Articles | Volume 21, issue 4
https://doi.org/10.5194/bg-21-929-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-929-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
UAV approaches for improved mapping of vegetation cover and estimation of carbon storage of small saltmarshes: examples from Loch Fleet, northeast Scotland
School of Geography and Sustainable Development, Irvine Building, North Street, University of St Andrews, Fife, KY16 9AL, United Kingdom
Lucy C. Miller
School of Geography and Sustainable Development, Irvine Building, North Street, University of St Andrews, Fife, KY16 9AL, United Kingdom
Craig Smeaton
School of Geography and Sustainable Development, Irvine Building, North Street, University of St Andrews, Fife, KY16 9AL, United Kingdom
William E. N. Austin
School of Geography and Sustainable Development, Irvine Building, North Street, University of St Andrews, Fife, KY16 9AL, United Kingdom
Scottish Association of Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, United Kingdom
Related authors
No articles found.
Markus Diesing, Reidulv Bøe, Sigrid Elvenes, Jochen Knies, and Craig Smeaton
EGUsphere, https://doi.org/10.5194/egusphere-2026-108, https://doi.org/10.5194/egusphere-2026-108, 2026
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We investigate accumulation rates, stocks, provenance and lability of sedimentary organic carbon in fjords around Stavanger, Norway. We find that all measured parameters show high variability and spatial heterogeneity over short spatial scales. Our results call into question assumptions that are made when upscaling local studies for global assessments. We propose steps to better account for spatial heterogeneity when upscaling to higher levels.
Alex Houston, Mark H. Garnett, and William E. N. Austin
Biogeosciences, 22, 4851–4864, https://doi.org/10.5194/bg-22-4851-2025, https://doi.org/10.5194/bg-22-4851-2025, 2025
Short summary
Short summary
Saltmarshes accumulate carbon through plant growth and older material deposited during tidal inundation. We found that more energy was required to decompose old carbon than younger carbon, and the youngest carbon was also the most susceptible to decomposition in a degradation scenario. Protecting saltmarshes can help prevent carbon losses and reduce CO2 emissions. Including this vulnerable stored carbon in climate policies and carbon credit systems could make them more accurate and effective.
Cited articles
Adam, P.: Geographical variation in British saltmarsh vegetation, J. Ecol., 66, 339–366, https://doi.org/10.2307/2259141, 1978.
Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.: An introduction to MCMC for machine learning, Mach. Learn., 50, 5–42, https://doi.org/10.1023/A:1020281327116, 2003.
Austin, W. E. N., Smeaton, C., Riegel, S., Ruranska, P., and Miller, L.: Blue carbon stock in Scottish saltmarsh soils, Scot. Mar. Fresh. Sci., 12, 37 pp., https://doi.org/10.7489/12372-1, 2021.
Balke, T., Stock, M., Jensen, K., Bouma, T. J., and Kleyer, M.: A global analysis of the seaward salt marsh extent: the importance of tidal range, Water Resour. Res., 52, 3775–3786, https://doi.org/10.1002/2015WR018318, 2016.
Balke, T., Vovides, A., Schwarz, C., Chmura, G. L., Ladd, C., and Basyuni, M.: Monitoring tidal hydrology in coastal wetlands with the “Mini Buoy”: applications for mangrove restoration, Hydrol. Earth Syst. Sci., 25, 1229–1244, https://doi.org/10.5194/hess-25-1229-2021, 2021.
Blount, T. R., Carrasco, A. R., Cristina, S., and Silvestri, S.: Exploring open-source multispectral satellite remote sensing as a tool to map long-term evolution of salt marsh shorelines, Estuar. Coast. Shelf S., 266, 107664, https://doi.org/10.1016/j.ecss.2021.107664, 2022.
Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., and Thomas, N.: Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2. 5), Remote Sens., 14, 1034, https://doi.org/10.3390/rs14041034, 2022.
Burd, F.: The saltmarsh survey of Great Britain: an inventory of British Saltmarshes (No. 17), Nature Conservancy Council, Peterborough, United Kingdom, 180 pp., ISBN 0 86139 514 X, 1989.
Burden, A., Garbutt, A., and Evan, C. D.: Effect of restoration on saltmarsh carbon accumulation in Eastern England, Biol. Lett., 15, 20180773, https://doi.org/10.1098/rsbl.2018.0773, 2019.
Campbell, A. and Wang, Y.: High spatial resolution remote sensing for salt marsh mapping and change analysis at Fire Island National Seashore, Remote Sens., 11, 1107, https://doi.org/10.3390/rs11091107, 2019.
Campbell, A. D., Fatoyinbo, L., Goldberg, L., and Lagomasino, D.: Global hotspots of salt marsh change and carbon emissions, Nature, 612, 701–706, https://doi.org/10.1038/s41586-022-05355-z, 2022.
Cao, J., Liu, K., Zhuo, L., Liu, L., Zhu, Y., and Peng, L.: Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm, Int. J. Appl. Earth Obs., 102, 102414, https://doi.org/10.1016/j.jag.2021.102414, 2021.
Carlson, T. N. and Ripley, D. A.: On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens. Environ., 62, 241–252, https://doi.org/10.1016/S0034-4257(97)00104-1, 1997.
Chen, C., Zhang, C., Schwarz, C., Tian, B., Jiang, W., Wu, W., Garg, R., Garg, P., Aleksandr, C., Mikhail, S., and Zhou, Y.: Mapping three-dimensional morphological characteristics of tidal salt-marsh channels using UAV structure-from-motion photogrammetry, Geomorphology, 407, 108235, https://doi.org/10.1016/j.geomorph.2022.108235, 2022.
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C.: Global carbon sequestration in tidal, saline wetland soils, Global Biochem. Cy., 17, 1111, https://doi.org/10.1029/2002GB001917, 2003.
DiGiacomo, A. E., Bird, C. N., Pan, V. G., Dobroski, K., Atkins-Davis, C., Johnston, D. W., and Ridge, J. T.: Modeling salt marsh vegetation heigh using unoccupied aircraft systems and structure from motion, Remote Sens., 12, 2333, https://doi.org/10.3390/rs12142333, 2020.
Doughty, C. L. and Cavanaugh, K. C.: Mapping coastal wetland biomass from high resolution unmanned aerial vehicle (UAV) imagery, Remote Sens., 11, 540, https://doi.org/10.3390/rs11050540, 2019.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marbà, N.: The role of coastal plant communities for climate change mitigation and adaptation, Nat. Clim. Change, 3, 961–968, https://doi.org/10.1038/nclimate1970, 2013.
Foster, N. M., Hudson, M. D., Bray, S., and Nicholls, R. J.: Intertidal mudflat and saltmarsh conservation and sustainable use in the UK: A review, J. Environ. Manage., 123, 96–104, https://doi.org/10.1016/j.jenvman.2013.04.015, 2013.
Haynes, T. A.: Saltmarsh survey of Scotland, Scottish Government Spatialdata.gov.scot [data set], 2013.
Haynes T. A.: Scottish Natural Heritage Commissioned Report No. 786 – Scottish saltmarsh survey national report, Scottish Natural Heritage, Inverness, United Kingdom, 195 pp., 2016.
Kalacska, M., Chmura, G. L., Lucanus, O., Bérubé, D., and Arroyo-Mora, J. P.: Structure from motion will revolutionize analyses of tidal wetland landscapes, Remote Sens. Environ., 199, 14–24, https://doi.org/10.1016/j.rse.2017.06.023, 2017.
Ladd, C. J.: Review on processes and management of saltmarshes across Great Britain, P. Geol. Assoc., 132, 269–283, https://doi.org/10.1016/j.pgeola.2021.02.005, 2021.
Ladd, C. J., Duggan-Edwards, M. F., Bouma, T. J., Pages, J. F., and Skov, M. W.: Sediment supply explains long-term and large-scale patterns in salt marsh lateral expansion and erosion, Geophys. Res. Lett., 46, 11178–11187, https://doi.org/10.1029/2019GL083315, 2019.
Laengner, M. L., Siteur, K., and van der Wal, D.: Trends in the seaward extent of saltmarshes across Europe from long-term satellite data, Remote Sens., 11, 1653, https://doi.org/10.3390/rs11141653, 2019.
Leonardi, N., Ganju, N. K., and Fagherazzi, S.: A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes, P. Natl. Acad. Sci. USA, 113, 64–68, https://doi.org/10.1073/pnas.1510095112, 2015.
Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N.: The BUGS project: Evolution, critique and future directions, Stat. Med., 28, 3049–3067, https://doi.org/10.1002/sim.3680, 2009.
Malerba, M. E., de Paula Costa, M. D., Friess, D. A., Schuster, L., Young, M. A., Lagomasino, D., Serrano, O., Hickey, S. M., York, P. H., Rasheed, M., Lefcheck, J. S., Radford, B., Atwood, T. R., Ierodiaconou, D., and Macreadie, P.: Remote sensing for cost-effective blue carbon accounting, Earth-Sci. Rev., 238, 104337, https://doi.org/10.1016/j.earscirev.2023.104337, 2023.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, https://doi.org/10.1890/110004, 2011.
Mcowen, C. J., Weatherdon, L. V., Van Bochove, J. W., Sullivan, E., Blyth, S., Zockler, C., Stanwell-Smith, D., Kingston, N., Martin, C. S., Spalding, M., and Fletcher, S.: A global map of saltmarshes, Biodivers. Data J., 5, e11764, https://doi.org/10.3897/BDJ.5.e11764, 2017.
Miller, L. C., Smeaton, C., Yang, H., and Austin, W. E.: Carbon accumulation and storage across contrasting saltmarshes of Scotland, Estuar. Coast. Mar. Sci., 282, 108223, https://doi.org/10.1016/j.ecss.2023.108223, 2023.
Murray, N. J., Phinn, S. P., Fuller, R. A., DeWitt, M., Ferrari, R., Johnston, R., Clinton, N., and Lyons, M. B.: High-resolution global maps of tidal flat ecosystems from 1984 to 2019, Sci. Data, 9, 542, https://doi.org/10.1038/s41597-022-01635-5, 2022.
Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M. B., Clinton, N., Thau, D., and Fuller, R. A.: The global distribution and trajectory of tidal flats, Nature, 565, 222–225, https://doi.org/10.1038/s41586-018-0805-8, 2019.
Nagol, J. R., Vermote, E. F., and Prince, S. D.: Effects of atmospheric variation on AVHRR NDVI data, Remote Sens. Environ., 113, 392–397, https://doi.org/10.1016/j.rse.2008.10.007, 2009.
Nellemann, C. and Corcoran, E. (Eds.): Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment, UNEP/Earthprint, International Union for Conservation of Nature, ISBN: 978-82-7701-060-1, 2009.
Ouyang, X. and Lee, S. Y.: Updated estimates of carbon accumulation rates in coastal marsh sediments, Biogeosciences, 11, 5057–5071, https://doi.org/10.5194/bg-11-5057-2014, 2014.
Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J.W., Kauffman, J. B., Marbà, N., and Megonigal, P.: Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems, PLoS One, 7, e43542, https://doi.org/10.1371/journal.pone.0043542, 2012.
Pinton, D., Canestrelli, A., Wilkinson, B., Ifju, P., and Ortega, A.: Estimating ground elevation and vegetation characteristics in coastal salt marshes using UAV-based LiDAR and digital aerial photogrammetry, Remote Sens., 13, 4506, https://doi.org/10.3390/rs13224506.
Pye, K. and French, P. W.: Erosion and accretion processes on British saltmarshes, Vol. 4, Modelling of salt marsh and mudflat processes, Cambridge Environmental Research Consultants Limited, Cambridge, United Kingdom, ISBN 1 873 702 00 5, 1993.
Rodwell, J. S.: British Plant communities, maritime communities and vegetation of open habitats, Vol. 5, Cambridge University Press, Cambridge, UK, 512 pp., https://doi.org/10.1017/CBO9780511541834, 2005.
Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L., and Pagliosa, P. R.: Global controls on carbon storage in mangrove soils, Nat. Clim. Change, 8, 534–538, https://doi.org/10.1038/s41558-018-0162-5, 2018.
Smeaton, C., Burden, A., Ruranska, P., Ladd, C. J., Garbutt, A., Jones, L., McMahon, L., Miller, L. C., Skov, M. W., and Austin, W. E.: Using citizen science to estimate surficial soil Blue Carbon stocks in Great British saltmarshes, Front. Mar. Sci., 9, 1461, https://doi.org/10.3389/fmars.2022.959459, 2022.
Smeaton, C., Miller, L. C., McMahon, L., Garrett, E., Barlow, N. L., Gehrels, W. R., Skov, M., and Austin, W. E.: Organic carbon stocks of Great British saltmarshes, Front. Mar. Sci., 10, 18 pp., https://doi.org/10.3389/fmars.2023.1229486, 2023.
Stewart, K. E. J., Bourn, N. A. D., and Thomas, J. A.: An evaluation of three quick methods commonly used to assess sward height in ecology, J. Appl. Ecol., 38, 1148–1154, https://10.1046/j.1365-2664.2001.00658.x, 2001.
Stückemann, K. J. and Waske, B.: Mapping Lower Saxony's salt marshes using temporal metrics of multi-sensor satellite data, Int. J. Appl. Earth Obs., 115, 103123, https://doi.org/10.1016/j.jag.2022.103123, 2022.
Sun, C., Liu, Y., Zhao, S., Zhou, M., Yang, Y., and Li, F.: Classification mapping and species identification of salt marshes based on a short-time interval NDVI time-series from HJ-1 optical imagery, Int. J. Appl. Earth Obs., 45, 27–41, https://doi.org/10.1016/j.jag.2015.10.008, 2016.
Sun, C., Fagherazzi, S., and Liu, Y.: Classification mapping of salt marsh vegetation by flexible monthly NDVI time-series using Landsat imagery, Estuar. Coast. Shelf S., 213, 61–80, https://doi.org/10.1016/j.ecss.2018.08.007, 2018.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979.
Wolff, F., Kolari, T. H. M., Villoslada, M., Tahvanainen, T., Korpelainen, P., Zamboni, P. A. P., and Kumpula, T.: RGB vs. Multispectral imagery: mapping aapa mire plant communities with UAVs, Ecol. Indic., 148, 110140, https://doi.org/10.1016/j.ecolind.2023.110140, 2023.
Van Leeuwen, W. J. D., Orr, B. J., Marsh, S. E., and Herrmann, S. M.: Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications, Remote Sens. Environ., 100, 67–81, https://doi.org/10.1016/j.rse.2005.10.002, 2006.
Villoslada, M., Bergamo, T. F., Ward, R. D., Burnside, N. G., Joyce, C. B., Bunce, R. G. H., and Sepp, K.: Fine scale plant community assessment in coastal meadows using UAV based multispectral data, Ecol. Indic., 111, 105979, https://doi.org/10.1016/j.ecolind.2019.105979, 2020.
Willemsen, P. W. J. M., Horstman, E. M., Bouma, T. J., Baptist, M. J., van Puijenbroek, M., and Borsje, B. W.: Facilitating salt marsh restoration: the importance of event-based bed level dynamics and seasonal trends in bed level change, Front. Mar. Sci., 8, 793235, https://doi.org/10.3389/fmars.2021.793235, 2022.
Yin, D. and Wang, L.: Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges, Remote Sens. Environ., 223, 34–49, https://doi.org/10.1016/j.rse.2018.12.034, 2019.
Short summary
Saltmarsh soils may help to limit the rate of climate change by storing carbon. To understand their impacts, they must be accurately mapped. We use drone data to estimate the size of three saltmarshes in NE Scotland. We find that drone imagery, combined with tidal data, can reliably inform our understanding of saltmarsh size. When compared with previous work using vegetation communities, we find that our most reliable new estimates of stored carbon are 15–20 % smaller than previously estimated.
Saltmarsh soils may help to limit the rate of climate change by storing carbon. To understand...
Altmetrics
Final-revised paper
Preprint