Articles | Volume 10, issue 7
https://doi.org/10.5194/bg-10-4511-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-4511-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Apparent optical properties of the Canadian Beaufort Sea – Part 2: The 1% and 1 cm perspective in deriving and validating AOP data products
S. B. Hooker
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Greenbelt, Maryland 20771, USA
J. H. Morrow
Biospherical Instruments Inc., 5340 Riley Street, San Diego, California 92110, USA
A. Matsuoka
Université Laval, Avenue de la Médecine, Québec City, QC G1V 0A6, Canada
Related subject area
Biogeochemistry: Bio-Optics
Chromophoric dissolved organic matter dynamics revealed through the optimization of an optical–biogeochemical model in the northwestern Mediterranean Sea
Estimating the seasonal impact of optically significant water constituents on surface heating rates in the western Baltic Sea
Variability of light absorption coefficients by different size fractions of suspensions in the southern Baltic Sea
Spatial and temporal dynamics of suspended sediment concentrations in coastal waters of the South China Sea, off Sarawak, Borneo: ocean colour remote sensing observations and analysis
Comment on “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by K. Michaelian and A. Simeonov (2015)
A limited effect of sub-tropical typhoons on phytoplankton dynamics
The suspended small-particle layer in the oxygen-poor Black Sea: a proxy for delineating the effective N2-yielding section
Diel quenching of Southern Ocean phytoplankton fluorescence is related to iron limitation
A global end-member approach to derive aCDOM(440) from near-surface optical measurements
Floodwater impact on Galveston Bay phytoplankton taxonomy, pigment composition and photo-physiological state following Hurricane Harvey from field and ocean color (Sentinel-3A OLCI) observations
Diurnal regulation of photosynthetic light absorption, electron transport and carbon fixation in two contrasting oceanic environments
Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database
Carbon Flux Explorer optical assessment of C, N and P fluxes
Phytoplankton size class in the East China Sea derived from MODIS satellite data
An estuarine-tuned quasi-analytical algorithm (QAA-V): assessment and application to satellite estimates of SPM in Galveston Bay following Hurricane Harvey
Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index
Modelling ocean-colour-derived chlorophyll a
Optical properties of size fractions of suspended particulate matter in littoral waters of Québec
Methods to retrieve the complex refractive index of aquatic suspended particles: going beyond simple shapes
Changes in optical characteristics of surface microlayers hint to photochemically and microbially mediated DOM turnover in the upwelling region off the coast of Peru
Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization
Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors
Autonomous profiling float observations of the high-biomass plume downstream of the Kerguelen Plateau in the Southern Ocean
A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment
Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications
Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea
Absorption and fluorescence properties of chromophoric dissolved organic matter of the eastern Bering Sea in the summer with special reference to the influence of a cold pool
A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space
Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea
On the consistency of MODIS chlorophyll $a$ products in the northern South China Sea
Contribution to a bio-optical model for remote sensing of Lena River water
Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting
Biogeochemical origins of particles obtained from the inversion of the volume scattering function and spectral absorption in coastal waters
Apparent optical properties of the Canadian Beaufort Sea – Part 1: Observational overview and water column relationships
Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding
Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space
Variations of net primary productivity and phytoplankton community composition in the Indian sector of the Southern Ocean as estimated from ocean color remote sensing data
Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean
Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data
Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics
Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance
Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient
Characterization of the bio-optical anomaly and diurnal variability of particulate matter, as seen from scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea
MODIS observed phytoplankton dynamics in the Taiwan Strait: an absorption-based analysis
Global variability of phytoplankton functional types from space: assessment via the particle size distribution
Optical Characterization of an Eddy-induced Diatom Bloom West of the Island of Hawaii
The dissolved yellow substance and the shades of blue in the Mediterranean Sea
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Justyna Meler, Dagmara Litwicka, and Monika Zabłocka
Biogeosciences, 20, 2525–2551, https://doi.org/10.5194/bg-20-2525-2023, https://doi.org/10.5194/bg-20-2525-2023, 2023
Short summary
Short summary
We present a variability of absorption properties by different size fractions of particles suspended in the Baltic Sea waters. The light absorption coefficient by all suspended particles (ap), detritus (ad) and phytoplankton (aph) was determined for four size fractions: pico-particles, ultra-particles, nano-particles and micro-particles. We have shown the proportions of particles from the size classes (micro-, nano-, ultra- and pico-particles) in the total ap, ad and aph.
Jenny Choo, Nagur Cherukuru, Eric Lehmann, Matt Paget, Aazani Mujahid, Patrick Martin, and Moritz Müller
Biogeosciences, 19, 5837–5857, https://doi.org/10.5194/bg-19-5837-2022, https://doi.org/10.5194/bg-19-5837-2022, 2022
Short summary
Short summary
This study presents the first observation of water quality changes over space and time in the coastal systems of Sarawak, Malaysian Borneo, using remote sensing technologies. While our findings demonstrate that the southwestern coast of Sarawak is within local water quality standards, historical patterns of water quality degradation that were detected can help to alert local authorities and enhance management and monitoring strategies of coastal waters in this region.
Lars Olof Björn
Biogeosciences, 19, 1013–1019, https://doi.org/10.5194/bg-19-1013-2022, https://doi.org/10.5194/bg-19-1013-2022, 2022
Short summary
Short summary
The origin and evolution of life do not contradict the laws of thermodynamics, but we have no proof that it is an inevitable consequence of these laws. We do not know if the first life arose under illumination or in darkness in the deep ocean or in the Earth's crust. We have no proof that it arose due to a
thermodynamic imperative of dissipating the prevailing solar spectrum, as there are other ways for entropy increase in solar radiation. The biosphere may instead delay entropy production.
Fei Chai, Yuntao Wang, Xiaogang Xing, Yunwei Yan, Huijie Xue, Mark Wells, and Emmanuel Boss
Biogeosciences, 18, 849–859, https://doi.org/10.5194/bg-18-849-2021, https://doi.org/10.5194/bg-18-849-2021, 2021
Short summary
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
Rafael Rasse, Hervé Claustre, and Antoine Poteau
Biogeosciences, 17, 6491–6505, https://doi.org/10.5194/bg-17-6491-2020, https://doi.org/10.5194/bg-17-6491-2020, 2020
Short summary
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
Christina Schallenberg, Robert F. Strzepek, Nina Schuback, Lesley A. Clementson, Philip W. Boyd, and Thomas W. Trull
Biogeosciences, 17, 793–812, https://doi.org/10.5194/bg-17-793-2020, https://doi.org/10.5194/bg-17-793-2020, 2020
Short summary
Short summary
Measurements of phytoplankton health still require the use of research vessels and are thus costly and sparse. In this paper we propose a new way to assess the health of phytoplankton using simple fluorescence measurements, which can be made autonomously. In the Southern Ocean, where the most limiting nutrient for phytoplankton is iron, we found a relationship between iron limitation and the depression of fluorescence under high light, the so-called non-photochemical quenching of fluorescence.
Stanford B. Hooker, Atsushi Matsuoka, Raphael M. Kudela, Youhei Yamashita, Koji Suzuki, and Henry F. Houskeeper
Biogeosciences, 17, 475–497, https://doi.org/10.5194/bg-17-475-2020, https://doi.org/10.5194/bg-17-475-2020, 2020
Short summary
Short summary
A Kd(λ) and aCDOM(440) data set spanned oceanic, coastal, and inland waters. The algorithmic approach, based on Kd end-member pairs, can be used globally. End-members with the largest spectral span had an accuracy of 1.2–2.4 % (RMSE). Validation was influenced by subjective
nonconservativewater masses. The influence of subcategories was confirmed with an objective cluster analysis.
Bingqing Liu, Eurico J. D'Sa, and Ishan D. Joshi
Biogeosciences, 16, 1975–2001, https://doi.org/10.5194/bg-16-1975-2019, https://doi.org/10.5194/bg-16-1975-2019, 2019
Short summary
Short summary
An approach using bio-optical field and ocean color (Sentinel-3A OLCI) data combined with inversion models allowed for the first time an assessment of phytoplankton response (changes in taxonomy, pigment composition and physiological state) to a large hurricane-related floodwater perturbation in a turbid estuary. The study revealed the transition in phytoplankton community species as well as the spatiotemporal distributions of phytoplankton diagnostic pigments in the floodwater-impacted bay.
Nina Schuback and Philippe D. Tortell
Biogeosciences, 16, 1381–1399, https://doi.org/10.5194/bg-16-1381-2019, https://doi.org/10.5194/bg-16-1381-2019, 2019
Short summary
Short summary
Understanding the dynamics of primary productivity requires mechanistic insight into the coupling of light absorption, electron transport and carbon fixation in response to environmental variability. Measuring such rates over diurnal timescales in contrasting regions allowed us to gain information on the regulation of photosynthetic efficiencies, with implications for the interpretation of bio-optical data, and the parameterization of models needed to monitor productivity over large scales.
Marie Barbieux, Julia Uitz, Bernard Gentili, Orens Pasqueron de Fommervault, Alexandre Mignot, Antoine Poteau, Catherine Schmechtig, Vincent Taillandier, Edouard Leymarie, Christophe Penkerc'h, Fabrizio D'Ortenzio, Hervé Claustre, and Annick Bricaud
Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, https://doi.org/10.5194/bg-16-1321-2019, 2019
Short summary
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
Hannah L. Bourne, James K. B. Bishop, Todd J. Wood, Timothy J. Loew, and Yizhuang Liu
Biogeosciences, 16, 1249–1264, https://doi.org/10.5194/bg-16-1249-2019, https://doi.org/10.5194/bg-16-1249-2019, 2019
Short summary
Short summary
The biological carbon pump, the process by which carbon-laden particles sink out of the surface ocean, is dynamic and fast. The use of autonomous observations will better inform carbon export simulations. The Carbon Flux Explorer (CFE) was developed to optically measure hourly variations of particle flux. We calibrate the optical measurements of the CFE against C and N flux using samples collected during a coastal California cruise in June 2017. Our results yield well-correlated calibrations.
Hailong Zhang, Shengqiang Wang, Zhongfeng Qiu, Deyong Sun, Joji Ishizaka, Shaojie Sun, and Yijun He
Biogeosciences, 15, 4271–4289, https://doi.org/10.5194/bg-15-4271-2018, https://doi.org/10.5194/bg-15-4271-2018, 2018
Short summary
Short summary
The PSC model was re-tuned for regional application in the East China Sea, and successfully applied to MODIS data. We investigated previously unknown temporal–spatial patterns of the PSC in the ECS and analyzed their responses to environmental factors. The results show the PSC varied across both spatial and temporal scales, and was probably affected by the water column stability, upwelling, and Kuroshio. In addition, human activity and riverine discharge may impact the PSC dynamics.
Ishan D. Joshi and Eurico J. D'Sa
Biogeosciences, 15, 4065–4086, https://doi.org/10.5194/bg-15-4065-2018, https://doi.org/10.5194/bg-15-4065-2018, 2018
Short summary
Short summary
The standard quasi-analytical algorithm (QAA) was tuned for various ocean color sensors as QAA-V and optimized for and evaluated in a variety of waters from highly absorbing and turbid to relatively clear shelf waters. The QAA-V-derived optical properties of total absorption and backscattering coefficients showed an obvious improvement when compared to the standard QAA and were used to examine suspended particulate matter dynamics in Galveston Bay following flooding due to Hurricane Harvey.
Yasmina Loozen, Karin T. Rebel, Derek Karssenberg, Martin J. Wassen, Jordi Sardans, Josep Peñuelas, and Steven M. De Jong
Biogeosciences, 15, 2723–2742, https://doi.org/10.5194/bg-15-2723-2018, https://doi.org/10.5194/bg-15-2723-2018, 2018
Short summary
Short summary
Nitrogen (N) is an essential nutrient for plant growth. It would be interesting to detect it using satellite data. The goal was to investigate if it is possible to remotely sense the canopy nitrogen concentration and content of Mediterranean trees using a product calculated from satellite reflectance data, the MERIS Terrestrial Chlorophyll Index (MTCI). The tree plots were located in Catalonia, NE Spain. The relationship between MTCI and canopy N was present but dependent on the type of trees.
Stephanie Dutkiewicz, Anna E. Hickman, and Oliver Jahn
Biogeosciences, 15, 613–630, https://doi.org/10.5194/bg-15-613-2018, https://doi.org/10.5194/bg-15-613-2018, 2018
Short summary
Short summary
This study provides a demonstration that a biogeochemical/ecosystem/optical computer model which explicitly captures how light is radiated at the surface of the ocean and can be used as a laboratory to explore products (such as Chl a) that are derived from satellite measurements of ocean colour. It explores uncertainties that arise from data input used to derive the algorithms for the products, and issues arising from the interplay between optically important constituents in the ocean.
Gholamreza Mohammadpour, Jean-Pierre Gagné, Pierre Larouche, and Martin A. Montes-Hugo
Biogeosciences, 14, 5297–5312, https://doi.org/10.5194/bg-14-5297-2017, https://doi.org/10.5194/bg-14-5297-2017, 2017
Short summary
Short summary
The mass-specific absorption coefficients of total suspended particulate matter (aSPM*) had relatively low (high) values in areas of of the St. Lawrence Estuary influenced by marine (freshwater) waters and dominated by large-sized (small-sized) and organic-rich (mineral-rich) particulates.
The inorganic content of particulates was correlated with size-fractionated aSPM* values at a wavelength of 440 nm and the spectral slope of aSPM* as computed within the spectral range 400–710 nm.
Albert-Miquel Sánchez and Jaume Piera
Biogeosciences, 13, 4081–4098, https://doi.org/10.5194/bg-13-4081-2016, https://doi.org/10.5194/bg-13-4081-2016, 2016
Short summary
Short summary
In this paper, several methods for the retrieval of the refractive indices are used in three different examples modeling different shapes and particle size distributions. The error associated with each method is discussed and analyzed. It is finally demonstrated that those inverse methods using a genetic algorithm provide optimal estimations relative to other techniques that, although faster, are less accurate.
Luisa Galgani and Anja Engel
Biogeosciences, 13, 2453–2473, https://doi.org/10.5194/bg-13-2453-2016, https://doi.org/10.5194/bg-13-2453-2016, 2016
G. E. Kim, M.-A. Pradal, and A. Gnanadesikan
Biogeosciences, 12, 5119–5132, https://doi.org/10.5194/bg-12-5119-2015, https://doi.org/10.5194/bg-12-5119-2015, 2015
Short summary
Short summary
Light absorption by colored detrital material (CDM) was included in a fully coupled Earth system model. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. Concurrently, total biomass decreased leaving more nutrients in the water. Regional changes were analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth.
J. A. Gamon, O. Kovalchuck, C. Y. S. Wong, A. Harris, and S. R. Garrity
Biogeosciences, 12, 4149–4159, https://doi.org/10.5194/bg-12-4149-2015, https://doi.org/10.5194/bg-12-4149-2015, 2015
Short summary
Short summary
NDVI and PRI sensors (SRS, Decagon Inc.) exhibited complementary responses during spring photosynthetic activation in evergreen and deciduous stands. In evergreens, PRI was most strongly influenced by changing chlorophyll:carotenoid pool sizes over the several weeks of the study, while it was most affected by xanthophyll cycle pigment activity at the diurnal timescale. These automated PRI and NDVI sensors offer new ways to explore environmental and physiological constraints on photosynthesis.
M. Grenier, A. Della Penna, and T. W. Trull
Biogeosciences, 12, 2707–2735, https://doi.org/10.5194/bg-12-2707-2015, https://doi.org/10.5194/bg-12-2707-2015, 2015
Short summary
Short summary
Four bio-profilers were deployed in the high-biomass plume downstream of the Kerguelen Plateau (KP; Southern Ocean) to examine the conditions favouring phytoplankton accumulation. Regions of very high Chla accumulation were mainly associated with surface waters from the northern KP. Light limitation seems to have a limited influence on production. A cyclonic eddy was associated with a significant export of organic matter and a subsequent dissolved inorganic carbon storage in the ocean interior.
I. Cetinić, M. J. Perry, E. D'Asaro, N. Briggs, N. Poulton, M. E. Sieracki, and C. M. Lee
Biogeosciences, 12, 2179–2194, https://doi.org/10.5194/bg-12-2179-2015, https://doi.org/10.5194/bg-12-2179-2015, 2015
Short summary
Short summary
The ratio of simple optical properties measured from underwater autonomous platforms, such as floats and gliders, is used as a new tool for studying phytoplankton distribution in the North Atlantic Ocean. The resolution that optical instruments carried by autonomous platforms provide allows us to study phytoplankton patchiness and its drivers in the oceanic systems.
B. Heim, E. Abramova, R. Doerffer, F. Günther, J. Hölemann, A. Kraberg, H. Lantuit, A. Loginova, F. Martynov, P. P. Overduin, and C. Wegner
Biogeosciences, 11, 4191–4210, https://doi.org/10.5194/bg-11-4191-2014, https://doi.org/10.5194/bg-11-4191-2014, 2014
M. Kahru and R. Elmgren
Biogeosciences, 11, 3619–3633, https://doi.org/10.5194/bg-11-3619-2014, https://doi.org/10.5194/bg-11-3619-2014, 2014
E. J. D'Sa, J. I. Goes, H. Gomes, and C. Mouw
Biogeosciences, 11, 3225–3244, https://doi.org/10.5194/bg-11-3225-2014, https://doi.org/10.5194/bg-11-3225-2014, 2014
A. Matsuoka, M. Babin, D. Doxaran, S. B. Hooker, B. G. Mitchell, S. Bélanger, and A. Bricaud
Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, https://doi.org/10.5194/bg-11-3131-2014, 2014
S. Q. Wang, J. Ishizaka, H. Yamaguchi, S. C. Tripathy, M. Hayashi, Y. J. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. J. Yoo
Biogeosciences, 11, 1759–1773, https://doi.org/10.5194/bg-11-1759-2014, https://doi.org/10.5194/bg-11-1759-2014, 2014
S. L. Shang, Q. Dong, C. M. Hu, G. Lin, Y. H. Li, and S. P. Shang
Biogeosciences, 11, 269–280, https://doi.org/10.5194/bg-11-269-2014, https://doi.org/10.5194/bg-11-269-2014, 2014
H. Örek, R. Doerffer, R. Röttgers, M. Boersma, and K. H. Wiltshire
Biogeosciences, 10, 7081–7094, https://doi.org/10.5194/bg-10-7081-2013, https://doi.org/10.5194/bg-10-7081-2013, 2013
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
X. Zhang, Y. Huot, D. J. Gray, A. Weidemann, and W. J. Rhea
Biogeosciences, 10, 6029–6043, https://doi.org/10.5194/bg-10-6029-2013, https://doi.org/10.5194/bg-10-6029-2013, 2013
D. Antoine, S. B. Hooker, S. Bélanger, A. Matsuoka, and M. Babin
Biogeosciences, 10, 4493–4509, https://doi.org/10.5194/bg-10-4493-2013, https://doi.org/10.5194/bg-10-4493-2013, 2013
S. Bélanger, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, https://doi.org/10.5194/bg-10-4087-2013, 2013
A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin
Biogeosciences, 10, 917–927, https://doi.org/10.5194/bg-10-917-2013, https://doi.org/10.5194/bg-10-917-2013, 2013
S. Takao, T. Hirawake, S. W. Wright, and K. Suzuki
Biogeosciences, 9, 3875–3890, https://doi.org/10.5194/bg-9-3875-2012, https://doi.org/10.5194/bg-9-3875-2012, 2012
R. Röttgers and B. P. Koch
Biogeosciences, 9, 2585–2596, https://doi.org/10.5194/bg-9-2585-2012, https://doi.org/10.5194/bg-9-2585-2012, 2012
A. Sadeghi, T. Dinter, M. Vountas, B. Taylor, M. Altenburg-Soppa, and A. Bracher
Biogeosciences, 9, 2127–2143, https://doi.org/10.5194/bg-9-2127-2012, https://doi.org/10.5194/bg-9-2127-2012, 2012
A. Matsuoka, A. Bricaud, R. Benner, J. Para, R. Sempéré, L. Prieur, S. Bélanger, and M. Babin
Biogeosciences, 9, 925–940, https://doi.org/10.5194/bg-9-925-2012, https://doi.org/10.5194/bg-9-925-2012, 2012
B. B. Taylor, E. Torrecilla, A. Bernhardt, M. H. Taylor, I. Peeken, R. Röttgers, J. Piera, and A. Bracher
Biogeosciences, 8, 3609–3629, https://doi.org/10.5194/bg-8-3609-2011, https://doi.org/10.5194/bg-8-3609-2011, 2011
G. Dall'Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin
Biogeosciences, 8, 3423–3439, https://doi.org/10.5194/bg-8-3423-2011, https://doi.org/10.5194/bg-8-3423-2011, 2011
H. Loisel, V. Vantrepotte, K. Norkvist, X. Mériaux, M. Kheireddine, J. Ras, M. Pujo-Pay, Y. Combet, K. Leblanc, G. Dall'Olmo, R. Mauriac, D. Dessailly, and T. Moutin
Biogeosciences, 8, 3295–3317, https://doi.org/10.5194/bg-8-3295-2011, https://doi.org/10.5194/bg-8-3295-2011, 2011
S. Shang, Q. Dong, Z. Lee, Y. Li, Y. Xie, and M. Behrenfeld
Biogeosciences, 8, 841–850, https://doi.org/10.5194/bg-8-841-2011, https://doi.org/10.5194/bg-8-841-2011, 2011
T. S. Kostadinov, D. A. Siegel, and S. Maritorena
Biogeosciences, 7, 3239–3257, https://doi.org/10.5194/bg-7-3239-2010, https://doi.org/10.5194/bg-7-3239-2010, 2010
F. Nencioli, G. Chang, M. Twardowski, and T. D. Dickey
Biogeosciences, 7, 151–162, https://doi.org/10.5194/bg-7-151-2010, https://doi.org/10.5194/bg-7-151-2010, 2010
A. Morel and B. Gentili
Biogeosciences, 6, 2625–2636, https://doi.org/10.5194/bg-6-2625-2009, https://doi.org/10.5194/bg-6-2625-2009, 2009
Cited articles
Antoine, D., d'Ortenzio, F., Hooker, S. B., Bécu, G., Gentili, B., Tailliez, D., and Scott, A. J.: Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project), J. Geophys. Res., 113, C07013, https://doi.org/10.1029/2007JC004472, 2008.
Antoine, D., Hooker, S. B., Bélanger, S., Matsuoka, A., and Babin, M.: Apparent optical properties of the Canadian Beaufort Sea – Part 1: Observational overview and water column relationships, Biogeosciences, 10, 4493–4509, https://doi.org/10.5194/bg-10-4493-2013, 2013.
Bailey, S. W., Hooker, S. B., Antoine, D., Franz, B. A., and Werdell, P. J.: Sources and assumptions for the vicarious calibration of ocean color satellite observations, Appl. Optics, 47, 2035–2045, 2008.
Bernhard, G., Booth, C. R., Morrow, J. H., and Hooker, S. B.: Biospherical Shadowband Accessory for Diffuse Irradiance (BioSHADE): a marine shadowband and gps accessory, in: Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters, NASA Tech. Memo. 2010–215856, by: Morrow, J. H., Hooker, S. B., Booth, C. R., Bernhard, G., Lind, R. N., and Brown, J. W., NASA Goddard Space Flight Center, Greenbelt, Maryland, 51–60, 2010.
Booth, C. R., Morrow, J. H., Lind, R. N., and Hooker, S. B.: Development of the microradiometer, in: Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters, NASA Tech. Memo. 2010–215856, by: Morrow, J. H., Hooker, S. B., Booth, C. R., Bernhard, G., Lind, R. N., and Brown, J. W., NASA Goddard Space Flight Center, Greenbelt, Maryland, 27–41, 2010.
Clark, D., Gordon, H. R., Voss, K. J., Ge, Y., Broenkow, W., and Trees, C.: Validation of atmospheric correction over the oceans, J. Geophys. Res., 102, 17209–17217, 1997.
Cota, G. F., Wang, J., and Comiso, J.C.: Transformation of global satellite chlorophyll retrievals with a regionally tuned algorithm, Remote Sens. Environ., 90, 373–377, 2004.
Doxaran, D., Ehn, J., Bélanger, S., Matsuoka, A., Hooker, S., and Babin, M.: Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing, Biogeosciences, 9, 3213–3229, https://doi.org/10.5194/bg-9-3213-2012, 2012.
Gordon, H. R. and Ding, K.: Self shading of in-water optical instruments, Limnol. Oceanogr., 37, 491–500, 1992.
Hlaing, S., Harmel, T., Ibrahim, A., Ioannou, I., Tonizzo, A., Gilerson, A., and Ahmed, S.: Validation of ocean color satellite sensors using coastal observational platform in Long Island Sound, Proc. SPIE, 7825, 782504, https://doi.org/10.1117/12.865123, 2010.
Hooker, S. B.: The Telescoping Mount for Advanced Solar Technologies (T-MAST), in: Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters, NASA Tech. Memo. 2010–215856, edited by: Morrow, J. H., Hooker, S. B., Booth, C. R., Bernhard, G., Lind, R. N., and Brown, J. W., NASA Goddard Space Flight Center, Greenbelt, Maryland, 66–71, 2010.
Hooker, S. B. and Brown, J. W.: Processing of Radiometric Observations of Seawater using Information Technologies (PROSIT): In-Water User Manual, NASA Tech. Memo., NASA Goddard Space Flight Center, Greenbelt, Maryland, in preparation, 2013.
Hooker, S. B. and Esaias, W. E.: An overview of the SeaWiFS project, Eos T. Am. Geophys. Un., 74, 241–246, 1993.
Hooker, S. B. and Maritorena, S.: An evaluation of oceanographic radiometers and deployment methodologies, J. Atmos. Ocean. Tech., 17, 811–830, 2000.
Hooker, S. B. and McClain, C. R.: The calibration and validation of SeaWiFS data, Prog. Oceanogr., 45, 427–465, 2000.
Hooker, S. B. and Zibordi, G.: Platform perturbations in above-water radiometry, Appl. Optics, 44, 553–567, 2005.
Hooker, S. B., McClain, C. R., Firestone, J. K., Westphal, T. L., Yeh, E.-N., and Ge, Y.: The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS), Part 1, NASA Tech. Memo. 104566, Vol. 20, edited by: Hooker, S. B. and Firestone, E. R., NASA Goddard Space Flight Center, Greenbelt, Maryland, 40 pp., 1994.
Hooker, S. B., Zibordi, G., Berthon, J.-F., Bailey, S. W., and Pietras, C. M.: The SeaWiFS Photometer Revision for Incident Surface Measurement (SeaPRISM) Field Commissioning, NASA Tech. Memo. 2000–206892, Vol. 13, edited by: Hooker, S. B. and Firestone, E. R., NASA Goddard Space Flight Center, Greenbelt, Maryland, 24 pp., 2000.
Hooker, S. B., Zibordi, G., Berthon, J.-F., D'Alimonte, D., Maritorena, S., McLean, S., and Sildam, J.: Results of the Second SeaWiFS Data Analysis Round Robin, March 2000 (DARR-00), NASA Tech. Memo. 2001–206892, Vol. 15, edited by: Hooker, S. B. and Firestone, E. R., NASA Goddard Space Flight Center, Greenbelt, Maryland, 71 pp., 2001.
Hooker, S. B., Lazin, G., Zibordi, G., and McLean, S.: An evaluation of above- and in-water methods for determining water-leaving radiances, J. Atmos. Ocean. Tech., 19, 486–515, 2002.
Hooker, S. B., Zibordi, G., Berthon, J.-F., and Brown, J. W.: Above-water radiometry in shallow, coastal waters, Appl. Optics, 43, 4254–4268, 2004.
Hooker, S. B., McClain, C. R., and Mannino, A.: NASA Strategic Planning Document: A Comprehensive Plan for the Long-Term Calibration and Validation of Oceanic Biogeochemical Satellite Data, NASA Special Pub. 2007–214152, NASA Goddard Space Flight Center, Greenbelt, Maryland, 31 pp., 2007.
Hooker, S. B., Morrow, J. H., and Brown, J. W.: The Biospherical Surface Ocean Reflectance System (BioSORS), in: Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters, NASA Tech. Memo. 2010–215856, edited by: Morrow, J. H., Hooker, S. B., Booth, C. R., Bernhard, G., Lind, R. N., and Brown, J. W., NASA Goddard Space Flight Center, Greenbelt, Maryland, 8–16, 2010a.
Hooker, S. B., Lind, R. N., Morrow, J. H., and Brown, J. W.: The Submersible Biospherical Optical Profiling System (SuBOPS), in: Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters, NASA Tech. Memo. 2010–215856, edited by: Morrow, J. H., Hooker, S. B., Booth, C. R., Bernhard, G., Lind, R. N., and Brown, J. W., NASA Goddard Space Flight Center, Greenbelt, Maryland, 17–26, 2010b.
Hooker, S. B., Bernhard, G., Morrow, J. H., Booth, C. R., Comer, T., Lind, R. N., and Quang, V.: Optical Sensors for Planetary Radiant Energy (OSPREy): Calibration and Validation of Current and Next-Generation NASA Missions, NASA Tech. Memo. 2012–215872, NASA Goddard Space Flight Center, 117 pp., Greenbelt, Maryland, 2012.
Jerlov, N. G.: Optical Studies of Ocean Water, Rept. Swedish Deep-Sea Exped. 1947–1948, 3, 73–97, 1951.
Jerlov, N. G.: Optical Classification of Ocean Water, in: Physical Aspects of Light in the Sea, University of Hawaii Press, Honolulu, Hawaii, 45–49, 1964.
Jerlov, N. G.: Marine Optics, Elsevier Scientific Publishing Company, Amsterdam, Netherlands, 231 pp., 1976.
Joint Global Ocean Flux Stud: JGOFS Core Measurements Protocols, JGOFS Report No. 6, Scientific Committee on Oceanic Research, Bergen, Norway, 40 pp., 1991.
Mannino, A., Russ, M. E., and Hooker, S. B.: Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight, J. Geophys. Res., 113, C07051, https://doi.org/10.1029/2007JC004493, 2008.
Matsuoka, A., Bricaud, A., Benner, R., Para, J., Sempéré, R., Prieur, L., Bélanger, S., and Babin, M.: Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics, Biogeosciences, 9, 925–940, https://doi.org/10.5194/bg-9-925-2012, 2012.
McClain, C., Hooker, S., Feldman, G., and Bontempi, P.: Satellite data for ocean biology, biogeochemistry, and climate research, Eos T. Am. Geophys. Un., 87, 337–343, 2006.
Morel, A. and Prieur, L.: Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709–722, 1977.
Morrow, J. H., Hooker, S. B., Bernhard, G., and Lind, R. N.: Scalable Hydro-optical Applications for Light Limited Oceanography (SHALLO), in: Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters, NASA Tech. Memo. 2010–215856, edited by: Morrow, J. H., Hooker, S. B., Booth, C. R., Bernhard, G., Lind, R. N., and Brown, J. W., NASA Goddard Space Flight Center, Greenbelt, Maryland, 60–65, 2010a.
Morrow, J. H., Booth, C. R., Lind, R. N., and Hooker, S. B.: The Compact-Optical Profiling System (C-OPS), in: Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters, NASA Tech. Memo. 2010–215856, edited by: Morrow, J. H., Hooker, S. B., Booth, C. R., Bernhard, G., Lind, R. N., and Brown, J. W., NASA Goddard Space Flight Center, Greenbelt, Maryland, 42–50, 2010b.
Mueller, J. L.: Overview of measurement and data analysis protocol, in: Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, NASA Tech. Memo. 2000–209966, edited by: Fargion, G. S. and Mueller, J. L., NASA Goddard Space Flight Center, Greenbelt, Maryland, 87–97, 2000.
Mueller, J. L.: Overview of measurement and data analysis protocols, in: Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3, Volume 1, NASA Tech. Memo. 2002–210004/Rev3–Vol1, edited by: Mueller, J. L. and Fargion, G. S., NASA Goddard Space Flight Center, Greenbelt, Maryland, 123–137, 2002.
Mueller, J. L.: Overview of measurement and data analysis methods, in: Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols, NASA Tech. Memo. 2003–211621/Rev4–Vol.III, edited by: Mueller, J. L., Fargoin, G. S., and McClain, C.R., NASA Goddard Space Flight Center, Greenbelt, Maryland, 1–20, 2003.
Mueller, J. L. and Austin, R. W.: Ocean optics protocols for SeaWiFS validation, NASA Tech. Memo. 104566, Vol. 5, edited by: Hooker, S. B. and Firestone, E. R., NASA Goddard Space Flight Center, Greenbelt, Maryland, 43 pp., 1992.
Mueller, J. L. and Austin, R. W.: Ocean optics protocols for SeaWiFS validation, Revision 1, NASA Tech. Memo. 104566, Vol. 25, edited by: Hooker, S. B., Firestone, E. R., and Acker, J. G., NASA Goddard Space Flight Center, Greenbelt, Maryland, 66 pp., 1995.
National Aeronautics and Space Administration: Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space, National Aeronautics and Space Administration, Washington, DC, 48 pp., 2010.
National Research Council: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, The National Academies, Washington, DC, 456 pp., 2007.
O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., and McClain, C.: Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103, 24937–24953, 1998.
Pierson, D. C., Kratzer, S., Strömbeck, N., and Håkansson, B.: Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm–700 nm) in the Baltic Sea, Remote Sens. Environ., 112, 668–680, 2008.
Siegel, D. A., Maritorena, S., Nelson, N. B., Hansell, D. A., and Lorenzi-Kayser, M.: Global distribution and dynamics of colored dissolved and detrital organic materials, J. Geophys. Res., 107, 3228, https://doi.org/10.1029/2001JC000965, 2002.
Smith, R. C. and Baker, K. S.: The analysis of ocean optical data, in: Ocean Optics VII, edited by: Blizard, M., Proc. SPIE, 478, 119–126, 1984.
Wang, J. and Cota, G. F.,: Remote-sensing reflectance in the Beaufort and Chukchi seas: observations and models, Appl. Optics, 42, 2754–2765, 2003.
Zibordi, G., Berthon, J.-F., Doyle, J. P., Grossi, S., van der Linde, D., Targa, C., and Alberotanza, L.: Coastal Atmosphere and Sea Time Series (CoASTS), Part 1: A Tower-Based Long-Term Measurement Program, NASA Tech. Memo. 2002–206892, Vol. 19, edited by: Hooker, S. B. and Firestone, E. R., NASA Goddard Space Flight Center, Greenbelt, Maryland, 29 pp., 2002.
Zibordi, G., Mélin, F., Hooker, S. B., D'Alimonte, D., and Holben, B.: An autonomous above-water system for the validation of ocean color radiance data, IEEE T. Geosci. Remote, 42, 401–415, 2004.
Altmetrics
Final-revised paper
Preprint