Articles | Volume 20, issue 10
https://doi.org/10.5194/bg-20-1937-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1937-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia
Kyle E. Hinson
CORRESPONDING AUTHOR
Virginia Institute of Marine Science, William & Mary, Gloucester
Point, VA 23062, USA
Marjorie A. M. Friedrichs
Virginia Institute of Marine Science, William & Mary, Gloucester
Point, VA 23062, USA
Raymond G. Najjar
Department of Meteorology and Atmospheric Science, The Pennsylvania
State University, University Park, PA 16802, USA
Maria Herrmann
Department of Meteorology and Atmospheric Science, The Pennsylvania
State University, University Park, PA 16802, USA
Zihao Bian
International Center for Climate and Global Change, Auburn University,
Auburn, AL 36849, USA
Gopal Bhatt
Department of Civil & Environmental Engineering, The Pennsylvania
State University, State College, PA 16801, USA
United States Environmental Protection Agency Chesapeake Bay Program
Office, Annapolis, MD 21401, USA
Pierre St-Laurent
Virginia Institute of Marine Science, William & Mary, Gloucester
Point, VA 23062, USA
Hanqin Tian
Schiller Institute for Integrated Science and Society, Department of
Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467,
USA
Gary Shenk
U.S. Geological Survey, Virginia/West Virginia Water Science Center,
Richmond, VA 23228, USA
United States Environmental Protection Agency Chesapeake Bay Program
Office, Annapolis, MD 21401, USA
Related authors
No articles found.
Catherine R. Czajka, Marjorie A. M. Friedrichs, Emily B. Rivest, Pierre St-Laurent, Mark J. Brush, and Fei Da
Biogeosciences, 22, 3181–3206, https://doi.org/10.5194/bg-22-3181-2025, https://doi.org/10.5194/bg-22-3181-2025, 2025
Short summary
Short summary
Under future acidification, warming, and nutrient management, substantial reductions in shell and tissue weights of Eastern oysters are projected for the Chesapeake Bay. Lower oyster growth rates will be largely driven by reduced calcium carbonate saturation states and reduced food availability. Oyster aquaculture practices in the region will likely be affected, with site selection becoming increasingly important as impacts will be highly spatially variable.
Seyi Ajayi, Raymond Najjar, Emily Rivest, Ryan Woodland, Marjorie A. M. Friedrichs, Pierre St-Laurent, and Spencer Davis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1315, https://doi.org/10.5194/egusphere-2025-1315, 2025
Short summary
Short summary
Even though bottom-dwelling animals in coastal waters are well studied, their impact on carbon cycling is unclear. We analyzed thousands of bivalves in Chesapeake Bay to understand what shapes their distribution and role in carbon movement. Bivalves were most abundant in shallow, low-salinity waters with moderate oxygen and high nitrate. They use 17–50 % of available carbon in the Upper Bay, and their carbon dioxide output exceeds what escapes into the air, highlighting their ecosystem impact.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Hanqin Tian, Zihao Bian, Hao Shi, Xiaoyu Qin, Naiqing Pan, Chaoqun Lu, Shufen Pan, Francesco N. Tubiello, Jinfeng Chang, Giulia Conchedda, Junguo Liu, Nathaniel Mueller, Kazuya Nishina, Rongting Xu, Jia Yang, Liangzhi You, and Bowen Zhang
Earth Syst. Sci. Data, 14, 4551–4568, https://doi.org/10.5194/essd-14-4551-2022, https://doi.org/10.5194/essd-14-4551-2022, 2022
Short summary
Short summary
Nitrogen is one of the critical nutrients for growth. Evaluating the change in nitrogen inputs due to human activity is necessary for nutrient management and pollution control. In this study, we generated a historical dataset of nitrogen input to land at the global scale. This dataset consists of nitrogen fertilizer, manure, and atmospheric deposition inputs to cropland, pasture, and rangeland at high resolution from 1860 to 2019.
Zihao Bian, Hanqin Tian, Qichun Yang, Rongting Xu, Shufen Pan, and Bowen Zhang
Earth Syst. Sci. Data, 13, 515–527, https://doi.org/10.5194/essd-13-515-2021, https://doi.org/10.5194/essd-13-515-2021, 2021
Short summary
Short summary
The estimation of manure nutrient production and application is critical for the efficient use of manure nutrients. This study developed four manure nitrogen and phosphorus datasets with high spatial resolution and a long time period (1860–2017) in the US. The datasets can provide useful information for stakeholders and scientists who focus on agriculture, nutrient budget, and biogeochemical cycle.
Cited articles
Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical
downscaling methods suited for wildfire applications, Int. J. Climatol., 32,
772–780, https://doi.org/10.1002/joc.2312, 2012.
Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S.,
Lounsbury, D., and Matonse, A. H.: Examination of change factor
methodologies for climate change impact assessment, Water Resour. Res., 47,
1–10, https://doi.org/10.1029/2010WR009104, 2011.
Ator, S., Schwarz, G. E., Sekellick, A. J., and Bhatt, G.: Predicting
Near-Term Effects of Climate Change on Nitrogen Transport to Chesapeake Bay,
J. Am. Water Resour. As., 58, 4, 578–596,
https://doi.org/10.1111/1752-1688.13017, 2022.
Ator, S. W. and Denver, J. M.: Understanding nutrients in the Chesapeake Bay
watershed and implications for management and restoration – the Eastern
Shore (ver. 1.2, June 2015): U.S. Geological Survey Circular 1406, 72 pp.,
https://doi.org/10.3133/cir1406, 2015.
BACC II Author Team: Second Assessment of Climate Change for the Baltic Sea
Basin, in: Regional Climate Studies, edited by: Bolle, H.-J., Menenti, M., and Ichtiaque Rasool, S., Springer International Publishing,
Cham, https://doi.org/10.1007/978-3-319-16006-1, 2015.
Bartosova, A., Capell, R., Olesen, J. E., Jabloun, M., Refsgaard, J. C.,
Donnelly, C., Hyytiäinen, K., Pihlainen, S., Zandersen, M., and
Arheimer, B.: Future socioeconomic conditions may have a larger impact than
climate change on nutrient loads to the Baltic Sea, Ambio, 48, 1325–1336,
https://doi.org/10.1007/s13280-019-01243-5, 2019.
Basenback, N., Testa, J. M., and Shen, C.: Interactions of Warming and
Altered Nutrient Load Timing on the Phenology of Oxygen Dynamics in
Chesapeake Bay, J. Am. Water Resour. As., 59, 429–445,
https://doi.org/10.1111/1752-1688.13101, 2022.
Bevacqua, E., Shepherd, T. G., Watson, P. A. G., Sparrow, S., Wallom, D.,
and Mitchell, D.: Larger Spatial Footprint of Wintertime Total
Precipitation Extremes in a Warmer Climate, Geophys. Res. Lett., 48, e2020GL091990,
https://doi.org/10.1029/2020GL091990, 2021.
Bever, A. J., Friedrichs, M. A. M., Friedrichs, C. T., Scully, M. E., and
Lanerolle, L. W. J.: Combining observations and numerical model results to
improve estimates of hypoxic volume within the Chesapeake Bay, USA, J.
Geophys. Res.-Oceans, 118, 4924–4944,
https://doi.org/10.1002/jgrc.20331, 2013.
Bever, A. J., Friedrichs, M. A. M., Friedrichs, C. T., and Scully, M. E.:
Estimating Hypoxic Volume in the Chesapeake Bay Using Two Continuously
Sampled Oxygen Profiles, J. Geophys. Res.-Oceans, 123, 6392–6407,
https://doi.org/10.1029/2018JC014129, 2018.
Bever, A. J., Friedrichs, M. A. M., and St-Laurent, P.: Real-time
environmental forecasts of the Chesapeake Bay: Model setup, improvements,
and online visualization, Environ. Model. Softw., 140, 105036, https://doi.org/10.1016/j.envsoft.2021.105036, 2021.
Bosshard, T., Carambia, M., Goergen, K., Kotlarski, S., Krahe, P., Zappa,
M., and Schär, C.: Quantifying uncertainty sources in an ensemble of
hydrological climate-impact projections, Water Resour. Res., 49,
1523–1536, https://doi.org/10.1029/2011WR011533, 2013.
Bossier, S., Nielsen, J. R., Almroth-Rosell, E., Höglund, A., Bastardie,
F., Neuenfeldt, S., Wåhlström, I., and Christensen, A.: Integrated
ecosystem impacts of climate change and eutrophication on main Baltic
fishery resources, Ecol. Modell., 453, 109609, https://doi.org/10.1016/j.ecolmodel.2021.109609, 2021.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science, 359, 6371, https://doi.org/10.1126/science.aam7240, 2018.
C3S (Copernicus Climate Change Service): ERA5: Fifth Generation of ECMWF
Atmospheric Reanalyses of the Global Climate, Copernicus Climate Change
Service Climate Data Store (CDS),
https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 16 April 2021), 2017.
Cerco, C. F. and Tian, R.: Impact of Wetlands Loss and Migration, Induced by Climate Change, on Chesapeake Bay DO Standards, J. Am. Water Resour. Assoc., 58, 958–970, https://doi.org/10.1111/1752-1688.12919, 2022.
Cai, X., Shen, J., Zhang, Y. J., Qin, Q., Wang, Z., and Wang, H.: Impacts
of Sea-Level Rise on Hypoxia and Phytoplankton Production in Chesapeake Bay:
Model Prediction and Assessment, J. Am. Water Resour. As., 58, 922–939,
https://doi.org/10.1111/1752-1688.12921, 2021.
Carter, T. R., Parry, M. L., Nishioka, S., and Harasawa, H.: Technical
Guidelines for Assessing Climate Change Impacts and Adaptations.
Intergovernmental Pane1 on Climate Change Working Group II, University
College London and Center for Global Environmental Research, Japan, 60 pp., 1994.
Chang, S. Y., Zhang, Q., Byrnes, D. K., Basu, N. B., and van Meter, K. J.:
Chesapeake legacies: The importance of legacy nitrogen to improving
Chesapeake Bay water quality, Environ. Res. Lett., 16, 085002,
https://doi.org/10.1088/1748-9326/ac0d7b, 2021.
Chesapeake Bay Program: Chesapeake Assessment and Scenario Tool (CAST)
Version 2019, Chesapeake Bay Program Office, https://cast.chesapeakebay.net/ (last access: 3 August 2021), 2020.
CBP DataHub: Chesapeake Bay Program DataHub: http://data.chesapeakebay.net/WaterQuality,
last access: 18 April 2022.
Cubasch, U., Wuebbles, D., Chen, D., Facchini, M. C., Frame, D., Mahowald, N., and
Winther, J.-G.: Introduction, in: Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex,
V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 2013.
Da, F., Friedrichs, M. A. M., St-Laurent, P., Shadwick, E. H., Najjar, R.
G., and Hinson, K. E.: Mechanisms Driving Decadal Changes in the Carbonate
System of a Coastal Plain Estuary, J. Geophys. Res.-Oceans, 126, 1–23,
https://doi.org/10.1029/2021JC017239, 2021.
Dussin, R., Curchitser, E. N., Stock, C. A., and Van Oostende, N.:
Biogeochemical drivers of changing hypoxia in the California Current
Ecosystem, Deep-Sea Res. Pt. II, 169–170, 104590,
https://doi.org/10.1016/j.dsr2.2019.05.013, 2019.
Feng, Y., Friedrichs, M. A. M., Wilkin, J., Tian, H., Yang, Q., Hofmann, E.
E., Wiggert, J. D., and Hood, R. R.: Chesapeake Bay nitrogen fluxes derived
from a land- estuarine ocean biogeochemical modeling system: Model
description, evaluation, and nitrogen budgets, J. Geophys. Res.-Biogeo., 120, 1666–1695, https://doi.org/10.1002/2017JG003800, 2015.
Fennel, K. and Laurent, A.: N and P as ultimate and proximate limiting nutrients in the northern Gulf of Mexico: implications for hypoxia reduction strategies, Biogeosciences, 15, 3121–3131, https://doi.org/10.5194/bg-15-3121-2018, 2018.
Fennel, K., Gehlen, M., Brasseur, P., Brown, C. W., Ciavatta, S., Cossarini,
G., Crise, A., Edwards, C. A., Ford, D., Friedrichs, M. A. M., Gregoire, M.,
Jones, E., Kim, H.-C., Lamouroux, J., Murtugudde, R., Perruche, C., and the
GODAE OceanView Marine Ecosystem Analysis and Prediction Task Team:
Advancing Marine Biogeochemical and Ecosystem Reanalyses and Forecasts as
Tools for Monitoring and Managing Ecosystem Health, Front. Mar. Sci., 6, 89,
https://doi.org/10.3389/fmars.2019.00089, 2019.
Frankel, L. T., Friedrichs, M. A. M., St-Laurent, P., Bever, A. J., Lipcius,
R. N., Bhatt, G., and Shenk, G. W.: Nitrogen reductions have decreased
hypoxia in the Chesapeake Bay: Evidence from empirical and numerical
modeling, Sci. Total Environ., 814, 152722,
https://doi.org/10.1016/j.scitotenv.2021.152722, 2022.
Gilbert, D., Rabalais, N. N., Díaz, R. J., and Zhang, J.: Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean, Biogeosciences, 7, 2283–2296, https://doi.org/10.5194/bg-7-2283-2010, 2010.
Große, F., Fennel, K., Zhang, H., and Laurent, A.: Quantifying the contributions of riverine vs. oceanic nitrogen to hypoxia in the East China Sea, Biogeosciences, 17, 2701–2714, https://doi.org/10.5194/bg-17-2701-2020, 2020.
Gudmundsson, L., Boulange, J., Do, H. X., Gosling, S. N., Grillakis, M. G.,
Koutroulis, A. G., Leonard, M., Liu, J., Schmied, H. M., Papadimitriou, L.,
Pokhrel, Y., Seneviratne, S. I., Satoh, Y., Thiery, W., Westra, S., Zhang,
X., and Zhao, F.: Globally observed trends in mean and extreme river flow
attributed to climate change, Science, 371, 6534, 1159–1162,
https://doi.org/10.1126/science.aba3996, 2021.
Hagy, J. D., Boynton, W. R., Keefe, C. W., and Wood, K. V.: Hypoxia in
Chesapeake Bay, 1950–2001: Long-term change in relation to nutrient loading
and river flow, Estuaries, 27, 634–658,
https://doi.org/10.1007/BF02907650, 2004.
Hanson, J., Bock, E., Asfaw, B., and Easton, Z. M.: A systematic review of
Chesapeake Bay climate change impacts and uncertainty: watershed processes,
pollutant delivery and BMP performance, CBP/TRS-330-22,
https://bit.ly/BMP-CC-synth (last access: 20 September 2022), 2022.
Harding, L. W., Mallonee, M. E., and Perry, E. S.: Toward a predictive
understanding of primary productivity in a temperate, partially stratified
estuary, Estuar. Coast. Shelf S., 55, 437–463,
https://doi.org/10.1006/ecss.2001.0917, 2002.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in
regional climate predictions, B. Am. Meteorol. Soc., 90, 1095–1107,
https://doi.org/10.1175/2009BAMS2607.1, 2009.
Hein, B., Viergutz, C., Wyrwa, J., Kirchesch, V., and Schöl, A.:
Impacts of climate change on the water quality of the Elbe Estuary
(Germany), J. Appl. Water Eng. Res., 6, 28–39,
https://doi.org/10.1080/23249676.2016.1209438, 2018.
Hinson, K. E., Friedrichs, M. A. M., St-Laurent, P., Da, F., and Najjar, R.
G.: Extent and Causes of Chesapeake Bay Warming, J. Am. Water Resour.
As., 58, 805–825, https://doi.org/10.1111/1752-1688.12916, 2021.
Hinson, K. E., Friedrichs, M. A. M., and St-Laurent, P.: A Data Repository for Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia, Virginia Institute of Marine Science, W&M Scholar Works [data set], https://doi.org/10.25773/5zet-aq32, 2023.
Hirsch, R. M., Moyer, D. L., and Archfield, S. A.: Weighted regressions on
time, discharge, and season (WRTDS), with an application to chesapeake bay
river inputs, J. Am. Water Resour. As., 46, 857–880,
https://doi.org/10.1111/j.1752-1688.2010.00482.x, 2010.
Hong, B., Liu, Z., Shen, J., Wu, H., Gong, W., Xu, H., and Wang, D.:
Potential physical impacts of sea-level rise on the Pearl River Estuary,
China, J. Marine Syst., 201, 103245, https://doi.org/10.1016/j.jmarsys.2019.103245,
2020.
Hood, R. R., Shenk, G. W., Dixon, R. L., Smith, S. M. C., Ball, W. P., Bash,
J. O., Batiuk, R., Boomer, K., Brady, D. C., Cerco, C., Claggett, P., de
Mutsert, K., Easton, Z. M., Elmore, A. J., Friedrichs, M. A. M., Harris, L.
A., Ihde, T. F., Lacher, L., Li, L., Linker, L. C., Miller, A., Moriarty, J., Noe, G. B., Onyullo, G. E., Rose, K., Skalak, K., Tian, R., Veith, T. L., Wainger, L., Weller, D., and Zhang, Y. J.: The
Chesapeake Bay program modeling system: Overview and recommendations for
future development, Ecol. Modell., 456, 109635, https://doi.org/10.1016/j.ecolmodel.2021.109635, 2021.
Howarth, R. W., Swaney, D. P., Boyer, E. W., Marino, R., Jaworski, N., and
Goodale, C.: The influence of climate on average nitrogen export from large
watersheds in the Northeastern United States, Biogeochemistry, 79,
163–186, https://doi.org/10.1007/s10533-006-9010-1, 2006.
Huang, H., Patricola, C. M., Winter, J. M., Osterberg, E. C., and Mankin,
J. S.: Rise in Northeast US extreme precipitation caused by Atlantic
variability and climate change, Weather Clim. Extrem., 33, 100351, https://doi.org/10.1016/j.wace.2021.100351, 2021.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Irby, I. D., Friedrichs, M. A. M., Friedrichs, C. T., Bever, A. J., Hood, R. R., Lanerolle, L. W. J., Li, M., Linker, L., Scully, M. E., Sellner, K., Shen, J., Testa, J., Wang, H., Wang, P., and Xia, M.: Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison, Biogeosciences, 13, 2011–2028, https://doi.org/10.5194/bg-13-2011-2016, 2016.
Irby, I. D., Friedrichs, M. A. M., Da, F., and Hinson, K. E.: The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay, Biogeosciences, 15, 2649–2668, https://doi.org/10.5194/bg-15-2649-2018, 2018.
Jarvis, B. M., Pauer, J. J., Melendez, W., Wan, Y., Lehrter, J. C., Lowe, L.
L., and Simmons, C. W.: Inter-model comparison of simulated Gulf of Mexico
hypoxia in response to reduced nutrient loads: Effects of phytoplankton and
organic matter parameterization, Environ. Model. Softw., 151, 105365,
https://doi.org/10.1016/j.envsoft.2022.105365, 2022.
Justić, D., Rabalais, N. N., and Turner, R. E.: Effects of climate
change on hypoxia in coastal waters: A doubled CO2 scenario for the northern
Gulf of Mexico, Limnol. Oceanogr., 41, 992–1003,
https://doi.org/10.4319/lo.1996.41.5.0992, 1996.
Justić, D., Rabalais, N. N., and Turner, R. E.: Simulated responses of
the Gulf of Mexico hypoxia to variations in climate and anthropogenic
nutrient loading, J. Marine Syst., 42, 115–126,
https://doi.org/10.1016/S0924-7963(03)00070-8, 2003.
Justić, D., Bierman Jr., V. J., Scavia, D., and Hetland, R. D.:
Forecasting Gulf's Hypoxia: The Next 50 Years? Forecasting Gulf's Hypoxia:
The Next 50 Years?, Estuar. Coasts, 30, 791–801,
https://doi.org/10.1007/BF02841334, 2007.
Katsavounidis, I., Kuo, C. C. J., and Zhang, Z.: A New Initialization
Technique for Generalized Lloyd Iteration, IEEE Signal Proc. Lett., 1,
144–146, https://doi.org/10.1109/97.329844, 1994.
Kemp, W. M., Boynton, W. R., Adolf, J. E., Boesch, D. F., Boicourt, W. C.,
Brush, G., Cornwell, J. C., Fisher, T. R., Glibert, P. M., Hagy, J. D.,
Harding, L. W., Houde, E. D., Kimmel, D. G., Miller, W. D., Newell, R. I.
E., Roman, M. R., Smith, E. M., and Stevenson, J. C.: Eutrophication of
Chesapeake Bay: Historical trends and ecological interactions, Mar. Ecol.-Prog. Ser., 303, 1–29, https://doi.org/10.3354/meps303001, 2005.
Lachkar, Z., Lévy, M., and Smith, K. S.: Strong Intensification of the
Arabian Sea Oxygen Minimum Zone in Response to Arabian Gulf Warming,
Geophys. Res. Lett., 46, 5420–5429,
https://doi.org/10.1029/2018GL081631, 2019.
Lajaunie-Salla, K., Sottolichio, A., Schmidt, S., Litrico, X., Binet, G.,
and Abril, G.: Future intensification of summer hypoxia in the tidal
Garonne River (SW France) simulated by a coupled hydro
sedimentary-biogeochemical model, Environ. Sci. Pollut. R., 25, 31957–31970, https://doi.org/10.1007/s11356-018-3035-6, 2018.
Laurent, A., Fennel, K., Ko, D. S., and Lehrter, J.: Climate change
projected to exacerbate impacts of coastal Eutrophication in the Northern
Gulf of Mexico, J. Geophys. Res.-Ocean., 123, 3408–3426,
https://doi.org/10.1002/2017JC013583, 2018.
Lee, M., Shevliakova, E., Malyshev, S., Milly, P. C. D., and Jaffé,
Peter, R.: Climate variability and extremes, interacting with nitrogen
storage, amplify eutrophication risk, Geophys. Res. Lett., 43, 7520–7528,
https://doi.org/10.1002/2016GL069254, 2016.
Lehrter, J. C., Ko, D. S., Lowe, L. L., and Penta, B.: Predicted Effects of
Climate Change on Northern Gulf of Mexico Hypoxia, in: Modeling Coastal Hypoxia:
Numerical Simulations of Patterns, edited by: Justić, D.,
Rose, K. A., Hetland, R. D., and Fennel, K., Controls and Effects of Dissolved Oxygen
Dynamics, 173–214, Springer, https://doi.org/10.1007/978-3-319-54571-4_8, 2017.
Lomas, M. W., Glibert, P. M., Shiah, F. K., and Smith, E. M.: Microbial
processes and temperature in Chesapeake Bay: Current relationships and
potential impacts of regional warming, Glob. Change Biol., 8, 51–70,
https://doi.org/10.1046/j.1365-2486.2002.00454.x, 2002.
MACAv2-METDATA: Climate data for RPA 2020 Assessment: MACAv2 (METDATA) historical modeled (1950–2005) and future (2006–2099) projections for the conterminous United States at the 1/24 degree grid scale, https://data.nal.usda.gov/dataset/climate-data-rpa-2020-assessment-macav2-metdata-historical-modeled-1950-2005-and-future-2006-2099-projections-conterminous-united-states-124-degree-grid-scale,
last access: 25 April 2018.
Madakumbura, G. D., Goldenson, N., and Hall, A.: Over Global Land Areas
Seen in Multiple Observational Datasets, Nat. Commun., 12, 3944,
https://doi.org/10.1038/s41467-021-24262-x, 2021.
Mason, C. A. and Soroka, A. M.: Nitrogen, phosphorus, and suspended-sediment
loads and trends measured at the Chesapeake Bay River Input Monitoring
stations: Water years 1985–2021, U.S. Geological Survey data release [data set],
https://doi.org/10.5066/P90CZJ1Y, 2022.
Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer O., Ebi, K. L.,
Frame, D. J., Held, H., Kriegler, E., Mach, K. J., Matschoss, P. R., Plattner,
G.-K., Yohe, G. W., and Zwiers, F. W.: Guidance Note for Lead Authors of the
IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties.
Intergovernmental Panel on Climate Change (IPCC), https://www.ipcc.ch/site/assets/uploads/2018/05/uncertainty-guidance-note.pdf (last access: 25 September 2022), 2010.
Meier, H. E. M., Andersson, H. C., Eilola, K., Gustafsson, B. G., Kuznetsov,
I., Mller-Karulis, B., Neumann, T., and Savchuk, O. P.: Hypoxia in future
climates: A model ensemble study for the Baltic Sea, Geophys. Res. Lett.,
38, 1–6, https://doi.org/10.1029/2011GL049929, 2011a.
Meier, H. E. M., Eilola, K., and Almroth, E.: Climate-related changes in
marine ecosystems simulated with a 3-dimensional coupled
physical-biogeochemical model of the Baltic Sea, Clim. Res., 48,
31–55,
https://doi.org/10.3354/cr00968, 2011b.
Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A., and Schimanke, S.: Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099, Clim. Dynam., 39, 2421–2441, https://doi.org/10.1007/s00382-012-1339-7, 2012.
Meier, H. E. M., Edman, M., Eilola, K., Placke, M., Neumann, T., Andersson,
H. C., Brunnabend, S. E., Dieterich, C., Frauen, C., Friedland, R.,
Gröger, M., Gustafsson, B. G., Gustafsson, E., Isaev, A., Kniebusch, M.,
Kuznetsov, I., Müller-Karulis, B., Naumann, M., Omstedt, A.,
Ryabchenko, V., Saraiva, S., and Savchuk, O. P.: Assessment of uncertainties in scenario
simulations of biogeochemical cycles in the Baltic Sea, Front. Mar. Sci., 6, 46,
https://doi.org/10.3389/fmars.2019.00046, 2019.
Meier, H. E. M., Dieterich, C., and Gröger, M.: Natural variability is
a large source of uncertainty in future projections of hypoxia in the Baltic
Sea, Commun. Earth Environ., 2, 50, https://doi.org/10.1038/s43247-021-00115-9, 2021.
Meier, H. E. M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F., Safonova, K., Christensen, O. B., and Kjellström, E.: Oceanographic regional climate projections for the Baltic Sea until 2100, Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, 2022.
Meire, L., Soetaert, K. E. R., and Meysman, F. J. R.: Impact of global change on coastal oxygen dynamics and risk of hypoxia, Biogeosciences, 10, 2633–2653, https://doi.org/10.5194/bg-10-2633-2013, 2013.
Milly, P. C. D. and Dunne, K. A.: On the hydrologic adjustment of
climate-model projections: The potential pitfall of potential
evapotranspiration, Earth Interact., 15, 1–14,
https://doi.org/10.1175/2010EI363.1, 2011.
Muhling, B. A., Gaitán, C. F., Stock, C. A., Saba, V. S., Tommasi, D.,
and Dixon, K. W.: Potential Salinity and Temperature Futures for the
Chesapeake Bay Using a Statistical Downscaling Spatial Disaggregation
Framework, Estuar. Coasts, 41, 349–372,
https://doi.org/10.1007/s12237-017-0280-8, 2018.
Murphy, R. R., Keisman, J., Harcum, J., Karrh, R. R., Lane, M., Perry, E.
S., and Zhang, Q.: Nutrient Improvements in Chesapeake Bay: Direct Effect
of Load Reductions and Implications for Coastal Management, Environ. Sci.
Technol., 56, 260–270, https://doi.org/10.1021/acs.est.1c05388, 2022.
Najjar, R. G., Pyke, C. R., Adams, M. B., Breitburg, D., Hershner, C., Kemp,
M., Howarth, R., Mulholland, M. R., Paolisso, M., Secor, D., Sellner, K.,
Wardrop, D., and Wood, R.: Potential climate-change impacts on the
Chesapeake Bay, Estuar. Coast. Shelf S., 86, 1–20,
https://doi.org/10.1016/j.ecss.2009.09.026, 2010.
Nash, J. E. and Sutcliffe, J. V.: River Flow Forecasting through
Conceptual Models Part I – A Discussion of Principles*, J. Hydrol., 10,
282–290, 1970.
Neumann, T., Eilola, K., Gustafsson, B., Müller-Karulis, B., Kuznetsov,
I., Meier, H. E. M., and Savchuk, O. P.: Extremes of temperature, oxygen
and blooms in the baltic sea in a changing climate, Ambio, 41, 574–585,
https://doi.org/10.1007/s13280-012-0321-2, 2012.
Ni, W., Li, M., Ross, A. C., and Najjar, R. G.: Large Projected Decline in
Dissolved Oxygen in a Eutrophic Estuary Due to Climate Change, J. Geophys.
Res.-Ocean., 124, 8271–8289, https://doi.org/10.1029/2019JC015274,
2019.
Northrop, P. J. and Chandler, R. E.: Quantifying sources of uncertainty in
projections of future climate, J. Climate, 27, 8793–8808,
https://doi.org/10.1175/JCLI-D-14-00265.1, 2014.
Officer, C. B., Biggs, R. B., Taft, J. L., Cronin, L. E., Tyler, M. A., and
Boynton, W. R.: Chesapeake Bay anoxia: Origin, development, and
significance, Science, 223, 22–27,
https://doi.org/10.1126/science.223.4631.22, 1984.
Ohn, I., Kim, S., Seo, S. B., Kim, Y. O., and Kim, Y.: Model-wise
uncertainty decomposition in multi-model ensemble hydrological projections,
Stoch. Env. Res. Risk A., 35, 2549–2565,
https://doi.org/10.1007/s00477-021-02039-4, 2021.
Olson, M.: Guide to Using Chesapeake Bay Program Water Quality Monitoring
Data, edited by: Mallonee, M. and Ley, M. E., Annapolis, MD, Chesapeake Bay
Program, 2012.
Pan, S., Bian, Z., Tian, H., Yao, Y., Najjar, R. G., Friedrichs, M. A. M.,
Hofmann, E. E., Xu, R., and Zhang, B.: Impacts of Multiple Environmental
Changes on Long-Term Nitrogen Loading From the Chesapeake Bay Watershed, J.
Geophys. Res.-Biogeo., 126, e2020JG005826, https://doi.org/10.1029/2020JG005826,
2021.
Pawlowicz, R.: M_Map: A mapping package for MATLAB, version
1.4m [Computer software], https://www.eoas.ubc.ca/~rich/map.html (last access: 1 October 2022), 2020.
Peterson, E. L.: Benthic shear stress and sediment condition, Aquacult. Eng.,
21, 85–111, https://doi.org/10.1016/S0144-8609(99)00025-4, 1999.
Pihlainen, S., Zandersen, M., Hyytiäinen, K., Andersen, H. E.,
Bartosova, A., Gustafsson, B., Jabloun, M., McCrackin, M., Meier, H. E. M.,
Olesen, J. E., Saraiva, S., Swaney, D., and Thodsen, H.: Impacts of changing
society and climate on nutrient loading to the Baltic Sea, Sci. Total Environ.,
731, 138935, https://doi.org/10.1016/j.scitotenv.2020.138935, 2020.
Pozo Buil, M., Jacox, M. G., Fiechter, J., Alexander, M. A., Bograd, S. J.,
Curchitser, E. N., Edwards, C. A., Rykaczewski, R. R., and Stock, C. A.: A
Dynamically Downscaled Ensemble of Future Projections for the California
Current System, Front. Mar. Sci., 8, 1–18,
https://doi.org/10.3389/fmars.2021.612874, 2021.
Prudhomme, C., Reynard, N., and Crooks, S.: Downscaling of global climate
models for flood frequency analysis: Where are we now?, Hydrol. Process.,
16, 1137–1150, https://doi.org/10.1002/hyp.1054, 2002.
Reclamation: Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with preceding Information, and Summary of User Needs, prepared by the U.S. Department of the Interior, Bureau of Reclamation, Technical Services Center, Denver, Colorado, 47 pp., https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html (last access: 30 July 2021), 2013.
Reum, J. C. P., Blanchard, J. L., Holsman, K. K., Aydin, K., Hollowed, A.
B., Hermann, A. J., Cheng, W., Faig, A., Haynie, A. C., and Punt, A. E.:
Ensemble Projections of Future Climate Change Impacts on the Eastern Bering
Sea Food Web Using a Multispecies Size Spectrum Model, Front. Mar. Sci., 7,
1–17, https://doi.org/10.3389/fmars.2020.00124, 2020.
Ross, A. C. and Najjar, R. G.: Evaluation of methods for selecting climate
models to simulate future hydrological change, Climatic Change, 157,
407–428, https://doi.org/10.1007/s10584-019-02512-8, 2019.
Ryabchenko, V. A., Karlin, L. N., Isaev, A. V., Vankevich, R. E., Eremina,
T. R., Molchanov, M. S., and Savchuk, O. P.: Model estimates of the
eutrophication of the Baltic Sea in the contemporary and future climate,
Oceanology, 56, 36–45, https://doi.org/10.1134/S0001437016010161, 2016.
Saraiva, S., Markus Meier, H. E., Andersson, H., Höglund, A., Dieterich,
C., Gröger, M., Hordoir, R., and Eilola, K.: Baltic Sea ecosystem
response to various nutrient load scenarios in present and future climates,
Clim. Dynam., 52, 3369–3387, https://doi.org/10.1007/s00382-018-4330-0,
2019a.
Saraiva, S., Markus Meier, H. E., Andersson, H., Höglund, A., Dieterich,
C., Gröger, M., Hordoir, R., and Eilola, K.: Uncertainties in
projections of the Baltic Sea ecosystem driven by an ensemble of global
climate models, Front. Earth Sci., 6, 1–18,
https://doi.org/10.3389/feart.2018.00244, 2019b.
Schaefer, S. C. and Alber, M.: Temperature controls a latitudinal gradient
in the proportion of watershed nitrogen exported to coastal ecosystems,
Biogeochemistry, 85, 333–346, https://doi.org/10.1007/s10533-007-9144-9,
2007.
Shchepetkin, A. F. and McWilliams, J. C.: The Regional Oceanic Modeling
System (ROMS): A Split-Explicit, Free-Surface,
Topography-Following-Coordinate Oceanic Model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Shenk, G., Bennett, M., Boesch, D., Currey, L., Friedrichs, M., Herrmann, M.,
Hood, R., Johnson, T., Linker, L., Miller, A., and Montali, D.: Chesapeake
Bay Program Climate Change Modeling 2.0 Workshop, STAC Publication Number
21-003, Edgewater, MD, 35 pp., https://www.chesapeake.org/stac/wp-content/uploads/2021/07/Final_STAC-Report-Climate-Change_7.22.2021.pdf (last access: 15 September 2022), 2021a.
Shenk, G. W., Bhatt, G., Tian, R., Cerco, C. F., Bertani, I., and Linker, L. C.: Modeling Climate Change Effects on Chesapeake Water Quality Standards
and Development of 2025 Planning Targets to Address Climate Change, CBPO
Publication Number 328-21, Annapolis, MD, 145 pp., 2021b.
Siedlecki, S. A., Pilcher, D., Howard, E. M., Deutsch, C., MacCready, P., Norton, E. L., Frenzel, H., Newton, J., Feely, R. A., Alin, S. R., and Klinger, T.: Coastal processes modify projections of some climate-driven stressors in the California Current System, Biogeosciences, 18, 2871–2890, https://doi.org/10.5194/bg-18-2871-2021, 2021.
Sinha, E., Michalak, A. M., and Balaji, V.: Eutrophication will increase
during the 21st century as a result of precipitation changes, Science, 357,
6349, https://doi.org/10.1126/science.aan2409, 2017.
Springer, G. S., Dowdy, H. S., and Eaton, L. S.: Sediment budgets for two
mountainous basins affected by a catastrophic storm: Blue ridge mountains,
Virginia, Geomorphology, 37, 135–148,
https://doi.org/10.1016/S0169-555X(00)00066-0, 2001.
St-Laurent, P., Friedrichs, M. A., Li, M., and Ni, W.: Impacts of sea level rise on hypoxia in the Chesapeake Bay: A model intercomparison, Virginia Institute of Marine Science, William and Mary, https://doi.org/10.25773/42XY-JT30, 2019.
St-Laurent, P., Friedrichs, M. A. M., Najjar, R. G., Shadwick, E. H., Tian, H., and Yao, Y.: Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay, Biogeosciences, 17, 3779–3796, https://doi.org/10.5194/bg-17-3779-2020, 2020.
Tango, P. J. and Batiuk, R. A.: Chesapeake Bay recovery and factors
affecting trends: Long-term monitoring, indicators, and insights, Reg. Stud.
Mar. Sci., 4, 12–20, https://doi.org/10.1016/j.rsma.2015.11.010, 2016.
Tebaldi, C., Arblaster, J. M., and Knutti, R.: Mapping model agreement on
future climate projections, Geophys. Res. Lett., 38, 1–5,
https://doi.org/10.1029/2011GL049863, 2011.
Testa, J. M., Murphy, R. R., Brady, D. C., and Kemp, W. M.: Nutrient-and
climate-induced shifts in the phenology of linked biogeochemical cycles in a
temperate estuary, Front. Mar. Sci., 5, 114,
https://doi.org/10.3389/fmars.2018.00114, 2018.
Testa, J. M., Basenback, N., Shen, C., Cole, K., Moore, A., Hodgkins, C.,
and Brady, D. C.: Modeling Impacts of Nutrient Loading, Warming, and
Boundary Exchanges on Hypoxia and Metabolism in a Shallow Estuarine
Ecosystem, J. Am. Water Resour. As., 58, 876–897,
https://doi.org/10.1111/1752-1688.12912, 2021.
Tian, R., Cerco, C. F., Bhatt, G., Linker, L. C., and Shenk, G. W.:
Mechanisms Controlling Climate Warming Impact on the Occurrence of Hypoxia
in Chesapeake Bay, J. Am. Water Resour. As., 1–21,
https://doi.org/10.1111/1752-1688.12907, 2021.
USEPA (U.S. Environmental Protection Agency): Chesapeake Bay Total Maximum
Daily Load for Nitrogen, Phosphorus and Sediment, Annapolis, MD, U.S.
Environmental Protection Agency Chesapeake Bay Program Office, http://www.epa.gov/ reg3wapd/tmdl/ChesapeakeBay/tmdlexec.html (last access: 20 September 2022), 2010.
U.S. Geological Survey: USGS water data for the Nation: U.S.
Geological Survey National Water Information System database [data set], https://doi.org/10.5066/F7P55KJN, 2022.
Vetter, T., Reinhardt, J., Flörke, M., van Griensven, A., Hattermann,
F., Huang, S., Koch, H., Pechlivanidis, I. G., Plötner, S., Seidou, O.,
Su, B., Vervoort, R. W., and Krysanova, V.: Evaluation of sources of
uncertainty in projected hydrological changes under climate change in 12
large-scale river basins, Climatic Change, 141, 419–433,
https://doi.org/10.1007/s10584-016-1794-y, 2017.
Wade, A. J., Skeffington, R. A., Couture, R.-M., Erlandsson Lampa, M.,
Groot, S., Halliday, S. J., Harezlak, V., Hejzlar, J., Jackson-Blake, L. A.,
Lepistö, A., Papastergiadou, E., Riera, J. L., Rankinen, K.,
Shahgedanova, M., Trolle, D., Whitehead, P. G., Psaltopoulos, D., and
Skuras, D.: Land Use Change to Reduce Freshwater Nitrogen and Phosphorus
will Be Effective Even with Projected Climate Change, Water, 14, 829,
https://doi.org/10.3390/w14050829, 2022.
Wagena, M. B., Collick, A. S., Ross, A. C., Najjar, R. G., Rau, B.,
Sommerlot, A. R., Fuka, D. R., Kleinman, P. J. A., and Easton, Z. M.:
Impact of climate change and climate anomalies on hydrologic and
biogeochemical processes in an agricultural catchment of the Chesapeake Bay
watershed, USA, Sci. Total Environ., 637–638, 1443–1454,
https://doi.org/10.1016/j.scitotenv.2018.05.116, 2018.
Wåhlström, I., Höglund, A., Almroth-Rosell, E., MacKenzie, B.
R., Gröger, M., Eilola, K., Plikshs, M., and Andersson, H. C.: Combined
climate change and nutrient load impacts on future habitats and
eutrophication indicators in a eutrophic coastal sea, Limnol. Oceanogr.,
1–18, https://doi.org/10.1002/lno.11446, 2020.
Wakelin, S. L., Artioli, Y., Holt, J. T., Butenschön, M., and
Blackford, J.: Controls on near-bed oxygen concentration on the Northwest
European Continental Shelf under a potential future climate scenario, Prog.
Oceanogr., 93, https://doi.org/10.1016/j.pocean.2020.102400, 2020.
Wang, H. M., Chen, J., Xu, C. Y., Zhang, J., and Chen, H.: A Framework to
Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in
Hydrological Impacts of Climate Change, Earth's Futur., 8, e2020EF001602,
https://doi.org/10.1029/2020EF001602, 2020.
Wang, P., Linker, L., Wang, H., Bhatt, G., Yactayo, G., Hinson, K. E., and
Tian, R.: Assessing water quality of the Chesapeake Bay by the impact of sea
level rise and warming, IOP C. Ser. Earth Env., 82, 012001, https://doi.org/10.1088/1755-1315/82/1/012001, 2017.
Whitney, M. M.: Observed and projected global warming pressure on coastal hypoxia, Biogeosciences, 19, 4479–4497, https://doi.org/10.5194/bg-19-4479-2022, 2022.
Whitney, M. M. and Vlahos, P.: Reducing Hypoxia in an Urban Estuary
despite Climate Warming, Environ. Sci. Technol., 55, 941–951,
https://doi.org/10.1021/acs.est.0c03964, 2021.
Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J.
L., Travers, S. E., Pau, S., Regetz, J., Davies, T. J., Kraft, N. J. B.,
Ault, T. R., Bolmgren, K., Mazer, S. J., McCabe, G. J., McGill, B. J.,
Parmesan, C., Salamin, N., Schwartz, M. D., and Cleland, E. E.: Warming
experiments underpredict plant phenological responses to climate change,
Nature, 485, 494–497, https://doi.org/10.1038/nature11014, 2012.
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic
implications of dynamical and statistical approaches to downscaling climate
model outputs, Climatic Change, 62, 189–216,
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004.
Xu, J., Long, W., Wiggert, J. D., Lanerolle, L. W. J., Brown, C. W.,
Murtugudde, R., and Hood, R. R.: Climate Forcing and Salinity Variability in
Chesapeake Bay, USA, Estuar. Coasts, 35, 237–261,
https://doi.org/10.1007/s12237-011-9423-5, 2011.
Yang, Q., Tian, H., Friedrichs, M. A. M., Liu, M., Li, X., and Yang, J.:
Hydrological responses to climate and land-use changes along the north
american east coast: A 110-Year historical reconstruction, J. Am. Water
Resour. As., 51, 47–67, https://doi.org/10.1111/jawr.12232, 2015.
Yang, X., Wang, X., Cai, Z., and Cao, W.: Detecting spatiotemporal
variations of maximum rainfall intensities at various time intervals across
Virginia in the past half century, Atmos. Res., 255, 105534,
https://doi.org/10.1016/j.atmosres.2021.105534, 2021.
Yao, Y., Tian, H., Pan, S., Najjar, R. G., Friedrichs, M. A. M., Bian, Z.,
Li, H. Y., and Hofmann, E. E.: Riverine Carbon Cycling Over the Past
Century in the Mid-Atlantic Region of the United States, J. Geophys. Res.-Biogeo., 126, e2020JG005968, https://doi.org/10.1029/2020JG005968, 2021.
Yau, Y. Y., Baker, D. M., and Thibodeau, B.: Quantifying the Impact of
Anthropogenic Atmospheric Nitrogen Deposition on the Generation of Hypoxia
under Future Emission Scenarios in Chinese Coastal Waters, Environ. Sci.
Technol., 54, 3920–3928, https://doi.org/10.1021/acs.est.0c00706, 2020.
Yip, S., Ferro, C. A. T., Stephenson, D. B., and Hawkins, E.: A Simple,
coherent framework for partitioning uncertainty in climate predictions, J.
Climate, 24, 4634–4643, https://doi.org/10.1175/2011JCLI4085.1, 2011.
Zahran, A. R., Zhang, Q., Tango, P., and Smith, E. P.: A water quality
barometer for Chesapeake Bay: Assessing spatial and temporal patterns using
long-term monitoring data, Ecol. Indic., 140, 109022,
https://doi.org/10.1016/j.ecolind.2022.109022, 2022.
Zhang, Q., Murphy, R. R., Tian, R., Forsyth, M. K., Trentacoste, E. M.,
Keisman, J., and Tango, P. J.: Chesapeake Bay's water quality condition has
been recovering: Insights from a multimetric indicator assessment of thirty
years of tidal monitoring data, Sci. Total Environ., 637–638, 1617–1625,
https://doi.org/10.1016/j.scitotenv.2018.05.025, 2018.
Zhang, W., Moriarty, J. M., Wu, H., and Feng, Y.: Response of bottom
hypoxia off the Changjiang River Estuary to multiple factors: A numerical
study, Ocean Model., 159, 101751, https://doi.org/10.1016/j.ocemod.2021.101751, 2021.
Zhang, W., Dunne, J. P., Wu, H., and Zhou, F.: Regional projection of
climate warming effects on coastal seas in east China, Environ. Res. Lett.,
17, 074006, https://doi.org/10.1088/1748-9326/ac7344, 2022.
Short summary
Climate impacts are essential for environmental managers to consider when implementing nutrient reduction plans designed to reduce hypoxia. This work highlights relative sources of uncertainty in modeling regional climate impacts on the Chesapeake Bay watershed and consequent declines in bay oxygen levels. The results demonstrate that planned water quality improvement goals are capable of reducing hypoxia levels by half, offsetting climate-driven impacts on terrestrial runoff.
Climate impacts are essential for environmental managers to consider when implementing nutrient...
Altmetrics
Final-revised paper
Preprint