Articles | Volume 21, issue 4
https://doi.org/10.5194/bg-21-929-2024
https://doi.org/10.5194/bg-21-929-2024
Research article
 | 
20 Feb 2024
Research article |  | 20 Feb 2024

UAV approaches for improved mapping of vegetation cover and estimation of carbon storage of small saltmarshes: examples from Loch Fleet, northeast Scotland

William Hiles, Lucy C. Miller, Craig Smeaton, and William E. N. Austin

Related authors

Old Carbon, New Insights: Thermal Reactivity and Bioavailability of Saltmarsh Soils
Alex Houston, Mark H. Garnett, Jo Smith, and William E. N. Austin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3281,https://doi.org/10.5194/egusphere-2024-3281, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Organic-carbon-rich sediments: benthic foraminifera as bio-indicators of depositional environments
Elena Lo Giudice Cappelli, Jessica Louise Clarke, Craig Smeaton, Keith Davidson, and William Edward Newns Austin
Biogeosciences, 16, 4183–4199, https://doi.org/10.5194/bg-16-4183-2019,https://doi.org/10.5194/bg-16-4183-2019, 2019
Short summary
The Holocene Evolution of a Sedimentary Carbon Store in a Mid Latitude Fjord
Craig Smeaton, Xingqian Cui, Thomas S. Bianchi, Alix G. Cage, John A. Howe, and William E. N. Austin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-163,https://doi.org/10.5194/bg-2019-163, 2019
Publication in BG not foreseen
Short summary
Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages
Jeroen Groeneveld, Helena L. Filipsson, William E. N. Austin, Kate Darling, David McCarthy, Nadine B. Quintana Krupinski, Clare Bird, and Magali Schweizer
J. Micropalaeontol., 37, 403–429, https://doi.org/10.5194/jm-37-403-2018,https://doi.org/10.5194/jm-37-403-2018, 2018
Short summary
Scotland's forgotten carbon: a national assessment of mid-latitude fjord sedimentary carbon stocks
Craig Smeaton, William E. N. Austin, Althea L. Davies, Agnes Baltzer, John A. Howe, and John M. Baxter
Biogeosciences, 14, 5663–5674, https://doi.org/10.5194/bg-14-5663-2017,https://doi.org/10.5194/bg-14-5663-2017, 2017
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Responses of microbial metabolic rates to non-equilibrated silicate- versus calcium-based ocean alkalinity enhancement
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024,https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
High metabolic zinc demand within native Amundsen and Ross sea phytoplankton communities determined by stable isotope uptake rate measurements
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024,https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
The influence of zooplankton and oxygen on the particulate organic carbon flux in the Benguela Upwelling System
Luisa Chiara Meiritz, Tim Rixen, Anja Karin van der Plas, Tarron Lamont, and Niko Lahajnar
Biogeosciences, 21, 5261–5276, https://doi.org/10.5194/bg-21-5261-2024,https://doi.org/10.5194/bg-21-5261-2024, 2024
Short summary
Reviews and syntheses: Biological indicators of low-oxygen stress in marine water-breathing animals
Michael R. Roman, Andrew H. Altieri, Denise Breitburg, Erica M. Ferrer, Natalya D. Gallo, Shin-ichi Ito, Karin Limburg, Kenneth Rose, Moriaki Yasuhara, and Lisa A. Levin
Biogeosciences, 21, 4975–5004, https://doi.org/10.5194/bg-21-4975-2024,https://doi.org/10.5194/bg-21-4975-2024, 2024
Short summary
Temperature-enhanced effects of iron on Southern Ocean phytoplankton
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024,https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary

Cited articles

Adam, P.: Geographical variation in British saltmarsh vegetation, J. Ecol., 66, 339–366, https://doi.org/10.2307/2259141, 1978. 
Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.: An introduction to MCMC for machine learning, Mach. Learn., 50, 5–42, https://doi.org/10.1023/A:1020281327116, 2003. 
Austin, W. E. N., Smeaton, C., Riegel, S., Ruranska, P., and Miller, L.: Blue carbon stock in Scottish saltmarsh soils, Scot. Mar. Fresh. Sci., 12, 37 pp., https://doi.org/10.7489/12372-1, 2021. 
Balke, T., Stock, M., Jensen, K., Bouma, T. J., and Kleyer, M.: A global analysis of the seaward salt marsh extent: the importance of tidal range, Water Resour. Res., 52, 3775–3786, https://doi.org/10.1002/2015WR018318, 2016. 
Balke, T., Vovides, A., Schwarz, C., Chmura, G. L., Ladd, C., and Basyuni, M.: Monitoring tidal hydrology in coastal wetlands with the “Mini Buoy”: applications for mangrove restoration, Hydrol. Earth Syst. Sci., 25, 1229–1244, https://doi.org/10.5194/hess-25-1229-2021, 2021. 
Download
Short summary
Saltmarsh soils may help to limit the rate of climate change by storing carbon. To understand their impacts, they must be accurately mapped. We use drone data to estimate the size of three saltmarshes in NE Scotland. We find that drone imagery, combined with tidal data, can reliably inform our understanding of saltmarsh size. When compared with previous work using vegetation communities, we find that our most reliable new estimates of stored carbon are 15–20 % smaller than previously estimated.
Altmetrics
Final-revised paper
Preprint