Articles | Volume 21, issue 9
https://doi.org/10.5194/bg-21-2207-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-2207-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Divergent biophysical responses of western United States forests to wildfire driven by eco-climatic gradients
Surendra Shrestha
CORRESPONDING AUTHOR
Graduate School of Geography, Clark University, Worcester, MA 01610, USA
Christopher A. Williams
Graduate School of Geography, Clark University, Worcester, MA 01610, USA
Brendan M. Rogers
Woodwell Climate Research Center, Falmouth, MA 02540, USA
John Rogan
Graduate School of Geography, Clark University, Worcester, MA 01610, USA
Dominik Kulakowski
Graduate School of Geography, Clark University, Worcester, MA 01610, USA
Related authors
No articles found.
Anna Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-526, https://doi.org/10.5194/essd-2024-526, 2024
Preprint under review for ESSD
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a data set of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Lucas R. Diaz, Clement J. F. Delcourt, Moritz Langer, Michael M. Loranty, Brendan M. Rogers, Rebecca C. Scholten, Tatiana A. Shestakova, Anna C. Talucci, Jorien E. Vonk, Sonam Wangchuk, and Sander Veraverbeke
Earth Syst. Dynam., 15, 1459–1482, https://doi.org/10.5194/esd-15-1459-2024, https://doi.org/10.5194/esd-15-1459-2024, 2024
Short summary
Short summary
Our study in eastern Siberia investigated how fires affect permafrost thaw depth in larch forests. We found that fire induces deeper thaw, yet this process was mediated by topography and vegetation. By combining field and satellite data, we estimated summer thaw depth across an entire fire scar. This research provides insights into post-fire permafrost dynamics and the use of satellite data for mapping fire-induced permafrost thaw.
Elchin E. Jafarov, Helene Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-158, https://doi.org/10.5194/gmd-2024-158, 2024
Preprint under review for GMD
Short summary
Short summary
Thawing permafrost could greatly impact global climate. Our study improves modeling of carbon cycling in Arctic ecosystems. We developed an automated method to fine-tune a model that simulates carbon and nitrogen flows, using computer-generated data. Using computer-generated data, we tested our method and found it enhances accuracy and reduces the time needed for calibration. This work helps make climate predictions more reliable in sensitive permafrost regions.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Thomas D. Hessilt, Brendan M. Rogers, Rebecca C. Scholten, Stefano Potter, Thomas A. J. Janssen, and Sander Veraverbeke
Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, https://doi.org/10.5194/bg-21-109-2024, 2024
Short summary
Short summary
In boreal North America, snow and frozen ground prevail in winter, while fires occur in summer. Over the last 20 years, the northwestern parts have experienced earlier snow disappearance and more ignitions. This is opposite to the southeastern parts. However, earlier ignitions following earlier snow disappearance timing led to larger fires across the region. Snow disappearance timing may be a good proxy for ignition timing and may also influence important atmospheric conditions related to fires.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
Michael Moubarak, Seeta Sistla, Stefano Potter, Susan M. Natali, and Brendan M. Rogers
Biogeosciences, 20, 1537–1557, https://doi.org/10.5194/bg-20-1537-2023, https://doi.org/10.5194/bg-20-1537-2023, 2023
Short summary
Short summary
Tundra wildfires are increasing in frequency and severity with climate change. We show using a combination of field measurements and computational modeling that tundra wildfires result in a positive feedback to climate change by emitting significant amounts of long-lived greenhouse gasses. With these effects, attention to tundra fires is necessary for mitigating climate change.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Alexandre A. Renchon, Anne Griebel, Daniel Metzen, Christopher A. Williams, Belinda Medlyn, Remko A. Duursma, Craig V. M. Barton, Chelsea Maier, Matthias M. Boer, Peter Isaac, David Tissue, Victor Resco de Dios, and Elise Pendall
Biogeosciences, 15, 3703–3716, https://doi.org/10.5194/bg-15-3703-2018, https://doi.org/10.5194/bg-15-3703-2018, 2018
Short summary
Short summary
We report the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) in a temperate evergreen broadleaved forest in Sydney, Australia. We investigated how carbon exchange varied with climatic drivers and canopy dynamics (leaf area index, litter fall). We found that our site acted as a net source of carbon in summer and a net sink in winter. Ecosystem respiration (ER) drove NEE seasonality, as the seasonal amplitude of ER was greater than gross primary productivity.
Alejandro Casteller, Thomas Häfelfinger, Erika Cortés Donoso, Karen Podvin, Dominik Kulakowski, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 18, 1173–1186, https://doi.org/10.5194/nhess-18-1173-2018, https://doi.org/10.5194/nhess-18-1173-2018, 2018
Short summary
Short summary
Natural hazards such as snow avalanches, debris flows and volcanic activity represent a risk to mountain communities. This is particularly the case where documentary records about these processes are rare. As a result, decisions on risk management and land-use planning are based on other sources such tree-ring data and process models. Our study was conducted at Valle Las Trancas in Chile, where we evaluated the dynamics of avalanches and other natural hazards which threaten its population.
Martin G. De Kauwe, Belinda E. Medlyn, Jürgen Knauer, and Christopher A. Williams
Biogeosciences, 14, 4435–4453, https://doi.org/10.5194/bg-14-4435-2017, https://doi.org/10.5194/bg-14-4435-2017, 2017
Short summary
Short summary
Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere. We combined an extensive literature summary with estimates of coupling derived from FLUXNET data. We found notable departures from the values previously reported. These data form a model benchmarking metric to test existing coupling assumptions.
Guido R. van der Werf, James T. Randerson, Louis Giglio, Thijs T. van Leeuwen, Yang Chen, Brendan M. Rogers, Mingquan Mu, Margreet J. E. van Marle, Douglas C. Morton, G. James Collatz, Robert J. Yokelson, and Prasad S. Kasibhatla
Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, https://doi.org/10.5194/essd-9-697-2017, 2017
Short summary
Short summary
Fires occur in many vegetation types and are sometimes natural but often ignited by humans for various purposes. We have estimated how much area they burn globally and what their emissions are. Total burned area is roughly equivalent to the size of the EU with most fires burning in tropical savannas. Their emissions vary substantially from year to year and contribute to the atmospheric burdens of many trace gases and aerosols. The 20-year dataset is mostly suited for large-scale assessments.
Huan Gu, Christopher A. Williams, Bardan Ghimire, Feng Zhao, and Chengquan Huang
Biogeosciences, 13, 6321–6337, https://doi.org/10.5194/bg-13-6321-2016, https://doi.org/10.5194/bg-13-6321-2016, 2016
Short summary
Short summary
We introduce a new method of quantifying time since disturbance and carbon flux across forested landscapes in the Pacific Northwest at a 30m scale by combining remote-sensing-based disturbance year, type, and above-ground biomass with forest inventory data in a carbon modeling framework. Our approach will be applied to forestlands in other regions of the conterminous US to advance a comprehensive monitoring, mapping, and reporting of the carbon consequences of forest change across the US.
R. A. Fisher, S. Muszala, M. Verteinstein, P. Lawrence, C. Xu, N. G. McDowell, R. G. Knox, C. Koven, J. Holm, B. M. Rogers, A. Spessa, D. Lawrence, and G. Bonan
Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, https://doi.org/10.5194/gmd-8-3593-2015, 2015
Short summary
Short summary
Predicting the distribution of vegetation under novel climates is important, both to understand how climate change will impact ecosystem services, but also to understand how vegetation changes might affect the carbon, energy and water cycles. Historically, predictions have been heavily dependent upon observations of existing vegetation boundaries. In this paper, we attempt to predict ecosystem boundaries from the ``bottom up'', and illustrate the complexities and promise of this approach.
S. Veraverbeke, B. M. Rogers, and J. T. Randerson
Biogeosciences, 12, 3579–3601, https://doi.org/10.5194/bg-12-3579-2015, https://doi.org/10.5194/bg-12-3579-2015, 2015
Short summary
Short summary
We developed a statistical model of daily carbon consumption by fire for Alaska at 450m resolution between 2001 and 2012. We used field measurements from black spruce forests in Alaska to build nonlinear multiplicative models predicting carbon consumption by fire in response to environmental variables. Our analysis highlights the importance of accounting for the spatial heterogeneity within fuels and consumption when extrapolating emissions in space and time.
M. Vanderhoof, C. A. Williams, Y. Shuai, D. Jarvis, D. Kulakowski, and J. Masek
Biogeosciences, 11, 563–575, https://doi.org/10.5194/bg-11-563-2014, https://doi.org/10.5194/bg-11-563-2014, 2014
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
B. M. Rogers, J. T. Randerson, and G. B. Bonan
Biogeosciences, 10, 699–718, https://doi.org/10.5194/bg-10-699-2013, https://doi.org/10.5194/bg-10-699-2013, 2013
Related subject area
Remote Sensing: Terrestrial
Field heterogeneity of soil texture controls leaf water potential spatial distribution in non-irrigated vineyards
Remote sensing reveals fire-driven enhancement of a C4 invasive alien grass on a small Mediterranean volcanic island
Synergistic use of Sentinel-2 and UAV-derived data for plant fractional cover distribution mapping of coastal meadows with digital elevation models
Data-based investigation of the effects of canopy structure and shadows on chlorophyll fluorescence in a deciduous oak forest
Evaluation of five models for constructing forest NPP–age relationships in China based on 3121 field survey samples
Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America
Dune belt restoration effectiveness assessed by UAV topographic surveys (northern Adriatic coast, Italy)
High-resolution data reveal a surge of biomass loss from temperate and Atlantic pine forests, contextualizing the 2022 fire season distinctiveness in France
Local environmental context drives heterogeneity of early succession dynamics in alpine glacier forefields
Louis Delval, Jordan Bates, François Jonard, and Mathieu Javaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-2555, https://doi.org/10.5194/egusphere-2024-2555, 2024
Short summary
Short summary
The accurate quantification of grapevine water status is crucial for winemakers as it significantly impacts wine quality. It is acknowledged that within a single vineyard, the variability of grapevine water status can be significant. Within-field spatial distribution of soil hydraulic conductance and weather conditions are the primary factors governing the leaf water potential spatial heterogeneity and extent observed in non-irrigated vineyards, and their effects are concomitants.
Riccardo Guarino, Daniele Cerra, Renzo Zaia, Alessandro Chiarucci, Pietro Lo Cascio, Duccio Rocchini, Piero Zannini, and Salvatore Pasta
Biogeosciences, 21, 2717–2730, https://doi.org/10.5194/bg-21-2717-2024, https://doi.org/10.5194/bg-21-2717-2024, 2024
Short summary
Short summary
The severity and the extent of a large fire event that occurred on the small volcanic island of Stromboli (Aeolian archipelago, Italy) on 25–26 May 2022 were evaluated through remotely sensed data to assess the short-term effect of fire on local plant communities. For the first time, we documented the outstanding after-fire resilience of an invasive alien species, Saccharum biflorum, which is a rhizomatous C4 perennial grass introduced on the island in the nineteenth century.
Ricardo Martínez Prentice, Miguel Villoslada, Raymond D. Ward, Thaisa F. Bergamo, Chris B. Joyce, and Kalev Sepp
Biogeosciences, 21, 1411–1431, https://doi.org/10.5194/bg-21-1411-2024, https://doi.org/10.5194/bg-21-1411-2024, 2024
Short summary
Short summary
Despite hosting a wide range of ecosystem services, coastal wetlands face threats from global changes. This study models the plant fractional cover of plant communities in Estonian coastal meadows with a synergistic use of drone, satellite imagery and digital elevation models. This approach highlights the significant contribution of digital elevation models to multispectral data, enabling the modelling of heterogeneous plant community distributions in such wetlands.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
Peng Li, Rong Shang, Jing M. Chen, Mingzhu Xu, Xudong Lin, Guirui Yu, Nianpeng He, and Li Xu
Biogeosciences, 21, 625–639, https://doi.org/10.5194/bg-21-625-2024, https://doi.org/10.5194/bg-21-625-2024, 2024
Short summary
Short summary
The amount of carbon that forests gain from the atmosphere, called net primary productivity (NPP), changes a lot with age. These forest NPP–age relationships could be modeled from field survey data, but we are not sure which model works best. Here we tested five different models using 3121 field survey samples in China, and the semi-empirical mathematical (SEM) function was determined as the optimal. The relationships built by SEM can improve China's forest carbon modeling and prediction.
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
Thomas D. Hessilt, Brendan M. Rogers, Rebecca C. Scholten, Stefano Potter, Thomas A. J. Janssen, and Sander Veraverbeke
Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, https://doi.org/10.5194/bg-21-109-2024, 2024
Short summary
Short summary
In boreal North America, snow and frozen ground prevail in winter, while fires occur in summer. Over the last 20 years, the northwestern parts have experienced earlier snow disappearance and more ignitions. This is opposite to the southeastern parts. However, earlier ignitions following earlier snow disappearance timing led to larger fires across the region. Snow disappearance timing may be a good proxy for ignition timing and may also influence important atmospheric conditions related to fires.
Regine Anne Faelga, Luigi Cantelli, Sonia Silvestri, and Beatrice Maria Sole Giambastiani
Biogeosciences, 20, 4841–4855, https://doi.org/10.5194/bg-20-4841-2023, https://doi.org/10.5194/bg-20-4841-2023, 2023
Short summary
Short summary
A dune restoration project on the northern Adriatic coast (Ravenna, Italy) was assessed using UAV monitoring. Structure-from-motion photogrammetry, elevation differencing, and statistical analysis were used to quantify dune development in terms of sand volume and vegetation cover change. Results show that the installed fence has been effective as there was significant sand accumulation, embryo dune development, and a decrease in blowout features due to increased vegetation colonization.
Lilian Vallet, Martin Schwartz, Philippe Ciais, Dave van Wees, Aurelien de Truchis, and Florent Mouillot
Biogeosciences, 20, 3803–3825, https://doi.org/10.5194/bg-20-3803-2023, https://doi.org/10.5194/bg-20-3803-2023, 2023
Short summary
Short summary
This study analyzes the ecological impact of the 2022 summer fire season in France by using high-resolution satellite data. The total biomass loss was 2.553 Mt, equivalent to a 17 % increase of the average natural mortality of all French forests. While Mediterranean forests had a lower biomass loss, there was a drastic increase in burned area and biomass loss over the Atlantic pine forests and temperate forests. This result revisits the distinctiveness of the 2022 fire season.
Arthur Bayle, Bradley Z. Carlson, Anaïs Zimmer, Sophie Vallée, Antoine Rabatel, Edoardo Cremonese, Gianluca Filippa, Cédric Dentant, Christophe Randin, Andrea Mainetti, Erwan Roussel, Simon Gascoin, Dov Corenblit, and Philippe Choler
Biogeosciences, 20, 1649–1669, https://doi.org/10.5194/bg-20-1649-2023, https://doi.org/10.5194/bg-20-1649-2023, 2023
Short summary
Short summary
Glacier forefields have long provided ecologists with a model to study patterns of plant succession following glacier retreat. We used remote sensing approaches to study early succession dynamics as it allows to analyze the deglaciation, colonization, and vegetation growth within a single framework. We found that the heterogeneity of early succession dynamics is deterministic and can be explained well by local environmental context. This work has been done by an international consortium.
Cited articles
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016.
Allen, C. D., Breshears, D. D., and McDowell, N. G.: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere, 6, 1–55, https://doi.org/10.1890/ES15-00203.1, 2015.
Amiro, B. D., Chen, J. M., and Liu, J.: Net primary productivity following forest fire for Canadian ecoregions, Can. J. Forest Res., 30, 939–947, https://doi.org/10.1139/cjfr-30-6-939, 2000.
Amiro, B. D., Orchansky, A. L., Barr, A. G., Black, T. A., Chambers, S. D., Chapin, F. S., Goulden, M. L., Litvak, M., Liu, H. P., McCaughey, J. H., McMillan, A., and Randerson, J. T.: The effect of post-fire stand age on the boreal forest energy balance, Agr. Forest Meteorol., 140, 41–50, https://doi.org/10.1016/j.agrformet.2006.02.014, 2006.
Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J., Clark, K. L., Davis, K. J., Desai, A. R., Dore, S., Engel, V., Fuentes, J. D., Goldstein, A. H., Goulden, M. L., Kolb, T. E., Lavigne, M. B., Law, B. E., Margolis, H. A., Martin, T., McCaughey, J. H., Misson, L., Montes-Helu, M., Noormets, A., Randerson, J. T., Starr, G., and Xiao, J.: Ecosystem carbon dioxide fluxes after disturbance in forests of North America, J. Geophys. Res.-Biogeo., 115, G00K02, https://doi.org/10.1029/2010JG001390, 2010.
Bartlein, P. J. and Hostetler, S. W.: Modeling paleoclimates, Dev. Quat. Sci. 1, 565–584, https://doi.org/10.1016/S1571-0866(03)01027-3, 2003.
Barton, A. M.: Intense wildfire in southeastern Arizona: Transformation of a Madrean oak-pine forest to oak woodland, Forest Ecol. Manag., 165, 205–212, https://doi.org/10.1016/S0378-1127(01)00618-1, 2002.
Beck, P. S. A., Goetz, S. J., Mack, M. C., Alexander, H. D., Jin, Y., Randerson, J. T., and Loranty, M. M.: The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo, Glob. Change Biol., 17, 2853–2866, https://doi.org/10.1111/j.1365-2486.2011.02412.x, 2011.
Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Gütter, J., Herault, B., Kassi, J., N'Guessan, A., Neigh, C., Poulter, B., Zhang, T., and Carvalhais, N.: Mapping global forest age from forest inventories, biomass and climate data, Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, 2021.
Betts, A. and Ball, J.: Albedo over the boreal forest, J. Geophys.-Res., 102, 28901–28609, https://doi.org/10.1029/96JD03876, 1997.
Bonan, G. B., Chapin, F. S., and Thompson, S. L.: Boreal forest and tundra ecosystems as components of the climate system, Clim. Change, 29, 145–167, https://doi.org/10.1007/BF01094014, 1995.
Bond-Lamberty, B., Peckham, S. D., Gower, S. T., and Ewers, B. E.: Effects of fire on regional evapotranspiration in the central Canadian boreal forest, Glob. Change Biol., 15, 1242–1254, https://doi.org/10.1111/j.1365-2486.2008.01776.x, 2009.
Boschetti, L., Roy, D. P., Justice, C. O., and Humber, M. L.: MODIS–Landsat fusion for large area 30 m burned area mapping, Remote Sens. Environ., 161, 27–42, 2015.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Bright, B. C., Hudak, A. T., Kennedy, R. E., Braaten, J. D., and Henareh Khalyani, A.: Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types, Fire Ecol., 15, 8, https://doi.org/10.1186/s42408-018-0021-9, 2019.
Bright, R. M., Zhao, K., Jackson, R. B., and Cherubini, F.: Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities, Glob. Change Biol., 21, 3246–3266, https://doi.org/10.1111/gcb.12951, 2015.
Brown, P. M. and Wu, R.: Climate and disturbance forcing of episodic tree recruitment in a Southwestern ponderosa pine landscape, Ecology, 86, 3030–3038, https://doi.org/10.1890/05-0034, 2005.
Buechling, A., Martin, P. H., Canham, C. D., Shepperd, W. D., Battaglia, M. A., and Rafferty, N.: Climate drivers of seed production in picea engelmannii and response to warming temperatures in the Southern Rocky Mountains, J. Ecol., 104, 1051–1062, https://doi.org/10.1111/1365-2745.12572, 2016.
Campagnolo, M. L., Sun, Q., Liu, Y., Schaaf, C., Wang, Z., and Román, M. O.: Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS, Remote Sens. Environ., 175, 52–64, https://doi.org/10.1016/j.rse.2015.12.033, 2016.
Campbell, J., Donato, D., Azuma, D., and Law, B.: Pyrogenic carbon emission from a large wildfire in Oregon, United States, J. Geophys. Res., 112, G04014, https://doi.org/10.1029/2007JG000451, 2007.
Cansler, C. A. and Mckenzie, D.: Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA, Ecol. Appl., 24, 1037–1056, https://doi.org/10.1890/13-1077.1, 2014.
Casady, G. M., van Leeuwen, W. J. D., and Marsh, S. E.: Evaluating Post-wildfire Vegetation Regeneration as a Response to Multiple Environmental Determinants, Environ. Model. Assess., 15, 295–307, https://doi.org/10.1007/s10666-009-9210-x, 2010.
Chambers, M. E., Fornwalt, P. J., Malone, S. L., and Battaglia, M. A.: Patterns of conifer regeneration following high severity wildfire in ponderosa pine-dominated forests of the Colorado Front Range, Forest Ecol. Manag., 378, 57–67, 2016.
Chambers, S. D. and Chapin III, F. S.: Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate, J. Geophys. Res., 107, 8145, https://doi.org/10.1029/2001JD000530, 2002.
Chambers, S. D., Beringer, J., Randerson, J. T., and Chapin, I. S.: Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems, J. Geophys. Res., 110, 1–9, https://doi.org/10.1029/2004JD005299, 2005.
Chappell, C. B. and Agee, J. K.: Fire severity and tree seedling establishment in Abies magnifica forests, southern Cascades, Oregon, Ecol. Appl., 6, 628–640, https://doi.org/10.2307/2269397, 1996.
Chen, X., Vogelmann, J. E., Rollins, M., Ohlen, D., Key, C. H., Yang, L., Huang, C., and Shi, H.: Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest, Int. J. Remote Sens., 32, 7905–7927, https://doi.org/10.1080/01431161.2010.524678, 2011.
Cohen, W. B., Maiersperger, T. K., Turner, D. P., Ritts, W. D., Pflugmacher, D., Kennedy, R. E., Kirschbaum, A., Running, S. W., Costa, M., and Gower, S. T.: MODIS land cover and LAI collection 4 product quality across nine sites in the western hemisphere, IEEE T. Geosci. Remote, 44, 1843–1857, https://doi.org/10.1109/TGRS.2006.876026, 2006.
Crotteau, J. S., Varner III, J. M., and Ritchie, M. W.: Post-fire regeneration across a fire severity gradient in the southern Cascades, Forest Ecol. Manag., 287, 103–112, https://doi.org/10.1016/j.foreco.2012.09.022, 2013.
Csiszar, I., Schroeder, W., Giglio, L., Ellicott, E., Vadrevu, K. P., Justice, C. O., and Wind, B.: Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results, J. Geophys. Res.-Atmos., 119, 803–881, 2014.
Dale, V. H., Joyce, L. A., Mcnulty, S., Neilson, R. P., Ayres, M. P., Flannigan, M. D., Hanson, P. J., Irland, L. C., Ariel, E., Peterson, C. J., Simberloff, D., Swanson, F. J., Stocks, B. J., Wotton, B. M., Dale, V. H., Joyce, L. A., Mcnulty, S., Ronald, P., Matthew, P., Simberloff, D., Swanson, F. J., Stocks, B. J., and Wotton, B. M.: Climate Change and Forest Disturbances, Bioscience, 51, 723–734, https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2, 2001.
Daly, C., Neilson, R. P., and Phillips, D. L.: A statistical-topographic model for mapping climatological precipitation over mountainous terrain, J. Appl. Meteorol., 33, 140–158, 1994.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. A.: Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 2031–2064, 2008.
De Sales, F., Okin, G. S., Xue, Y., and Dintwe, K.: On the effects of wildfires on precipitation in southern Africa, Clim. Dynam., 52, 951–967, https://doi.org/10.1007/s00382-018-4174-7, 2018.
De Santis, A. and Chuvieco, E.: GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data, Remote Sens. Environ., 113, 554–562, 2009.
Dennison, P. E., Brewer, S. C., Arnold, J. D., and Moritz, M. A.: Large wildfire trends in the western United States, 1984–2011, Geophys. Res. Lett., 41, 2928–2933, https://doi.org/10.1002/2014GL059576, 2014.
Dintwe, K., Okin, G. S., and Xue, Y.: Fire-induced albedo change and surface radiative forcing in sub-Saharan Africa savanna ecosystems: Implications for the energy balance, J. Geophys. Res., 122, 6186–6201, https://doi.org/10.1002/2016JD026318, 2017.
Dore, A. S., Kolb, T. E., Eckert, S. E., Sullivan, B. W., Hungate, B. A., Kaye, J. P., Hart, S. C., Koch, G. W., Finkral, A., Applications, S. E., April, N., Dore, S., Kolb, T. E., Eckert, S. E., Sullivan, W., Hungate, B. A., and Kaye, J. P.: Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning, Ecol. Appl., 20, 663–683, 2010.
Downing, W. M., Krawchuk, M. A., Meigs, G. W., Haire, S. L., Coop, J. D., Walker, R. B., Whitman, E., Chong, G., and Miller, C.: Influence of fire refugia spatial pattern on post-fire forest recovery in Oregon's Blue Mountains, Landscape Ecol., 34, 771–792, https://doi.org/10.1007/s10980-019-00802-1, 2019.
Dwyer, D. D. and Pieper, R. D.: Fire effects on blue gramma-piny on-juniper rangeland in New Mexico, J. Range Manage., 20, 359–362, 1967.
Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B., Howard, S., Falls, S., and Falls, S.: A project for monitoring trends in burn severity, Fire Ecology Special Issue 3, 3–21, 2007.
Epting, J. and Verbyla, J.: Landscape-level interactions of prefire vegetation, burn severity, and postfire vegetation over a 16-year period in interior Alaska, Can. J. Forest Res., 35, 1367–1377, https://doi.org/10.1139/X05-060, 2005.
Erdman, J. A.: Pinyon-juniper succession alter natural hres on residual soils of Mesa Verde, Colorado, BYU Science Bulletin in Biology Series, 11, 1970.
Ferguson, D. E. and Carlson, C. E.: Height-age relationships for regeneration-size trees in the northern Rocky Mountains, USA, Research Paper RMRS-RP-82WWW, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA, 2010.
Frazier, R. J., Coops, N. C., Wulder, M. A., Hermosilla, T., and White, J. C.: Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series, Remote Sens. Environ., 205, 32–45, 2018.
Gao, F., Schaaf, C. B., Strahler, A. H., Roesch, A., Lucht, W., and Dickinson, R.: MODIS bidirectional reflectance distribution function and albedo Climate Modeling Grid products and the variability of albedo major global vegetation types, J. Geophys. Res.-Atmos. 110, 1–13, https://doi.org/10.1029/2004JD005190, 2005.
Gatebe, C. K., Ichoku, C. M., Poudyal, R., Román, M. O., and Wilcox, E.: Surface albedo darkening from wildfires in northern sub-Saharan Africa, Environ. Res. Lett., 9, 065003, https://doi.org/10.1088/1748-9326/9/6/065003, 2014.
Ghimire, B., Williams, C. A., Collatz, G. J., and Vanderhoof, M.: Fire-induced carbon emissions and regrowth uptake in western U.S. forests: Documenting variation across forest types, fire severity, and climate regions, J. Geophys. Res., 117, G03036, https://doi.org/10.1029/2011JG001935, 2012.
Gleason, K. E., McConnell, J. R., Arienzo, M. M., Chellman, N., and Calvin, W. M.: Four-fold increase in solar forcing on snow in western U.S. burned forests since 1999, Nat. Commun., 10, 1–8, https://doi.org/10.1038/s41467-019-09935-y, 2019.
Gray, A. N., Zald, H. S., Kern, R. A., and North, M.: Stand conditions associated with tree regeneration in Sierran mixed-conifer forests, Forest Sci., 51, 198–210, 2005.
Guz, J., Gill, N. S., and Kulakowski, D.: Long-term empirical evidence shows post-disturbance climate controls post-fire regeneration, J. Ecol., 109, 4007–4024, https://doi.org/10.1111/1365-2745.13771, 2021.
Haffey, C., Sisk, T. D., Allen, C. D., Thode, A. E., and Margolis, E. Q.: Limits to Ponderosa Pine Regeneration following Large High-Severity Forest Fires in the United States Southwest, Fire Ecol., 14, 143–163, https://doi.org/10.4996/fireecology.140114316, 2018.
Haire, S. L. and McGarigal, K.: Effect of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA, Landscape Ecol., 25, 1055–1069, 2010.
Halim, M. A., Chen, H. Y. H., and Thomas, S. C.: Stand age and species composition effects on surface albedo in a mixedwood boreal forest, Biogeosciences, 16, 4357–4375, https://doi.org/10.5194/bg-16-4357-2019, 2019.
Hankin, L. E., Higuera, P. E., Davis, K. T., and Dobrowski, S. Z.: Impacts of growing-season climate on tree growth and post-fire regeneration in ponderosa pine and Douglas-fir forests, Ecosphere, 10, e02679, https://doi.org/10.1002/ecs2.2679, 2019.
Hansen, W. D., Romme, W. H., Ba, A., and Turner, M. G.: Shifting ecological filters mediate postfire expansion of seedling aspen (Populus tremuloides) in Yellowstone, Forest Ecol. Manage., 362, 218–230, 2016.
Hartsell, J. A., Copeland, S. M., Munson, S. M., Butterfield, B. J., and Bradford, J. B.: Gaps and hotspots in the state of knowledge of pinyon-juniper communities, Forest Ecol. Manage., 455, 1–23, 2020.
Harvey, B. J., Donato, D. C., and Turner, M. G.: High and dry: postfire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches, Global Ecol. Biogeogr., 25, 655–669, https://doi.org/10.1111/geb.12443, 2016.
Hicke, J. A., Asner, G. P., Kasischke, E. S., French, N. H. F., Randerson, J. T., Collatz, G. J., Stocks, B. J., Tucker, C. J., Los, S. O., and Field, C. B.: Postfire response of North American boreal forest net primary productivity analyzed with satellite observations, Glob. Change Biol., 9, 1145–1157, https://doi.org/10.1046/j.1365-2486.2003.00658.x, 2003.
Hislop, S., Haywood, A., Jones, S., Soto-Berelov, M., Skidmore, A., and Nguyen, T. H.: A satellite data driven approach to monitoring and reporting fire disturbance and recovery across boreal and temperate forests, Int. J. Appl. Earth Obs., 87, 102034, https://doi.org/10.1016/j.jag.2019.102034, 2020.
Howard, J. L.: Pinus ponderosa var. brachyptera, P. p. var. scopulorum. Fire Effects Information System. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, Montana, USA, https://www.fs.usda.gov/database/feis/plants/tree/pinpons/all.html (last access: 8 January 2022), 2003.
Huesca, M., Merino-de-Miguel, S., González-Alonso, F., Martínez, S., Miguel Cuevas, J., and Calle, A.: Using AHS hyper-spectral images to study forest vegetation recovery after a fire, Int. J. Remote Sens., 34, 4025–4048, 2013.
IPCC [Intergovernmental Panel on Climate Change]: Climate change 2007: Synthesis report, Intergovernmental Panel on Climate Change, 2007.
IPCC [Intergovernmental Panel on Climate Change]: Climate change 2013: the physical science basis, in: Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, England, United Kingdom, and New York, New York, USA, 1–1535, 2013.
Jameson, D. A.: Effects of burning on galleta-black gramma range invaded by juniper, Ecology, 43, 760–763, 1962.
Jin, Y. and Roy, D. P.: Fire-induced albedo change and its radiative forcing at the surface in northern Australia, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022822, 2005.
Jin, Y., Randerson, J. T., Goetz, S. J., Beck, P. S. A., Loranty, M. M., and Goulden, M. L.: The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests, J. Geophys. Res.-Biogeo., 117, 1–15, https://doi.org/10.1029/2011JG001886, 2012.
Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S., and Mack, M. C.: Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest, Glob. Change Biol., 16, 1281–1295, https://doi.org/10.1111/j.1365-2486.2009.02051.x, 2010.
Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L., Schoennagel, T., and Turner, M. G.: Changing disturbance regimes, ecological memory, and forest resilience, Front. Ecol. Environ., 14, 369–378, https://doi.org/10.1002/fee.1311, 2016.
Kane, V. R., North, M. P., Lutz, J. A., Churchill, D. J., Roberts, S. L., Smith, D. F., McGaughey, R. J., Kane, J. T., and Brooks, M. L.: Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park, Remote Sens. Environ., 151, 89–101, https://doi.org/10.1016/j.rse.2013.07.041, 2014.
Keeley, J. E., Brennan, T., and Pfaff, A. H.: Fire severity and ecosytem responses following crown fires in California shrublands, Ecol. Appl., 18, 1530–1546, https://doi.org/10.1890/07-0836.1, 2008.
Kemp, K. B., Higuera, P. E., and Morgan, P.: Fire legacies impact conifer regeneration across environmental gradients in the US northern Rockies, Landscape Ecol., 31, 619–636, https://doi.org/10.1007/s10980-015-0268-3, 2016.
Kemp, K. B., Higuera, P. E., Morgan, P., and Abatzoglou, J. T.: Climate will increasingly determine post-fire tree regeneration success in low-elevation forests, Northern Rockies, USA, Ecosphere, 10, 17, https://doi.org/10.1002/ecs2.2568, 2019.
Key, C.: Ecological and sampling constraints on defining landscape fire severity, Fire Ecol., 2, 34–59, https://doi.org/10.4996/FIREECOLOGY, 2006.
Koniak, S.: Succession in pinyon-juniper woodlands following wildfire in the Great Basin, Great Basin Nat., 45, 556–566, 1985.
Kuusinen, N., Tomppo, E., Shuai, Y., and Berninger, F.: Effects of forest age on albedo in boreal forests estimated from MODIS and Landsat albedo retrievals, Remote Sens. Environ., 145, 145–153, https://doi.org/10.1016/j.rse.2014.02.005, 2014.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0), J. Geophys. Res.-Biogeo., 112, G01023, https://doi.org/10.1029/2006JG000168, 2007.
Lhermitte, S., Verbesselt, J., Verstraeten, W. W., and Coppin, P.: A pixel-based regeneration index using time series similarity and spatial context, Photogramm. Eng. Rem. S., 76, 673–682, 2010.
Liaw, A. and Wiener, M.: Classification and regression by random forest, R News, 2, 18–22, 2002.
Lippok, D., Beck, S. G., Renison, D., Gallegos, S. C., Saavedra, F. V., Hensen, I., and Schleuning, M.: Forest recovery of areas deforested by fire increases with elevation in the tropical Andes, Forest Ecol. Manage., 295, 69–76, https://doi.org/10.1016/j.foreco.2013.01.011, 2013.
Littell, J. S., Mckenzie, D., Peterson, D. L., and Westerling, A. L.: Climate and wildfire area burned in western U.S. ecoprovinces, Ecol. Appl., 19, 1003–1021, 2009.
Littell J. S., Mckenzie, D., Wan, H. Y., and Cushman, S. A.: Climate change and future wildfire in the Western United States: an ecological approach to nonstationarity, Earth's Future, 6, 1097–111, 2018.
Littlefield, C. E., Dobrowskia, S. Z., Abatzoglouc, J. T., Parksd, S. A., and Davise, K. T.: A climatic dipole drives short- and long-term patterns of postfire forest recovery in the western United States, P. Natl. Acad. Sci. USA, 117, 29730–29737, https://doi.org/10.1073/pnas.2007434117, 2020.
Liu, H., Randerson, J. T., Lindfors, J., and Iii, F. S. C.: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective, J. Geophys. Res.-Atmos., 110, 1–12, https://doi.org/10.1029/2004JD005158, 2005.
Liu, Z.: Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of northeastern China, Sci. Rep., 6, 37572, https://doi.org/10.1038/srep37572, 2016.
Lyons, E. A., Jin, Y., and Randerson, J. T.: Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations, J. Geophys. Res.-Biogeo., 113, 1–15, https://doi.org/10.1029/2007JG000606, 2008.
Ma, Q., Bales, R. C., Rungee, J., Conklin, M. H., Collins, B. M., and Goulden, M. L.: Wildfire controls on evapotranspiration in California's Sierra Nevada, J. Hydrol., 590, 125364, https://doi.org/10.1016/j.jhydrol.2020.125364, 2020.
Maina, F. Z. and Siirila-Woodburn, E. R.: Watersheds dynamics following wildfires: Nonlinear feedbacks and implications on hydrologic responses, Hydrol. Process., 34, 33–50, https://doi.org/10.1002/hyp.13568, 2019.
Martin, D. P.: Partial dependence plots, http://dpmartin42.github.io/posts/r/partial-dependence (last access: 8 May 2022), 2014.
Martín-Alcon, S. and Coll, L.: Unraveling the relative importance of factors driving post-fire regeneration trajectories in non-serotinous Pinus nigra forests, Forest Ecol. Manage., 361, 13–22, 2016.
McDowell, N. G., Williams, A. P., Xu, C., Pockman, W. T., Dickman, L. T., Sevanto, S., Pangle, R., Limousin, J. M., Plaut, J., Mackay, D. S., Ogee, J., Domec, J. C., Allen, C. D., Fisher, R. A., Jiang, X., Muss, J. D., Breshears, D. D., Rauscher, S. A., and Koven, C.: Multi-scale predictions of massive conifer mortality due to chronic temperature rise, Nat. Clim. Change, 6, 295–300, https://doi.org/10.1038/nclimate2873, 2015.
McMichael, C. E., Hope, A. S., Roberts, D. A., and Anaya, M. R.: Post-fire recovery of leaf area index in California chaparral: A remote sensing-chronosequence approach, Int. J. Remote Sens., 25, 4743–4760, https://doi.org/10.1080/01431160410001726067, 2004.
Meigs, G. W., Donato, D. C., Campbell, J. L., Martin, J. G., and Law, B. E.: Forest fire impacts on carbon uptake, storage, and emission: The role of burn severity in the Eastern Cascades, Oregon, Ecosystems, 12, 1246–1267, https://doi.org/10.1007/s10021-009-9285-x, 2009.
Meng, R., Dennison, P. E., D'Antonio, C. M., and Moritz, M. A.: Remote sensing analysis of vegetation recovery following short-interval fires in Southern California Shrublands, PLoS One, 9, 14–17, https://doi.org/10.1371/journal.pone.0110637, 2014.
Meng, R., Dennison, P. E., Huang, C., Moritz, M. A., and D'Antonio, C.: Effects of fire severity and post-fire climate on short-term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California, Remote Sens. Environ., 171, 311–325, https://doi.org/10.1016/j.rse.2015.10.024, 2015.
Meng, R., Wu, J., Zhao, F., Cook, B. D., Hanavan, R. P., and Serbin, S. P.: Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques, Remote Sens. Environ., 210, 282–296, https://doi.org/10.1016/j.rse.2018.03.019, 2018.
Micheletty, P. D., Kinoshita, A. M., and Hogue, T. S.: Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada, Hydrol. Earth Syst. Sci., 18, 4601–4615, https://doi.org/10.5194/hess-18-4601-2014, 2014.
Moghaddas, J. J., York, R. A., and Stephens, S. L.: Initial response of conifer and California black oak seedlings following fuel reduction activities in a Sierra Nevada mixed conifer forest, Forest Ecol. Manage., 255, 3141–3150, 2008.
Montes-Helu, M. C., Kolb, T., Dore, S., Sullivan, B., Hart, S. C., Koch, G., and Hungate, B. A.: Persistent effects of fire-induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests, Agr. Forest Meteorol., 149, 491–500, https://doi.org/10.1016/j.agrformet.2008.09.011, 2009.
Morresi, D., Vitali, A., Urbinati, C., and Garbarino, M.: Forest spectral recovery and regeneration dynamics in stand replacing wildfires of central Apennines derived from Landsat time series, Remote Sens., 11, 308, 1–18, 2019.
Myhre, G., Kvalevåg, M. M., and Schaaf, C. B.: Radiative forcing due to anthropogenic vegetation change based on MODIS surface albedo data, Geophys. Res. Lett., 32, L21410, https://doi.org/10.1029/2005GL024004, 2005.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens. Environ., 83, 214–231, https://doi.org/10.1016/S0034-4257(02)00074-3, 2002.
O'Halloran, T. L., Acker, S. A., Joerger, V. M., Kertis, J., and Law, B. E.: Postfire influences of snag attrition on albedo and radiative forcing, Geophys. Res. Lett., 41, 9135–9142, https://doi.org/10.1002/2014GL062024, 2014.
Omernik, J. M.: Ecoregions of the Conterminous United States, Ann. Assoc. Am. Geogr., 77, 118–125, https://doi.org/10.1111/j.1467-8306.1987.tb00149.x, 1987.
Parks, S. A., Dillon, G. K., and Miller, C.: A new metric for quantifying burn severity: the Relativized Burn Ratio, Remote Sens., 6, 1827–1844, 2014.
Pinty, B., Verstraete, M. M., Gobron, N., Govaerts, Y., and Roveda, F.: Do human-induced fires affect the Earth surface reflectance at continental scales?, EOS Trans. Am. Geophys. Union, 81, 381–389, 2000.
Polychronaki, A., Gitas, I. Z., and Minchella, A.: Monitoring post-fire vegetation recovery in the Mediterranean using SPOT and ERS imagery, Int. J. Wildland Fire, 23, 631–642, 2013.
Potter, S., Solvik, K., Erb, A., Goetz, S. J., Johnstone, J. F., Mack, M. C., Randerson, J. T., Roman, M. O., Schaaf, C. L., Turetsky, M. R., Veraverbeke, S., Walker, X. J., Wang, Z., Massey, R., and Rogers, B. M.: Climate change decreases the cooling effect from postfire albedo in boreal North America, Glob. Change Biol., 26, 1592–1607, https://doi.org/10.1111/gcb.14888, 2020.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F. S., Harden, J. W., Goulden, M. L., Neff, J. C., Schuur, E. A. G., and Zender, C. S.: The impact of Boreal forest fire on climate warming, Science, 314, 1130, https://doi.org/10.1126/science.1132075, 2006.
Roche, J. W., Goulden, M. L., and Bales, R. C.: Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California, Ecohydrology, 11, e1978, https://doi.org/10.1002/eco.1978, 2018.
Rodman, K. C., Veblen, T. T., Chapman, T. B., Rother, M. T., Wion, A. P., and Redmond, M. D.: Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA, Ecol. Appl., 30, e02001, https://doi.org/10.1002/eap.2001, 2020.
Rodrigo, A., Retana, J., and Picó, F. X.: Direct regeneration is not the only response of Mediterranean forests to large fires, Ecology, 85, 716–729, 2004.
Knox, K. J. E. and Clarke, P. J.: Fire severity, feedback effects and resilience to alternative community states in forest assemblages, Forest Ecol. Manage., 265, 47–54, 2012.
Rogers, B. M., Neilson, R. P., Drapek, R., Lenihan, J. M., Wells, J. R., Bachelet, D., and Law, B. E.: Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest, J. Geophys. Res.-Biogeo., 116, 1–13, https://doi.org/10.1029/2011JG001695, 2011.
Rogers, B. M., Randerson, J. T., and Bonan, G. B.: High-latitude cooling associated with landscape changes from North American boreal forest fires, Biogeosciences, 10, 699–718, https://doi.org/10.5194/bg-10-699-2013, 2013.
Rogers, B. M., Soja, A. J., Goulden, M. L., and Randerson, J. T.: Influence of tree species on continental differences in boreal fires and climate feedbacks, Nat. Geosci., 8, 228–234, https://doi.org/10.1038/ngeo2352, 2015.
Rother, M. T. and Veblen, T. T.: Limited conifer regeneration following wildfires in dry ponderosa pine forests of the Colorado Front Range, Ecosphere, 7, 17, https://doi.org/10.1002/ecs2.1594, 2016.
Rother, M. T. and Veblen, T. T.: Climate drives episodic conifer establishment after fire in dry ponderosa pine forests of the Colorado Front Range, USA, Forests, 8, 1–14, https://doi.org/10.3390/f8050159, 2017.
Roy, D. P., Boschetti, L., and Trigg, S. N.: Remote sensing of fire severity: assessing the performance of the normalized burn ratio, IEEE Geosci. Remote Sens., 3, 112–116, 2006.
Ruefenacht, B., Finco, M., Czaplewski, R., Helmer, E., Blackard, J., Holden, G., Lister, A., Salajanu, D., Weyermann, D., and Winterberger, K.: Conterminous US and Alaska forest type mapping using forest inventory and analysis data, Photogramm. Eng. Rem. S., 74, 1379–1388, 2008.
Russell, R. E., Saab, V. A., Dudley, J. G., and Rotella, J. J.: Snag longevity in relation to wildfire and postfire salvage logging, Forest Ecol. Manage., 232, 179–187, 2006.
Salomonson, V. V. and Appel, I.: Estimating fractional snow cover from MODIS using the normalized difference snow index, Remote Sens. Environ., 89, 351–360, https://doi.org/10.1016/j.rse.2003.10.016, 2004.
Savage, M., Brown, P. M., and Feddema, J.: The role of climate in a pine forest regeneration pulse in the southwestern United States, Ecoscience, 3, 310–318, 1996.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., Robert, P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148, 2002.
Scholze, M., Knorr, W., Arnell, N. W., and Prentice, I. C.: A climate-change risk analysis for world ecosystems, P. Natl. Acad. Sci. USA, 103, 13116–13120, 2006.
Seastedt, T. R., Hobbs, R. J., and Suding, K. N.: Management of novel ecosystems: Are novel approaches required?, Front. Ecol. Environ., 6, 547–553, 2008.
Shrestha, S., Williams, C. A., Rogers, B. M., Rogan, J., and Kulakowski, D.: Wildfire controls on land surface properties in mixed conifer and ponderosa pine forests of Sierra Nevada and Klamath mountains, Western US, Agr. Forest Meteorol., 320, 108939, https://doi.org/10.1016/j.agrformet.2022.108939, 2022.
Shrestha, S., Williams, C. A., Rogan, J., Kulakowski, D., and Rogers, B.: Forest types show divergent biophysical responses after fire: challenges to ecological modeling, Zenodo [code, data set], https://doi.org/10.5281/zenodo.7927852, 2023.
Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., and Veblen, T. T.: Evidence for declining forest resilience to wildfires under climate change, Ecol. Lett., 21, 243–252, https://doi.org/10.1111/ele.12889, 2018.
Stevens-Rumann, C. S. and Morgan, P.: Tree regeneration following wildfires in the western US: a review, Fire Ecol., 15, 1–17, 2019.
Stoddard, M. T., Huffman, D. W., Fulé, P. Z., Crouse, J. E., and Meador, A. J. S.: Forest structure and regeneration responses 15 years after wildfire in a ponderosa pine and mixed-conifer ecotone, Arizona, USA, Fire Ecol., 14, 1–12, https://doi.org/10.1186/s42408-018-0011-y, 2018.
Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T.: Bias in random forest variable importance measures: Illustrations, sources and a solution, BMC Bioinformatics, 8, 25, https://doi.org/10.1186/1471-2105-8-25, 2007.
Thompson, C., Beringer, J., Chapin, F. S., and McGuire, A. D.: Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest, J. Veg. Sci., 15, 397–406, https://doi.org/10.1111/j.1654-1103.2004.tb02277.x, 2004.
Thompson, R. S., Shafer, S. L., Strickland, L. E., Van de Water, P. K., and Anderson, K. H.: Quaternary vegetation and climate change in the western United States: Developments, perspectives, and prospects, Dev. Quat. Sci., 1, 403–426, https://doi.org/10.1016/S1571-0866(03)01018-2, 2003.
Tsuyuzaki, S., Kushida, K., and Kodama, Y.: Recovery of surface albedo and plant cover after wildfire in a Picea mariana forest in interior Alaska, Climatic Change, 93, 517–525, https://doi.org/10.1007/S10584-008-9505-Y, 2009.
Urza, A. K., Weisberg, P. J., Chambers, J. C., Dhaemers, J. M., and Board, D.: Post-fire vegetation response at the woodland–shrubland interface is mediated by the pre-fire community, Ecosphere, 8, e01851, https://doi.org/10.1002/ecs2.1851, 2017.
U.S. Geological Survey.: 3D Elevation Program 30-Meter Resolution Digital Elevation Model, https://www.usgs.gov/the-national-map-data-delivery (30 December 2019), 2019.
Van Mantgem, P. J., Stephenson, N. L., and Keeley, J. E.: Forest reproduction along a climatic gradient in the Sierra Nevada, California, Forest Ecol. Manage., 225, 391–399, https://doi.org/10.1016/j.foreco.2006.01.015, 2006.
Vanderhoof, M. K., Hawbaker, T. J., Ku, A., Merriam, K., Berryman, E., and Cattau, M.: Tracking rates of postfire conifer regeneration vs. deciduous vegetation recovery across the western United States, Ecol. Appl., 31, e02237, https://doi.org/10.1002/eap.2237, 2020.
Veraverbeke, S., Lhermitte, S., Verstraeten, W. W., and Goossens, R.: The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in Greece, Remote Sens. Environ., 114, 2548–2563, https://doi.org/10.1016/j.rse.2010.05.029, 2010.
Veraverbeke, S., Gitas, I., Katagis, T., Polychronaki, A., Somers, B., and Goossens, R.: Assessing post-fire vegetation recovery using red-near infrared vegetation indices: Accounting for background and vegetation variability, ISPRS J. Photogramm., 68, 28–39, https://doi.org/10.1016/j.isprsjprs.2011.12.007, 2012a.
Veraverbeke, S., Verstraeten, W. W., Lhermitte, S., Van De Kerchove, R., and Goossens, R.: Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire burn severity using multitemporal MODIS imagery, Int. J. Wildland Fire, 21, 243–256, https://doi.org/10.1071/WF10075, 2012b.
Wangler, M. J. and Minnich, R. A.: Fire and Succession in Pinyon-Juniper Woodlands of the San Bernardino Mountains, California, California Botanical Society Stable, 43, 493–514, 1996.
Welch, K. R., Safford, H. D., and Young, T. P.: Predicting conifer establishment post wildfire in mixed conifer forests of the North American Mediterranean-climate zone, Ecosphere, 7, e01609, https://doi.org/10.1002/ecs2.1609, 2016.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and earlier spring increase Western U.S. forest wildfire activity, Science, 313, 940–943, https://doi.org/10.1126/science.1128834, 2006.
Williams, A. P. and Abatzoglou, J. T.: Recent Advances and Remaining Uncertainties in Resolving Past and Future Climate Effects on Global Fire Activity, Current Climate Change Reports, 2, 1–14, https://doi.org/10.1007/s40641-016-0031-0, 2016.
Williams, A. P., Seager, R., Berkelhammer, M., Macalady, A. K., Crimmins, M. A., Swetnam, T. W., Trugman, A. T., Buenning, N., Hryniw, N., McDowell, N. G., Noone, D., Mora, C. I., and Rahn T.: Causes and implications of extreme atmospheric moisture demand during the record-breaking 2011 wildfire season in the southwestern United States, J. Appl. Meteorol. Clim., 53, 2671–2684, https://doi.org/10.1175/JAMC-D-14-0053.1, 2014.
Williams, C. A., Collatz, G. J., Masek, J., and Goward, S. N.: Carbon consequences of forest disturbance and recovery across the conterminous United States, Global Biogeochem. Cy., 26, GB1005, https://doi.org/10.1029/2010GB003947, 2012.
Williams, C. A., Vanderhoof, M. K., Khomik, M., and Ghimire, B.: Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment, Glob. Change Biol., 20, 992–1007, https://doi.org/10.1111/gcb.12388, 2014.
Williams, C. A., Gu, H., and Jiao, T.: Climate impacts of U.S. forest loss span net warming to net cooling, Sci. Adv., 7, 1–7, https://doi.org/10.1126/sciadv.aax8859, 2021.
Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y.-P.: Improving land surface models with FLUXNET data, Biogeosciences, 6, 1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2009.
Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A., and Tesler, N.: Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel, Catena 71, 76–83, https://doi.org/10.1016/j.catena.2006.10.007, 2007.
Yang, J., Pan, S., Dangal, S., Zhang, B., Wang, S., and Tian, H.: Continental-scale quantification of post-fire vegetation greenness recovery in temperate and boreal North America, Remote Sens, Environ., 199, 277–290, https://doi.org/10.1016/j.rse.2017.07.022, 2017.
Zhao, F. R., Meng, R., Huang, C., Zhao, M., Zhao, F. A., Gong, P., Yu, L., and Zhu, Z.: Long-term post-disturbance forest recovery in the Greater Yellowstone ecosystem analyzed using Landsat time series stack, Remote Sens., 8, 1–22, 2016.
Short summary
Here, we generated chronosequences of leaf area index (LAI) and surface albedo as a function of time since fire to demonstrate the differences in the characteristic trajectories of post-fire biophysical changes among seven forest types and 21 level III ecoregions of the western United States (US) using satellite data from different sources. We also demonstrated how climate played the dominant role in the recovery of LAI and albedo 10 and 20 years after wildfire events in the western US.
Here, we generated chronosequences of leaf area index (LAI) and surface albedo as a function of...
Altmetrics
Final-revised paper
Preprint