Episodes, 45, 359–376, https://doi.org/10.18814/epiiugs/2021/021031, 2022a.
Head, M. J., Steffen, W., Fagerlind, D., Waters, C. N., Poirier, C.,
Syvitski, J., Zalasiewicz, J. A., Barnosky, A. D., Cearreta, A., Jeandel,
C., Leinfelder, R., McNeill, J. R., Rose, N. L., Summerhayes, C., Wagreich,
M., and Zinke, J.: The Great Acceleration is real and provides a
quantitative basis for the proposed Anthropocene Series/Epoch, Episodes, 45,
359–376, https://doi.org/10.18814/epiiugs/2021/021031, 2022b.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin,
W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B.,
Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner,
L. C.: Marine20 – The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68,
2020.
Hemleben, C., Spindler, M., and Anderson, O. R.: Modern Planktonic
Foraminifera, Springer, Berlin, https://doi.org/10.1007/978-1-4612-3544-6, 1989.
Heussner, S., Durrieu de Madron, X., Calafat, A., Canals, M., Carbonne, J.,
Delsaut, N., and Saragoni, G.: Spatial and temporal variability of downward
particle fluxes on a continental slope: Lessons from an 8-yr experiment in
the Gulf of Lions (NW Mediterranean), Mar. Geol., 234, 63–92,
https://doi.org/10.1016/j.margeo.2006.09.003, 2006.
Houpert, L., Durrieu de Madron, X., Testor, P., Bosse, A., D'Ortenzio, F.,
Bouin, M. N., Dausse, D., Le Goff, H., Kunesch, S., Labaste, M., Coppola,
L., Mortier, L., and Raimbault, P.: Observations of open-ocean deep
convection in the northwestern Mediterranean Sea: Seasonal and interannual
variability of mixing and deep water masses for the 2007–2013 Period: deep
convection obs, NWMED 2007–2013, J. Geophys. Res.-Ocean., 121, 8139–8171,
https://doi.org/10.1002/2016JC011857, 2016.
IPCC: The Ocean and Cryosphere in a Changing Climate: Special Report of the
Intergovernmental Panel on Climate Change, 1st Edn., Cambridge University
Press, https://doi.org/10.1017/9781009157964, 2022.
Jonkers, L., Hillebrand, H., and Kucera, M.: Global change drives modern
plankton communities away from the pre-industrial state, Nature, 570,
372–375, https://doi.org/10.1038/s41586-019-1230-3, 2019.
Kiss, P., Jonkers, L., Hudáčková, N., Reuter, R. T., Donner, B.,
Fischer, G., and Kucera, M.: Determinants of Planktonic Foraminifera Calcite
Flux: Implications for the Prediction of Intra- and Inter-Annual Pelagic
Carbonate Budgets, Global Biogeochem. Cy., 35,
https://doi.org/10.1029/2020GB006748, 2021.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh,
G. S., Duarte, C. M., and Gattuso, J.: Impacts of ocean acidification on
marine organisms: quantifying sensitivities and interaction with warming,
Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013.
Kuroyanagi, A. and Kawahata, H.: Vertical distribution of living planktonic
foraminifera in the seas around Japan, Mar. Micropaleontol., 53,
173–196, https://doi.org/10.1016/j.marmicro.2004.06.001, 2004.
Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli, M., Oddo, P., and Vichi, M.: The impacts of climate change and environmental management policies on the trophic regimes in the Mediterranean Sea: Scenario analyses, J. Mar. Syst., 135, 137–149, https://doi.org/10.1016/j.jmarsys.2013.06.005, 2014.
LeGrande, A. N., Lynch-Stieglitz, J., and Farmer, E. C.: Oxygen isotopic
composition of Globorotalia truncatulinoides as a proxy for intermediate depth density: δ18O
Truncatulinoides as proxy for mid-depth density, Paleoceanography, 19, PA4025,
https://doi.org/10.1029/2004PA001045, 2004.
Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F., and Pérez, T.: Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea, Trends Ecol. Evol., 25, 250–260, https://doi.org/10.1016/j.tree.2009.10.009, 2010.
Lirer, F., Sprovieri, M., Vallefuoco, M., Ferraro, L., Pelosi, N., Giordano,
L., and Capotondi, L.: Planktonic foraminifera as bio-indicators for
monitoring the climatic changes that have occurred over the past 2000 years
in the southeastern Tyrrhenian Sea, Integr. Zool., 9, 542–554,
https://doi.org/10.1111/1749-4877.12083, 2014.
Lohmann, G. P. and Schweitzer, P. N.: Globorotalia truncatulinoides' Growth and chemistry as probes of the
past thermocline: 1. Shell size, Paleoceanography, 5, 55–75,
https://doi.org/10.1029/PA005i001p00055, 1990.
Lombard, F., Erez, J., Michel, E., and Labeyrie, L.: Temperature effect on
respiration and photosynthesis of the symbiont-bearing planktonic
foraminifera Globigerinoides ruber, Orbulina universa, and Globigerinella siphonifera, Limnol. Oceanogr., 54, 210–218,
https://doi.org/10.4319/lo.2009.54.1.0210, 2009.
Lombard, F., da Rocha, R. E., Bijma, J., and Gattuso, J.-P.: Effect of
carbonate ion concentration and irradiance on calcification in planktonic
foraminifera, Biogeosciences, 7, 247–255,
https://doi.org/10.5194/bg-7-247-2010, 2010.
Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau,
S., Howa, H., and Jorissen, F.: Modelling planktic foraminifer growth and
distribution using an ecophysiological multi-species approach,
Biogeosciences, 8, 853–873, https://doi.org/10.5194/bg-8-853-2011, 2011.
Loulergue, L., Parrenin, F., Blunier, T., Barnola, J.-M., Spahni, R., Schilt, A., Raisbeck, G., and Chappellaz, J.: New constraints on the gas age-ice age difference along the EPICA ice cores, 0–50 kyr, Clim. Past, 3, 527–540, https://doi.org/10.5194/cp-3-527-2007, 2007.
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M.,
Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and
Stocker, T. F.: High-resolution carbon dioxide concentration record
650,000–800,000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008.
Margaritelli, G.: Globorotalia truncatulinoides in Central - Western Mediterranean Sea during the Little
Ice Age, Mar. Micropaleontol., 161, 101921, https://doi.org/10.1016/j.marmicro.2020.101921, 2020.
Margaritelli, G., Lirer, F., Schroeder, K., Cloke-Hayes, A., Caruso, A.,
Capotondi, L., Broggy, T., Cacho, I., and Sierro, F. J.: Globorotalia truncatulinoides in the
Mediterranean Basin during the Middle–Late Holocene: Bio-Chronological and
Oceanographic Indicator, Geosciences, 12, 244–258,
https://doi.org/10.3390/geosciences12060244, 2022.
Marshall, B. J., Thunell, R. C., Henehan, M. J., Astor, Y., and Wejnert, K.
E.: Planktonic foraminiferal area density as a proxy for carbonate ion
concentration: A calibration study using the Cariaco Basin ocean time
series: foraminiferal area density [CO ] PROXY,
Paleoceanography, 28, 363–376, https://doi.org/10.1002/palo.20034, 2013.
Marty, J.-C., Chiavérini, J., Pizay, M.-D., and Avril, B.: Seasonal and
interannual dynamics of nutrients and phytoplankton pigments in the western
Mediterranean Sea at the DYFAMED time-series station (1991–1999), Deep-Sea
Res. Pt. II, 49, 1965–1985,
https://doi.org/10.1016/S0967-0645(02)00022-X, 2002.
MedECC: Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future, First Mediterranean Assessment Report, Zenodo, https://doi.org/10.5281/ZENODO.4768833, 2020.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.:
measurement of the apparent dissociation constants of carbonic acid in
seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907,
https://doi.org/10.4319/lo.1973.18.6.0897, 1973.
Meier, K. J. S., Beaufort, L., Heussner, S., Ziveri, P., and Université,
A.-M.: The role of ocean acidification in Emiliania huxleyi coccolith thinning in the
Mediterranean Sea, Biogeosciences, 11, 2857–2869, https://doi.org/10.5194/bg-11-2857-2014, 2014.
Millot, C.: The Gulf of Lions' hydrodynamics, Cont. Shelf Res.,
10, 885–894, https://doi.org/10.1016/0278-4343(90)90065-T, 1990.
Monaco, A., de Madron, X. D., Radakovitch, O., Heussner, S., and Carbonne,
J.: Origin and variability of downward biogeochemical fluxes on the Rhone
continental margin (NW mediterranean), Deep-Sea Res. Pt. I, 46, 1483–1511, https://doi.org/10.1016/S0967-0637(99)00014-X, 1999.
Moy, A. D., Howard, W. R., Bray, S. G., and Trull, T. W.: Reduced
calcification in modern Southern Ocean planktonic foraminifera, Nat.
Geosci., 2, 276–280, https://doi.org/10.1038/ngeo460, 2009.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–686,
https://doi.org/10.1038/nature04095, 2005.
Osborne, E. B., Thunell, R. C., Marshall, B. J., Holm, J. A., Tappa, E. J.,
Benitez-Nelson, C., Cai, W., and Chen, B.: Calcification of the planktonic
foraminifera Globigerina bulloides and carbonate ion concentration: Results from the Santa
Barbara Basin, Paleoceanography, 31, 1083–1102,
https://doi.org/10.1002/2016PA002933, 2016.
Pallacks, S., Anglada-Ortiz, G., Belen Martrat, P Graham Mortyn, Grelaud,
M., Incarbona, A., Schiebel, R., Garcia-Orellana, J., and Ziveri, P.:
Western Mediterranean marine cores show that foraminiferal test calcite mass
is being influenced by enhanced anthropogenic pressure, AGU Ocean Science Meeting 2020,
https://doi.org/10.13140/RG.2.2.26245.99045, 2020.
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007.
Pujol, C. and Grazzini, C. V.: Distribution patterns of live planktic
foraminifers as related to regional hydrography and productive systems of
the Mediterranean Sea, Mar. Micropaleontol., 25, 187–217,
https://doi.org/10.1016/0377-8398(95)00002-I, 1995.
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H.,
Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling
the depth habitat of planktonic foraminifera in the subtropical eastern
North Atlantic, Biogeosciences, 14, 827–859,
https://doi.org/10.5194/bg-14-827-2017, 2017.
Reimer, P. J. and Reimer, R. W.: A Marine Reservoir Correction Database and
On-Line Interface, Radiocarbon, 43, 461–463,
https://doi.org/10.1017/S0033822200038339, 2001.
Rigual-Hernández, A. S., Sierro, F. J., Bárcena, M. A., Flores, J.
A., and Heussner, S.: Seasonal and interannual changes of planktic
foraminiferal fluxes in the Gulf of Lions (NW Mediterranean) and their
implications for paleoceanographic studies: Two 12-year sediment trap
records, Deep-Sea Res. Pt. I, 66,
26–40, https://doi.org/10.1016/j.dsr.2012.03.011, 2012.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J.
L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero,
F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The Oceanic Sink
for Anthropogenic CO2, Science, 305, 367–371,
https://doi.org/10.1126/science.1097403, 2004.
Schiebel, R.: Planktic foraminiferal sedimentation and the marine calcite
budget: marine calcite budget, Global Biogeochem. Cy., 16, 1065–1086,
https://doi.org/10.1029/2001GB001459, 2002.
Schiebel, R. and Hemleben, C.: Interannual variability of planktic
foraminiferal populations and test flux in the eastern North Atlantic Ocean
(JGOFS), Deep-Sea Res. Pt. II, 47, 1809–1852, https://doi.org/10.1016/S0967-0645(00)00008-4, 2000.
Schiebel, R. and Hemleben, C.: Modern planktic foraminifera, Palaeont. Z.,
79, 135–148, 2005.
Schiebel, R. and Hemleben, C.: Planktic Foraminifers in the Modern Ocean,
Springer Berlin Heidelberg, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-662-50297-6, 2017.
Schiebel, R., Waniek, J., Bork, M., and Hemleben, C.: Planktic foraminiferal
production stimulated by chlorophyll redistribution and entrainment of
nutrients, Deep-Sea Res. Pt. I, 48,
721–740, https://doi.org/10.1016/S0967-0637(00)00065-0, 2001.
Schiebel, R., Waniek, J., Zeltner, A., and Alves, M.: Impact of the Azores
Front on the distribution of planktic foraminifers, shelled gastropods, and
coccolithophorids, Deep-Sea Res. Pt. II, 49, 4035–4050, https://doi.org/10.1016/S0967-0645(02)00141-8,
2002.
Schmidt, D. N., Thierstein, H. R., and Bollmann, J.: The evolutionary history of size variation of planktic foraminiferal assemblages in the Cenozoic, 17 datasets, https://doi.org/10.1594/PANGAEA.694693, 2004.
Schneider, A., Wallace, D. W. R., and Körtzinger, A.: Alkalinity of the
Mediterranean Sea: alkalinity of the mediterranean sea, Geophys. Res. Lett.,
34, 15, https://doi.org/10.1029/2006GL028842, 2007.
Spero, H. J., Lerche, I., and Williams, D. F.: Opening the carbon isotope “vital effect” black box, 2, Quantitative model for interpreting foraminiferal carbon isotope data, Paleoceanography, 6, 639–655, https://doi.org/10.1029/91PA02022, 1991.
Stuiver, M. and Braziunas, T. F.: Modeling Atmospheric 14C Influences
and 14C Ages of Marine Samples to 10,000 BC, Radiocarbon, 35,
137–189, https://doi.org/10.1017/S0033822200013874, 1993.
Stuiver, M. and Reimer, P. J.: Extended 14 C Data Base and Revised
CALIB 3.0 14C Age Calibration Program, Radiocarbon, 35, 215–230,
https://doi.org/10.1017/S0033822200013904, 1993.
Takagi, H., Kimoto, K., Fujiki, T., Saito, H., Schmidt, C., Kucera, M., and
Moriya, K.: Characterizing photosymbiosis in modern planktonic foraminifera,
Biogeosciences, 16, 3377–3396, https://doi.org/10.5194/bg-16-3377-2019,
2019.
Wacker, U., Fiebig, J., and Schoene, B. R.: Clumped isotope analysis of carbonates: comparison of two different acid digestion techniques: Clumped isotope analysis of carbonates, Rapid Commun. Mass Spectrom., 27, 1631–1642, https://doi.org/10.1002/rcm.6609, 2013.
Weinkauf, M. F. G., Kunze, J. G., Waniek, J. J., and Kučera, M.:
Seasonal Variation in Shell Calcification of Planktonic Foraminifera in the
NE Atlantic Reveals Species-Specific Response to Temperature, Productivity,
and Optimum Growth Conditions, PLoS ONE, 11, e0148363,
https://doi.org/10.1371/journal.pone.0148363, 2016
Wilke, I., Meggers, H., and Bickert, T.: Depth habitats and seasonal
distributions of recent planktic foraminifers in the Canary Islands region
(29∘ N) based on oxygen isotopes, Deep-Sea Res. Pt. I, 56, 89–106,
https://doi.org/10.1016/j.dsr.2008.08.001, 2009.
Zarkogiannis, S. D., Iwasaki, S., Rae, J. W. B., Schmidt, M. W., Mortyn, P.
G., Kontakiotis, G., Hertzberg, J. E., and Rickaby, R. E. M.: Calcification,
Dissolution and Test Properties of Modern Planktonic Foraminifera From the
Central Atlantic Ocean, Front. Mar. Sci., 9, 864801,
https://doi.org/10.3389/fmars.2022.864801, 2022.
Ziveri, P.: Research turns to acidification and warming in the Mediterranean Sea, IMBER (Integrated Marine Biogeochemistry and Ecosystem Research), Newsletter, 20, 2012.
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic...
Altmetrics
Final-revised paper
Preprint