Articles | Volume 23, issue 1
https://doi.org/10.5194/bg-23-315-2026
https://doi.org/10.5194/bg-23-315-2026
Research article
 | 
12 Jan 2026
Research article |  | 12 Jan 2026

Hybrid machine learning data assimilation for marine biogeochemistry

Ieuan Higgs, Ross Bannister, Jozef Skákala, Alberto Carrassi, and Stefano Ciavatta

Related authors

Modelling primary production: multitude of theories, or multitude of languages?
Jozef Skákala, Shubha Sathyendranath, Yuri Artioli, Deep S. Banerjee, Heather Bouman, Robert J. W. Brewin, Momme Butenschön, Stefano Ciavatta, Stephanie Dutkiewicz, Yanna Fidai, David Ford, Grinson George, Karen Guihou, Bror Jönsson, Marija Bačeković Koloper, Žarko Kovač, Lekshmi Krishnakumary, Gemma Kulk, Charlotte Laufkötter, Gennadi Lessin, Jann Paul Mattern, Angélique Melet, Alexandre Mignot, David Moffat, Fanny Monteiro, Mayra Rodriguez Bennadji, Cécile Rousseaux, Ranjini Swaminathan, Osvaldo Ulloa, and Jerry Tjiputra
EGUsphere, https://doi.org/10.5194/egusphere-2025-6256,https://doi.org/10.5194/egusphere-2025-6256, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Exploring the influence of spatio-temporal scale differences in coupled data assimilation
Lilian Garcia-Oliva, Alberto Carrassi, and François Counillon
Nonlin. Processes Geophys., 32, 439–456, https://doi.org/10.5194/npg-32-439-2025,https://doi.org/10.5194/npg-32-439-2025, 2025
Short summary
Improved understanding of nitrate trends, eutrophication indicators, and risk areas using machine learning
Deep S. Banerjee and Jozef Skákala
Biogeosciences, 22, 3769–3784, https://doi.org/10.5194/bg-22-3769-2025,https://doi.org/10.5194/bg-22-3769-2025, 2025
Short summary
Marine data assimilation in the UK: the past, the present, and the vision for the future
Jozef Skákala, David Ford, Keith Haines, Amos Lawless, Matthew J. Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Deep S. Banerjee, Mike Bell, Davi M. Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
Ocean Sci., 21, 1709–1734, https://doi.org/10.5194/os-21-1709-2025,https://doi.org/10.5194/os-21-1709-2025, 2025
Short summary
A Digital Twin Ocean: Can we improve Coastal Ocean Forecasts using targeted Marine Autonomy?
Dale Partridge, Deep Banerjee, David Ford, Ke Wang, Jozef Skakala, Juliane Wihsgott, Prathyush Menon, Susan Kay, Daniel Clewley, Andrea Rochner, Emma Sullivan, and Matthew Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3346,https://doi.org/10.5194/egusphere-2025-3346, 2025
Short summary

Cited articles

Anugerahanti, P., Kerimoglu, O., and Smith, S. L.: Enhancing ocean biogeochemical models with phytoplankton variable composition, Frontiers in Marine Science, 8, 944, https://doi.org/10.3389/fmars.2021.675428, 2021. a
Artioli, Y., Blackford, J. C., Butenschön, M., Holt, J. T., Wakelin, S. L., Thomas, H., Borges, A. V., and Allen, J. I.: The carbonate system in the North Sea: Sensitivity and model validation, Journal of Marine Systems, 102, 1–13, 2012. a
Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, SIAM, https://doi.org/10.1137/1.9781611974546, 2016. a
Baretta, J., Ebenhöh, W., and Ruardij, P.: The European regional seas ecosystem model, a complex marine ecosystem model, Netherlands Journal of Sea Research, 33, 233–246, 1995. a, b
Baretta-Bekker, J., Baretta, J., and Ebenhöh, W.: Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake, Journal of Sea Research, 38, 195–211, 1997. a
Download
Short summary
We explored how machine learning can improve computer models that simulate ocean ecosystems. These models help us understand how the ocean works, but they often struggle due to limited observations and complex processes. Our approach uses machine learning to better connect the parts of the system we can observe with those we cannot. This leads to more accurate and efficient predictions, offering a promising way to improve future ocean monitoring and forecasting tools.
Share
Altmetrics
Final-revised paper
Preprint