Articles | Volume 15, issue 4
https://doi.org/10.5194/bg-15-1243-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-15-1243-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments
Tom Jilbert
CORRESPONDING AUTHOR
Department of Environmental Sciences, Faculty of Biological and
Environmental Sciences, University of Helsinki, P.O. Box 65, 00014
University of Helsinki, Finland
Tvärminne Zoological Station, University of Helsinki, J.A.
Palménintie 260, 10900 Hanko, Finland
Eero Asmala
Department of Environmental Sciences, Faculty of Biological and
Environmental Sciences, University of Helsinki, P.O. Box 65, 00014
University of Helsinki, Finland
Tvärminne Zoological Station, University of Helsinki, J.A.
Palménintie 260, 10900 Hanko, Finland
Department of Bioscience – Applied Marine Ecology and Modelling, Aarhus
University, Frederiksborgvej 399, 4000 Roskilde, Denmark
Christian Schröder
Biological and Environmental Sciences, Faculty of Natural Sciences,
University of Stirling, Stirling FK9 4LA, Scotland, UK
Rosa Tiihonen
Department of Environmental Sciences, Faculty of Biological and
Environmental Sciences, University of Helsinki, P.O. Box 65, 00014
University of Helsinki, Finland
Tvärminne Zoological Station, University of Helsinki, J.A.
Palménintie 260, 10900 Hanko, Finland
Jukka-Pekka Myllykangas
Department of Environmental Sciences, Faculty of Biological and
Environmental Sciences, University of Helsinki, P.O. Box 65, 00014
University of Helsinki, Finland
Tvärminne Zoological Station, University of Helsinki, J.A.
Palménintie 260, 10900 Hanko, Finland
Joonas J. Virtasalo
Marine Geology, Geological Survey of Finland (GTK), P.O. Box 96, 02151
Espoo, Finland
Aarno Kotilainen
Marine Geology, Geological Survey of Finland (GTK), P.O. Box 96, 02151
Espoo, Finland
Pasi Peltola
Boliden Rönnskär, 932 81 Skelleftehamn, Sweden
Päivi Ekholm
Department of Food and Environmental Sciences, P.O. Box 66, 00014
University of Helsinki, Finland
Susanna Hietanen
Department of Environmental Sciences, Faculty of Biological and
Environmental Sciences, University of Helsinki, P.O. Box 65, 00014
University of Helsinki, Finland
Tvärminne Zoological Station, University of Helsinki, J.A.
Palménintie 260, 10900 Hanko, Finland
Related authors
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Jukka-Pekka Myllykangas, Tom Jilbert, Gunnar Jakobs, Gregor Rehder, Jan Werner, and Susanna Hietanen
Earth Syst. Dynam., 8, 817–826, https://doi.org/10.5194/esd-8-817-2017, https://doi.org/10.5194/esd-8-817-2017, 2017
Short summary
Short summary
The deep waters of the Baltic Sea host an expanding
dead zone, where low-oxygen conditions favour the natural production of two strong greenhouse gases, methane and nitrous oxide. Oxygen is introduced into the deeps only during rare
salt pulses. We studied the effects of a recent salt pulse on Baltic greenhouse gas production. We found that where oxygen was introduced, methane was largely removed, while nitrous oxide production increased, indicating strong effects on greenhouse gas dynamics.
Matthias Egger, Peter Kraal, Tom Jilbert, Fatimah Sulu-Gambari, Célia J. Sapart, Thomas Röckmann, and Caroline P. Slomp
Biogeosciences, 13, 5333–5355, https://doi.org/10.5194/bg-13-5333-2016, https://doi.org/10.5194/bg-13-5333-2016, 2016
Short summary
Short summary
By combining detailed geochemical analyses with diagenetic modeling, we provide new insights into how methane dynamics may strongly overprint burial records of iron, sulfur and phosphorus in marine systems subject to changes in organic matter loading or water column salinity. A better understanding of these processes will improve our ability to read ancient sediment records and thus to predict the potential consequences of global warming and human-enhanced inputs of nutrients to the ocean.
C. Lenz, T. Jilbert, D.J. Conley, M. Wolthers, and C.P. Slomp
Biogeosciences, 12, 4875–4894, https://doi.org/10.5194/bg-12-4875-2015, https://doi.org/10.5194/bg-12-4875-2015, 2015
K. Mareike Paul, Martijn Hermans, Sami A. Jokinen, Inda Brinkmann, Helena L. Filipsson, and Tom Jilbert
Biogeosciences, 20, 5003–5028, https://doi.org/10.5194/bg-20-5003-2023, https://doi.org/10.5194/bg-20-5003-2023, 2023
Short summary
Short summary
Seawater naturally contains trace metals such as Mo and U, which accumulate under low oxygen conditions on the seafloor. Previous studies have used sediment Mo and U contents as an archive of changing oxygen concentrations in coastal waters. Here we show that in fjords the use of Mo and U for this purpose may be impaired by additional processes. Our findings have implications for the reliable use of Mo and U to reconstruct oxygen changes in fjords.
Jukka Alm, Antti Wall, Jukka-Pekka Myllykangas, Paavo Ojanen, Juha Heikkinen, Helena M. Henttonen, Raija Laiho, Kari Minkkinen, Tarja Tuomainen, and Juha Mikola
Biogeosciences, 20, 3827–3855, https://doi.org/10.5194/bg-20-3827-2023, https://doi.org/10.5194/bg-20-3827-2023, 2023
Short summary
Short summary
In Finland peatlands cover one-third of land area. For half of those, with 4.3 Mha being drained for forestry, Finland reports sinks and sources of greenhouse gases in forest lands on organic soils following its UNFCCC commitment. We describe a new method for compiling soil CO2 balance that follows changes in tree volume, tree harvests and temperature. An increasing trend of emissions from 1.4 to 7.9 Mt CO2 was calculated for drained peatland forest soils in Finland for 1990–2021.
Joonas J. Virtasalo, Peter Österholm, and Eero Asmala
Biogeosciences, 20, 2883–2901, https://doi.org/10.5194/bg-20-2883-2023, https://doi.org/10.5194/bg-20-2883-2023, 2023
Short summary
Short summary
We mixed acidic metal-rich river water from acid sulfate soils and seawater in the laboratory to study the flocculation of dissolved metals and organic matter in estuaries. Al and Fe flocculated already at a salinity of 0–2 to large organic flocs (>80 µm size). Precipitation of Al and Fe hydroxide flocculi (median size 11 µm) began when pH exceeded ca. 5.5. Mn transferred weakly to Mn hydroxides and Co to the flocs. Up to 50 % of Cu was associated with the flocs, irrespective of seawater mixing.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Joonas J. Virtasalo, Peter Österholm, Aarno T. Kotilainen, and Mats E. Åström
Biogeosciences, 17, 6097–6113, https://doi.org/10.5194/bg-17-6097-2020, https://doi.org/10.5194/bg-17-6097-2020, 2020
Short summary
Short summary
Rivers draining the acid sulphate soils of western Finland deliver large amounts of metals (e.g. Cd, Co, Cu, La, Mn, Ni, and Zn) to the coastal sea. To better understand metal enrichment in the sea floor, we analysed metal contents and grain size distribution in nine sediment cores, which increased in the 1960s and 1970s and stayed at high levels afterwards. The enrichment is visible more than 25 km out from the river mouths. Organic aggregates are suggested as the key seaward metal carriers.
Ines Bartl, Dana Hellemann, Christophe Rabouille, Kirstin Schulz, Petra Tallberg, Susanna Hietanen, and Maren Voss
Biogeosciences, 16, 3543–3564, https://doi.org/10.5194/bg-16-3543-2019, https://doi.org/10.5194/bg-16-3543-2019, 2019
Short summary
Short summary
Irrespective of variable environmental settings in estuaries, the quality of organic particles is an important factor controlling microbial processes that facilitate a reduction of land-derived nitrogen loads to the open sea. Through the interplay of biogeochemical processing, geomorphology, and hydrodynamics, organic particles may function as a carrier and temporary reservoir of nitrogen, which has a major impact on the efficiency of nitrogen load reduction.
Joonas J. Virtasalo, Jan F. Schröder, Samrit Luoma, Juha Majaniemi, Juha Mursu, and Jan Scholten
Solid Earth, 10, 405–423, https://doi.org/10.5194/se-10-405-2019, https://doi.org/10.5194/se-10-405-2019, 2019
Short summary
Short summary
This study establishes the local stratigraphy and 3-D aquifer geometry of a submarine groundwater discharge site in the Hanko Peninsula, south Finland. The study is based on a rich dataset of marine seismic profiles, multibeam and side-scan sonar images of the seafloor, and onshore ground-penetrating radar and refraction seismic profiles. The groundwater discharge takes place through metre-scale pockmarks on the seafloor, confirmed by elevated radon concentrations in the overlying water.
Joonas J. Virtasalo, Jan F. Schröder, Samrit Luoma, Juha Majaniemi, Juha Mursu, and Jan Scholten
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-507, https://doi.org/10.5194/hess-2018-507, 2018
Preprint withdrawn
Short summary
Short summary
Submarine groundwater discharge (SGD) is a significant source of nutrients and other potentially harmful substances to coastal sea. We analyse a rich dataset of offshore seismic sub-bottom profiles, multibeam and sidescan sonar images of seafloor, and onshore ground-penetrating radar profiles to establish the geometry of an SGD site in south Finland. The SGD takes place through meter scale pits (pockmarks) on the seafloor, confirmed by elevated radon concentrations in the overlying water.
Samuel T. Wilson, Hermann W. Bange, Damian L. Arévalo-Martínez, Jonathan Barnes, Alberto V. Borges, Ian Brown, John L. Bullister, Macarena Burgos, David W. Capelle, Michael Casso, Mercedes de la Paz, Laura Farías, Lindsay Fenwick, Sara Ferrón, Gerardo Garcia, Michael Glockzin, David M. Karl, Annette Kock, Sarah Laperriere, Cliff S. Law, Cara C. Manning, Andrew Marriner, Jukka-Pekka Myllykangas, John W. Pohlman, Andrew P. Rees, Alyson E. Santoro, Philippe D. Tortell, Robert C. Upstill-Goddard, David P. Wisegarver, Gui-Ling Zhang, and Gregor Rehder
Biogeosciences, 15, 5891–5907, https://doi.org/10.5194/bg-15-5891-2018, https://doi.org/10.5194/bg-15-5891-2018, 2018
Short summary
Short summary
To determine the variability between independent measurements of dissolved methane and nitrous oxide, seawater samples were analyzed by multiple laboratories. The results revealed the influences of the different parts of the analytical process, from the initial sample collection to the calculation of the final concentrations. Recommendations are made to improve dissolved methane and nitrous oxide measurements to help preclude future analytical discrepancies between laboratories.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Luciana Pena Mello Brandão, Ludmila Silva Brighenti, Peter Anton Staehr, Eero Asmala, Philippe Massicotte, Denise Tonetta, Francisco Antônio Rodrigues Barbosa, Diego Pujoni, and José Fernandes Bezerra-Neto
Biogeosciences, 15, 2931–2943, https://doi.org/10.5194/bg-15-2931-2018, https://doi.org/10.5194/bg-15-2931-2018, 2018
Short summary
Short summary
Using mesocosms we investigated the effect of the increase in the allochthonous and autochthonous sources of DOM in a tropical lake, in order to simulate its effects on the characteristics of lakes caused by anthropogenic impacts. The seasonal allochthonous input has much larger effects on the lake and, in addition to increasing nutrients, alters the transparency of water and consequently controls the seasonal dynamics of phytoplankton (autochthonous source) and lake ecology.
Jukka-Pekka Myllykangas, Tom Jilbert, Gunnar Jakobs, Gregor Rehder, Jan Werner, and Susanna Hietanen
Earth Syst. Dynam., 8, 817–826, https://doi.org/10.5194/esd-8-817-2017, https://doi.org/10.5194/esd-8-817-2017, 2017
Short summary
Short summary
The deep waters of the Baltic Sea host an expanding
dead zone, where low-oxygen conditions favour the natural production of two strong greenhouse gases, methane and nitrous oxide. Oxygen is introduced into the deeps only during rare
salt pulses. We studied the effects of a recent salt pulse on Baltic greenhouse gas production. We found that where oxygen was introduced, methane was largely removed, while nitrous oxide production increased, indicating strong effects on greenhouse gas dynamics.
Matthias Egger, Peter Kraal, Tom Jilbert, Fatimah Sulu-Gambari, Célia J. Sapart, Thomas Röckmann, and Caroline P. Slomp
Biogeosciences, 13, 5333–5355, https://doi.org/10.5194/bg-13-5333-2016, https://doi.org/10.5194/bg-13-5333-2016, 2016
Short summary
Short summary
By combining detailed geochemical analyses with diagenetic modeling, we provide new insights into how methane dynamics may strongly overprint burial records of iron, sulfur and phosphorus in marine systems subject to changes in organic matter loading or water column salinity. A better understanding of these processes will improve our ability to read ancient sediment records and thus to predict the potential consequences of global warming and human-enhanced inputs of nutrients to the ocean.
C. Lenz, T. Jilbert, D.J. Conley, M. Wolthers, and C.P. Slomp
Biogeosciences, 12, 4875–4894, https://doi.org/10.5194/bg-12-4875-2015, https://doi.org/10.5194/bg-12-4875-2015, 2015
Related subject area
Biogeochemistry: Land - Sea Coupling
Atmospheric CO2 exchanges measured by eddy covariance over a temperate salt marsh and influence of environmental controlling factors
Characterization of the benthic biogeochemical dynamics after flood events in the Rhône River prodelta: a data–model approach
Recent inorganic carbon increase in a temperate estuary driven by water quality improvement and enhanced by droughts
Alkalinity and nitrate dynamics reveal dominance of anammox in a hyper-turbid estuary
Reconciling the paradox of soil organic carbon erosion by water
The dispersal of fluvially discharged and marine, shelf-produced particulate organic matter in the northern Gulf of Mexico
Carbon dynamics at the river–estuarine transition: a comparison among tributaries of Chesapeake Bay
From soil to sea: sources and transport of organic carbon traced by tetraether lipids in the monsoonal Godavari River, India
Dissolved organic matter characterization in soils and streams in a small coastal low-Arctic catchment
Regional-scale phytoplankton dynamics and their association with glacier meltwater runoff in Svalbard
Riverine nitrogen supply to the global ocean and its limited impact on global marine primary production: a feedback study using an Earth system model
Rain-fed streams dilute inorganic nutrients but subsidise organic-matter-associated nutrients in coastal waters of the northeast Pacific Ocean
Ideas and perspectives: Biogeochemistry – some key foci for the future
Spatio-temporal variations in lateral and atmospheric carbon fluxes from the Danube Delta
Technical note: Seamless gas measurements across the land–ocean aquatic continuum – corrections and evaluation of sensor data for CO2, CH4 and O2 from field deployments in contrasting environments
Enrichment of trace metals from acid sulfate soils in sediments of the Kvarken Archipelago, eastern Gulf of Bothnia, Baltic Sea
Organic iron complexes enhance iron transport capacity along estuarine salinity gradients of Baltic estuaries
Particulate organic matter controls benthic microbial N retention and N removal in contrasting estuaries of the Baltic Sea
Export fluxes of dissolved inorganic carbon to the northern Indian Ocean from the Indian monsoonal rivers
The ballast effect of lithogenic matter and its influences on the carbon fluxes in the Indian Ocean
Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico
Reconciling drainage and receiving basin signatures of the Godavari River system
Sources, fluxes, and behaviors of fluorescent dissolved organic matter (FDOM) in the Nakdong River Estuary, Korea
Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon
Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment
A global hotspot for dissolved organic carbon in hypermaritime watersheds of coastal British Columbia
Nitrogen transformations along a shallow subterranean estuary
Modelling nutrient retention in the coastal zone of an eutrophic sea
Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost
Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean
Seasonal response of air–water CO2 exchange along the land–ocean aquatic continuum of the northeast North American coast.
Quantification of iron-rich volcanogenic dust emissions and deposition over the ocean from Icelandic dust sources
Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey
Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf
Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments
Antarctic ice sheet fertilises the Southern Ocean
Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea
Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use
Seasonal dissolved inorganic nitrogen and phosphorus budgets for two sub-tropical estuaries in south Florida, USA
Export of 134 Cs and 137 Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011
The fate of riverine nutrients on Arctic shelves
External forcings, oceanographic processes and particle flux dynamics in Cap de Creus submarine canyon, NW Mediterranean Sea
Radium-based estimates of cesium isotope transport and total direct ocean discharges from the Fukushima Nuclear Power Plant accident
Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem
The role of alkalinity generation in controlling the fluxes of CO2 during exposure and inundation on tidal flats
Coupling of fog and marine microbial content in the near-shore coastal environment
Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer
Effects of water discharge and sediment load on evolution of modern Yellow River Delta, China, over the period from 1976 to 2009
Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea
Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean – a model study
Jérémy Mayen, Pierre Polsenaere, Éric Lamaud, Marie Arnaud, Pierre Kostyrka, Jean-Marc Bonnefond, Philippe Geairon, Julien Gernigon, Romain Chassagne, Thomas Lacoue-Labarthe, Aurore Regaudie de Gioux, and Philippe Souchu
Biogeosciences, 21, 993–1016, https://doi.org/10.5194/bg-21-993-2024, https://doi.org/10.5194/bg-21-993-2024, 2024
Short summary
Short summary
We deployed an atmospheric eddy covariance system to measure continuously the net ecosystem CO2 exchanges (NEE) over a salt marsh and determine the major biophysical drivers. Our results showed an annual carbon sink mainly due to photosynthesis of the marsh plants. Our study also provides relevant information on NEE fluxes during marsh immersion by decreasing daytime CO2 uptake and night-time CO2 emissions at the daily scale, whereas the immersion did not affect the annual marsh C balance.
Eva Ferreira, Stanley Nmor, Eric Viollier, Bruno Lansard, Bruno Bombled, Edouard Regnier, Gaël Monvoisin, Christian Grenz, Pieter van Beek, and Christophe Rabouille
Biogeosciences, 21, 711–729, https://doi.org/10.5194/bg-21-711-2024, https://doi.org/10.5194/bg-21-711-2024, 2024
Short summary
Short summary
The study provides new insights by examining the short-term impact of winter floods on biogeochemical sediment processes near the Rhône River (NW Mediterranean Sea). This is the first winter monitoring of sediment and porewater in deltaic areas. The coupling of these data with a new model enables us to quantify the evolution of biogeochemical processes. It also provides new perspectives on the benthic carbon cycle in river deltas considering climate change, whereby flooding should intensify.
Louise C. V. Rewrie, Burkard Baschek, Justus E. E. van Beusekom, Arne Körtzinger, Gregor Ollesch, and Yoana G. Voynova
Biogeosciences, 20, 4931–4947, https://doi.org/10.5194/bg-20-4931-2023, https://doi.org/10.5194/bg-20-4931-2023, 2023
Short summary
Short summary
After heavy pollution in the 1980s, a long-term inorganic carbon increase in the Elbe Estuary (1997–2020) was fueled by phytoplankton and organic carbon production in the upper estuary, associated with improved water quality. A recent drought (2014–2020) modulated the trend, extending the water residence time and the dry summer season into May. The drought enhanced production of inorganic carbon in the estuary but significantly decreased the annual inorganic carbon export to coastal waters.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Kristof Van Oost and Johan Six
Biogeosciences, 20, 635–646, https://doi.org/10.5194/bg-20-635-2023, https://doi.org/10.5194/bg-20-635-2023, 2023
Short summary
Short summary
The direction and magnitude of the net erosion-induced land–atmosphere C exchange have been the topic of a big scientific debate for more than a decade now. Many have assumed that erosion leads to a loss of soil carbon to the atmosphere, whereas others have shown that erosion ultimately leads to a carbon sink. Here, we show that the soil carbon erosion source–sink paradox is reconciled when the broad range of temporal and spatial scales at which the underlying processes operate are considered.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Paul A. Bukaveckas
Biogeosciences, 19, 4209–4226, https://doi.org/10.5194/bg-19-4209-2022, https://doi.org/10.5194/bg-19-4209-2022, 2022
Short summary
Short summary
Inland waters play an important role in the global carbon cycle by storing, transforming and transporting carbon from land to sea. Comparatively little is known about carbon dynamics at the river–estuarine transition. A study of tributaries of Chesapeake Bay showed that biological processes exerted a strong effect on carbon transformations. Peak carbon retention occurred during periods of elevated river discharge and was associated with trapping of particulate matter.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Thorben Dunse, Kaixing Dong, Kjetil Schanke Aas, and Leif Christian Stige
Biogeosciences, 19, 271–294, https://doi.org/10.5194/bg-19-271-2022, https://doi.org/10.5194/bg-19-271-2022, 2022
Short summary
Short summary
We investigate the effect of glacier meltwater on phytoplankton dynamics in Svalbard. Phytoplankton forms the basis of the marine food web, and its seasonal dynamics depend on the availability of light and nutrients, both of which are affected by glacier runoff. We use satellite ocean color, an indicator of phytoplankton biomass, and glacier mass balance modeling to find that the overall effect of glacier runoff on marine productivity is positive within the major fjord systems of Svalbard.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 18, 5327–5350, https://doi.org/10.5194/bg-18-5327-2021, https://doi.org/10.5194/bg-18-5327-2021, 2021
Short summary
Short summary
Nitrogen is one of the most important elements for life in the ocean. A major source is the riverine discharge of dissolved nitrogen. While global models often omit rivers as a nutrient source, we included nitrogen from rivers in our Earth system model and found that additional nitrogen affected marine biology not only locally but also in regions far off the coast. Depending on regional conditions, primary production was enhanced or even decreased due to internal feedbacks in the nitrogen cycle.
Kyra A. St. Pierre, Brian P. V. Hunt, Suzanne E. Tank, Ian Giesbrecht, Maartje C. Korver, William C. Floyd, Allison A. Oliver, and Kenneth P. Lertzman
Biogeosciences, 18, 3029–3052, https://doi.org/10.5194/bg-18-3029-2021, https://doi.org/10.5194/bg-18-3029-2021, 2021
Short summary
Short summary
Using 4 years of paired freshwater and marine water chemistry from the Central Coast of British Columbia (Canada), we show that coastal temperate rainforest streams are sources of organic nitrogen, iron, and carbon to the Pacific Ocean but not the inorganic nutrients easily used by marine phytoplankton. This distinction may have important implications for coastal food webs and highlights the need to sample all nutrients in fresh and marine waters year-round to fully understand coastal dynamics.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Marie-Sophie Maier, Cristian R. Teodoru, and Bernhard Wehrli
Biogeosciences, 18, 1417–1437, https://doi.org/10.5194/bg-18-1417-2021, https://doi.org/10.5194/bg-18-1417-2021, 2021
Short summary
Short summary
Based on a 2-year monitoring study, we found that the freshwater system of the Danube Delta, Romania, releases carbon dioxide and methane to the atmosphere. The amount of carbon released depends on the freshwater feature (river branches, channels and lakes), season and hydrologic condition, affecting the exchange with the wetland. Spatial upscaling should therefore consider these factors. Furthermore, the Danube Delta increases the amount of carbon reaching the Black Sea via the Danube River.
Anna Rose Canning, Peer Fietzek, Gregor Rehder, and Arne Körtzinger
Biogeosciences, 18, 1351–1373, https://doi.org/10.5194/bg-18-1351-2021, https://doi.org/10.5194/bg-18-1351-2021, 2021
Short summary
Short summary
The paper describes a novel, fully autonomous, multi-gas flow-through set-up for multiple gases that combines established, high-quality oceanographic sensors in a small and robust system designed for use across all salinities and all types of platforms. We describe the system and its performance in all relevant detail, including the corrections which improve the accuracy of these sensors, and illustrate how simultaneous multi-gas set-ups can provide an extremely high spatiotemporal resolution.
Joonas J. Virtasalo, Peter Österholm, Aarno T. Kotilainen, and Mats E. Åström
Biogeosciences, 17, 6097–6113, https://doi.org/10.5194/bg-17-6097-2020, https://doi.org/10.5194/bg-17-6097-2020, 2020
Short summary
Short summary
Rivers draining the acid sulphate soils of western Finland deliver large amounts of metals (e.g. Cd, Co, Cu, La, Mn, Ni, and Zn) to the coastal sea. To better understand metal enrichment in the sea floor, we analysed metal contents and grain size distribution in nine sediment cores, which increased in the 1960s and 1970s and stayed at high levels afterwards. The enrichment is visible more than 25 km out from the river mouths. Organic aggregates are suggested as the key seaward metal carriers.
Simon David Herzog, Per Persson, Kristina Kvashnina, and Emma Sofia Kritzberg
Biogeosciences, 17, 331–344, https://doi.org/10.5194/bg-17-331-2020, https://doi.org/10.5194/bg-17-331-2020, 2020
Short summary
Short summary
Fe concentrations in boreal rivers are increasing strongly in several regions in Northern Europe. This study focuses on how Fe speciation and interaction with organic matter affect stability of Fe across estuarine salinity gradients. The results confirm a positive relationship between the relative contribution of organically complexed Fe and stability. Moreover, organically complexed Fe was more prevalent at high flow conditions and more dominant further upstream in a catchment.
Ines Bartl, Dana Hellemann, Christophe Rabouille, Kirstin Schulz, Petra Tallberg, Susanna Hietanen, and Maren Voss
Biogeosciences, 16, 3543–3564, https://doi.org/10.5194/bg-16-3543-2019, https://doi.org/10.5194/bg-16-3543-2019, 2019
Short summary
Short summary
Irrespective of variable environmental settings in estuaries, the quality of organic particles is an important factor controlling microbial processes that facilitate a reduction of land-derived nitrogen loads to the open sea. Through the interplay of biogeochemical processing, geomorphology, and hydrodynamics, organic particles may function as a carrier and temporary reservoir of nitrogen, which has a major impact on the efficiency of nitrogen load reduction.
Moturi S. Krishna, Rongali Viswanadham, Mamidala H. K. Prasad, Vuravakonda R. Kumari, and Vedula V. S. S. Sarma
Biogeosciences, 16, 505–519, https://doi.org/10.5194/bg-16-505-2019, https://doi.org/10.5194/bg-16-505-2019, 2019
Short summary
Short summary
An order-of-magnitude variability in DIC was found within the Indian estuaries due to significant variability in size of rivers, precipitation pattern and lithology in the catchments. Indian monsoonal estuaries annually export ∼ 10.3 Tg of DIC to the northern Indian Ocean, of which 75 % enters into the Bay of Bengal. Our results indicated that chemical weathering of carbonate and silicate minerals by soil CO2 is the major source of DIC in the Indian monsoonal rivers.
Tim Rixen, Birgit Gaye, Kay-Christian Emeis, and Venkitasubramani Ramaswamy
Biogeosciences, 16, 485–503, https://doi.org/10.5194/bg-16-485-2019, https://doi.org/10.5194/bg-16-485-2019, 2019
Short summary
Short summary
Data obtained from sediment trap experiments in the Indian Ocean indicate that lithogenic matter ballast increases organic carbon flux rates on average by 45 % and by up to 62 % at trap locations in the river-influenced regions of the Indian Ocean. Such a strong lithogenic matter ballast effect implies that land use changes and the associated enhanced transport of lithogenic matter may significantly affect the CO2 uptake of the organic carbon pump in the receiving ocean areas.
Yongping Yuan, Ruoyu Wang, Ellen Cooter, Limei Ran, Prasad Daggupati, Dongmei Yang, Raghavan Srinivasan, and Anna Jalowska
Biogeosciences, 15, 7059–7076, https://doi.org/10.5194/bg-15-7059-2018, https://doi.org/10.5194/bg-15-7059-2018, 2018
Short summary
Short summary
Elevated levels of nutrients in surface water, which originate from deposition of atmospheric N, drainage from agricultural fields, and discharges from sewage treatment plants, cause explosive algal blooms that impair water quality. The complex cycling of nutrients through the land, air, and water requires an integrated multimedia modeling system linking air, land surface, and stream processes to assess their sources, transport, and transformation in large river basins for decision making.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Shin-Ah Lee and Guebuem Kim
Biogeosciences, 15, 1115–1122, https://doi.org/10.5194/bg-15-1115-2018, https://doi.org/10.5194/bg-15-1115-2018, 2018
Short summary
Short summary
The fluorescent dissolved organic matter (FDOM) delivered from riverine discharges significantly affects carbon and biogeochemical cycles in coastal waters. Our results show that the terrestrial concentrations of humic-like FDOM in river water were 60–80 % higher in the summer and fall, while the in situ production of protein-like FDOM was 70–80 % higher in the spring. Our results suggest that there are large seasonal changes in riverine fluxes of FDOM components to the ocean.
Yafei Zhu, Andrew McCowan, and Perran L. M. Cook
Biogeosciences, 14, 4423–4433, https://doi.org/10.5194/bg-14-4423-2017, https://doi.org/10.5194/bg-14-4423-2017, 2017
Short summary
Short summary
We used a 3-D coupled hydrodynamic–biogeochemical water quality model to investigate the effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system. The results highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Kamilla S. Sjøgaard, Alexander H. Treusch, and Thomas B. Valdemarsen
Biogeosciences, 14, 4375–4389, https://doi.org/10.5194/bg-14-4375-2017, https://doi.org/10.5194/bg-14-4375-2017, 2017
Short summary
Short summary
Permanent flooding of low-lying coastal areas is a growing threat due to climate-change-related sea-level rise. To reduce coastal damage, buffer zones can be created by managed coastal realignment where existing dykes are breached and new dykes are built further inland. We studied the impacts on organic matter degradation in soils flooded with seawater by managed coastal realignment and suggest that most of the organic carbon present in coastal soils will be permanently preserved after flooding.
Allison A. Oliver, Suzanne E. Tank, Ian Giesbrecht, Maartje C. Korver, William C. Floyd, Paul Sanborn, Chuck Bulmer, and Ken P. Lertzman
Biogeosciences, 14, 3743–3762, https://doi.org/10.5194/bg-14-3743-2017, https://doi.org/10.5194/bg-14-3743-2017, 2017
Short summary
Short summary
Rivers draining small watersheds of the outer coastal Pacific temperate rainforest export some of the highest yields of dissolved organic carbon (DOC) in the world directly to the ocean. This DOC is largely derived from soils and terrestrial plants. Rainfall, temperature, and watershed characteristics such as wetlands and lakes are important controls on DOC export. This region may be significant for carbon export and linking terrestrial carbon to marine ecosystems.
Mathilde Couturier, Gwendoline Tommi-Morin, Maude Sirois, Alexandra Rao, Christian Nozais, and Gwénaëlle Chaillou
Biogeosciences, 14, 3321–3336, https://doi.org/10.5194/bg-14-3321-2017, https://doi.org/10.5194/bg-14-3321-2017, 2017
Short summary
Short summary
At the land–ocean interface, subterranean estuaries (STEs) are a critical transition pathway of nitrogen. Environmental conditions in the groundwater lead to nitrogen transformation, altering the nitrogen species and concentrations exported to the coastal ocean. This study highlights the role of a STE in processing groundwater-derived N in a shallow boreal STE, far from anthropogenic pressures. Biogeochemical transformations provide new N species from terrestrial origin to the coastal ocean.
Elin Almroth-Rosell, Moa Edman, Kari Eilola, H. E. Markus Meier, and Jörgen Sahlberg
Biogeosciences, 13, 5753–5769, https://doi.org/10.5194/bg-13-5753-2016, https://doi.org/10.5194/bg-13-5753-2016, 2016
Short summary
Short summary
Nutrients from land have been discussed to increase eutrophication in the open sea. This model study shows that the coastal zone works as an efficient filter. Water depth and residence time regulate the retention that occurs mostly in the sediment due to processes such as burial and denitrification. On shorter timescales the retention capacity might seem less effective when the land load of nutrients decreases, but with time the coastal zone can import nutrients from the open sea.
B. W. Abbott, J. B. Jones, S. E. Godsey, J. R. Larouche, and W. B. Bowden
Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015, https://doi.org/10.5194/bg-12-3725-2015, 2015
Short summary
Short summary
As high latitudes warm, carbon and nitrogen stored in permafrost soil will be vulnerable to erosion and transport to Arctic streams and rivers. We sampled outflow from 83 permafrost collapse features in Alaska. Permafrost collapse caused substantial increases in dissolved organic carbon and inorganic nitrogen but decreased methane concentration by 90%. Upland thermokarst may be a dominant linkage transferring carbon and nutrients from terrestrial to aquatic ecosystems as the Arctic warms.
V. Le Fouest, M. Manizza, B. Tremblay, and M. Babin
Biogeosciences, 12, 3385–3402, https://doi.org/10.5194/bg-12-3385-2015, https://doi.org/10.5194/bg-12-3385-2015, 2015
G. G. Laruelle, R. Lauerwald, J. Rotschi, P. A. Raymond, J. Hartmann, and P. Regnier
Biogeosciences, 12, 1447–1458, https://doi.org/10.5194/bg-12-1447-2015, https://doi.org/10.5194/bg-12-1447-2015, 2015
Short summary
Short summary
This study quantifies the exchange of carbon dioxide (CO2) between the atmosphere and the land-ocean aquatic continuum (LOAC) of the northeast North American coast, which consists of rivers, estuaries, and the coastal ocean. Our analysis reveals significant variations of the flux intensity both in time and space across the study area. Ice cover, snowmelt, and the intensity of the estuarine filter are identified as important control factors of the CO2 exchange along the LOAC.
O. Arnalds, H. Olafsson, and P. Dagsson-Waldhauserova
Biogeosciences, 11, 6623–6632, https://doi.org/10.5194/bg-11-6623-2014, https://doi.org/10.5194/bg-11-6623-2014, 2014
Short summary
Short summary
Iceland is one of the largest dust sources on Earth. Based on two separate methods, we estimate dust emissions to range between 30 and 40 million tons annually. Ocean deposition ranges between 5.5 and 13.8 million tons. Calculated iron deposition in oceans around Iceland ranges between 0.56 to 1.4 million tons, which are distributed over wide areas. Iron is a limiting nutrient for primary production in these waters, and dust is likely to affect oceanic Fe levels around Iceland.
N. I. W. Leblans, B. D. Sigurdsson, P. Roefs, R. Thuys, B. Magnússon, and I. A. Janssens
Biogeosciences, 11, 6237–6250, https://doi.org/10.5194/bg-11-6237-2014, https://doi.org/10.5194/bg-11-6237-2014, 2014
Short summary
Short summary
We studied the influence of allochthonous N inputs on primary succession and soil development of a 50-year-old volcanic island, Surtsey. Seabirds increased the ecosystem N accumulation rate inside their colony to ~47 kg ha-1 y-1, compared to 0.7 kg ha-1 y-1 outside it. A strong relationship was found between total ecosystem N stock and both total above- and belowground biomass and SOC stock, which shows how fast external N input can boost primary succession and soil formation.
J.-É. Tremblay, P. Raimbault, N. Garcia, B. Lansard, M. Babin, and J. Gagnon
Biogeosciences, 11, 4853–4868, https://doi.org/10.5194/bg-11-4853-2014, https://doi.org/10.5194/bg-11-4853-2014, 2014
H. E. Reader, C. A. Stedmon, and E. S. Kritzberg
Biogeosciences, 11, 3409–3419, https://doi.org/10.5194/bg-11-3409-2014, https://doi.org/10.5194/bg-11-3409-2014, 2014
R. Death, J. L. Wadham, F. Monteiro, A. M. Le Brocq, M. Tranter, A. Ridgwell, S. Dutkiewicz, and R. Raiswell
Biogeosciences, 11, 2635–2643, https://doi.org/10.5194/bg-11-2635-2014, https://doi.org/10.5194/bg-11-2635-2014, 2014
R. H. Li, S. M. Liu, Y. W. Li, G. L. Zhang, J. L. Ren, and J. Zhang
Biogeosciences, 11, 481–506, https://doi.org/10.5194/bg-11-481-2014, https://doi.org/10.5194/bg-11-481-2014, 2014
E. Asmala, R. Autio, H. Kaartokallio, L. Pitkänen, C. A. Stedmon, and D. N. Thomas
Biogeosciences, 10, 6969–6986, https://doi.org/10.5194/bg-10-6969-2013, https://doi.org/10.5194/bg-10-6969-2013, 2013
C. Buzzelli, Y. Wan, P. H. Doering, and J. N. Boyer
Biogeosciences, 10, 6721–6736, https://doi.org/10.5194/bg-10-6721-2013, https://doi.org/10.5194/bg-10-6721-2013, 2013
S. Nagao, M. Kanamori, S. Ochiai, S. Tomihara, K. Fukushi, and M. Yamamoto
Biogeosciences, 10, 6215–6223, https://doi.org/10.5194/bg-10-6215-2013, https://doi.org/10.5194/bg-10-6215-2013, 2013
V. Le Fouest, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, https://doi.org/10.5194/bg-10-3661-2013, 2013
A. Rumín-Caparrós, A. Sanchez-Vidal, A. Calafat, M. Canals, J. Martín, P. Puig, and R. Pedrosa-Pàmies
Biogeosciences, 10, 3493–3505, https://doi.org/10.5194/bg-10-3493-2013, https://doi.org/10.5194/bg-10-3493-2013, 2013
M. A. Charette, C. F. Breier, P. B. Henderson, S. M. Pike, I. I. Rypina, S. R. Jayne, and K. O. Buesseler
Biogeosciences, 10, 2159–2167, https://doi.org/10.5194/bg-10-2159-2013, https://doi.org/10.5194/bg-10-2159-2013, 2013
B. Deutsch, V. Alling, C. Humborg, F. Korth, and C. M. Mörth
Biogeosciences, 9, 4465–4475, https://doi.org/10.5194/bg-9-4465-2012, https://doi.org/10.5194/bg-9-4465-2012, 2012
P. A. Faber, A. J. Kessler, J. K. Bull, I. D. McKelvie, F. J. R. Meysman, and P. L. M. Cook
Biogeosciences, 9, 4087–4097, https://doi.org/10.5194/bg-9-4087-2012, https://doi.org/10.5194/bg-9-4087-2012, 2012
M. E. Dueker, G. D. O'Mullan, K. C. Weathers, A. R. Juhl, and M. Uriarte
Biogeosciences, 9, 803–813, https://doi.org/10.5194/bg-9-803-2012, https://doi.org/10.5194/bg-9-803-2012, 2012
L. Lassaletta, E. Romero, G. Billen, J. Garnier, H. García-Gómez, and J. V. Rovira
Biogeosciences, 9, 57–70, https://doi.org/10.5194/bg-9-57-2012, https://doi.org/10.5194/bg-9-57-2012, 2012
J. Yu, Y. Fu, Y. Li, G. Han, Y. Wang, D. Zhou, W. Sun, Y. Gao, and F. X. Meixner
Biogeosciences, 8, 2427–2435, https://doi.org/10.5194/bg-8-2427-2011, https://doi.org/10.5194/bg-8-2427-2011, 2011
E. S. Karlsson, A. Charkin, O. Dudarev, I. Semiletov, J. E. Vonk, L. Sánchez-García, A. Andersson, and Ö. Gustafsson
Biogeosciences, 8, 1865–1879, https://doi.org/10.5194/bg-8-1865-2011, https://doi.org/10.5194/bg-8-1865-2011, 2011
C. Y. Bernard, H. H. Dürr, C. Heinze, J. Segschneider, and E. Maier-Reimer
Biogeosciences, 8, 551–564, https://doi.org/10.5194/bg-8-551-2011, https://doi.org/10.5194/bg-8-551-2011, 2011
Cited articles
APHA: Standard methods for the examination of water and wastewater, 20th Edn., American Public Health Association–American Water Works Association, Baltimore, USA, 1998.
Arndt, S., Jorgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and Regnier, P.: Quantifying the degradation of organic matter in marine sediments: A review and synthesis, Earth-Sci. Rev., 123, 53–86, https://doi.org/10.1016/j.earscirev.2013.02.008, 2013.
Asmala, E., Autio, R., Kaartokallio, H., Pitkanen, L., Stedmon, C. A., and Thomas, D. N.: Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use, Biogeosciences, 10, 6969–6986, https://doi.org/10.5194/bg-10-6969-2013, 2013.
Asmala, E., Bowers, D. G., Autio, R., Kaartokallio, H., and Thomas, D. N.: Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation, J. Geophys. Res.-Biogeosci., 119, 1919–1933, https://doi.org/10.1002/2014JG002722, 2014.
Asmala, E., Kaartokallio, H., Carstensen, J., and Thomas, D. N.: Variation in riverine inputs affect dissolved organic matter characteristics throughout the estuarine gradient, Front. Mar. Sci., 2, 125, https://doi.org/10.3389/fmars.2015.00125, 2016.
Barber, A., Brandes, J., Leri, A., Lalonde, K., Balind, K., Wirick, S., Wang, J., and Gélinas, Y.: Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron, Sci. Rep., 7, 366, https://doi.org/10.1038/s41598-017-00494-0, 2017.
Beal, E. J., House, C. H., and Orphan, V. J.: Manganese and iron dependent marine methane oxidation, Science, 325, 184–187, https://doi.org/10.1126/science.1169984, 2009.
Belley, F., Ferre, E. C., Martin-Hernandez, F., Jackson, M. J., Dyar, M. D., and Catlos, E.: The magnetic properties of natural and synthetic (Fex, Mg1 − x)2SiO4 olivines, Earth. Planet. Sc. Letts., 284, 516–526, https://doi.org/10.1016/j.epsl.2009.05.016, 2009.
Berg, P., Risgaard-Petersen, N., and Rysgaard, S.: Interpretation of measured concentration profiles in sediment pore water, Limnol. Oceanogr., 43, 1500–1510, https://doi.org/10.4319/lo.1998.43.7.1500, 1998.
Berner, R.: Sedimentary pyrite formation, Am. J. Sci., 268, 1–23, 1970.
Boman, A., Frojdo, S., Backlund, K., and Astrom, M. E.: Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide, Geochim. Cosmochim. Ac., 74, 1268–1281, https://doi.org/10.1016/j.gca.2009.11.026, 2010.
Bonaglia, S., Bartoli, M., Gunnarsson, J. S., Rahm, L., Raymond, C., Svensson, O., Yekta, S., and Brüchert, V.: Effect of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism, Mar. Ecol.-Prog. Ser., 482, 43–55, https://doi.org/10.3354/meps10232, 2013.
Boudreau, B. P: Diagenetic models and their implementation: Modelling transport and reactions in aquatic sediments, Springer-Verlag, Berlin-Heidelberg, Germany, 1997.
Boyle, E., Edmond, J., and Sholkovitz, E.: Mechanism of iron removal in estuaries, Geochim. Cosmochim. Ac., 41, 1313–1324, https://doi.org/10.1016/0016-7037(77)90075-8, 1977.
Burton, E. D., Sullivan, L. A., Bush, R. T., Johnston, S. G., and Keene, A. F.: A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils, Appl. Geochem., 23, 2759–2766, https://doi.org/10.1016/j.apgeochem.2008.07.007, 2008.
Burton, E. D., Bush, R. T., Johnston, S. G., Sullivan, L. A., and Keene, A. F.: Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland, Geochim. Cosmochim. Ac., 75, 3434–3451, https://doi.org/10.1016/j.gca.2011.03.020, 2011.
Canfield, D. E.: Reactive iron in marine sediments, Geochim. Cosmochim. Ac., 53, 619–632, https://doi.org/10.1016/0016-7037(89)90005-7, 1989.
Canfield, D. E.: Organic matter oxidation in marine sediments, in: Interactions of C, N, P and S biogeochemical cycles and global change, edited by: Wollast R., Mackenzie, F. T., and Chou, L., NATO ASI Series (Series I: Global Environmental Change), Vol. 4. Springer, Berlin, Heidelberg, Germany, 1993.
Claypool, G. E. and Kaplan, I. R.: The origin and distribution of methane in marine sediments, in: Natural gases in marine sediments, edited by: Kaplan, I. R., Plenum Press, New York, USA, 99–139, 1974.
Cline, J.: Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol. Oceanogr., 14, 454–458, 1969.
Conley, D. J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, E., Eremina, T., Haahti, B., Humborg, C., Jonsson, P., Kotta, J., Lannegren, C., Larsson, U., Maximov, A., Medina, M. R., Lysiak-Pastuszak, E., Remeikaite-Nikiene, N., Walve, J., Wilhelms, S., and Zillen, L.: Hypoxia is increasing in the coastal zone of the Baltic Sea, Environ. Sci. Technol., 45, 6777–6783, https://doi.org/10.1021/es201212r, 2011.
Dai, M. and Martin, J.: First data on trace-metal level and behavior in 2 major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia, Earth Planet. Sc. Lett., 131, 127–141, https://doi.org/10.1016/0012-821X(95)00021-4, 1995.
Dalzell, B. J., Minor, E. C., and Mopper, K. M.: Photodegradation of estuarine dissolved organic matter: a multi-method assessment of DOM transformation, Org. Geochem., 40, 243–257, https://doi.org/10.1016/j.orggeochem.2008.10.003, 2009.
D'Antonio, M. C., Wladimirsky, W., Palacios, D., Coggiola, L., Gonzáles-Baró, A. C., Baran, E. J., and Mercader, R. C.: Spectroscopic investigations of iron (II) and iron (III) oxalates, J. Braz. Chem. Soc., 20, 445–450, https://doi.org/10.1590/S0103-50532009000300006, 2009.
de Leeuw, J. W. and Largeau, C.: A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation, in: Organic Geochemistry, Principles and Applications, edited by: Engel, M. H. and Macko, S. A., Plenum Press, New York, USA, 23–72, 1993.
Dijkstra, N., Kraal., P., Kuypers, M. M. M., Schnetger, B., and Slomp, C. P.: Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea Sediments?, PLoS ONE, 9, e101139, https://doi.org/10.1371/journal.pone.0101139, 2014.
Dyar, M. D., Jawin, E., Breves, E. A., Marchand, G. J., Nelms, M., Lane, M. D., Mertzman, S. A., Bish, D. L., and Bishop, J. L.: Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of Martian data, Amer. Mineral., 99, 914–942, https://doi.org/10.2138/am.2014.4701, 2014.
Dyar, M. D., Jawin, E., Breves, E. A., Marchand, G. J., Nelms, M., Lane, M. D., Mertzman, S. A., Bish, D. L., and Bishop, J. L.: Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of Martian data, Amer. Mineral., 99, 914–942, https://doi.org/10.2138/am.2014.4701, 2014.
Dzombak, D. and Morel, F. M. M.: Surface complexation modeling: Hydrous ferric oxide, Wiley, New York, USA, 1990.
Eckert, J. and Sholkovitz, E.: Flocculation of iron, aluminum and humates from river water by electrolytes, Geochim. Cosmochim. Ac., 40, 847–848, https://doi.org/10.1016/0016-7037(76)90036-3, 1976.
Egger, M., Rasigraf, O., Sapart, C. J., Jilbert, T., Jetten, M. S. M., Rockmann, T., van der Veen, C., Banda, N., Kartal, B., Ettwig, K. F., and Slomp, C. P.: Iron-mediated anaerobic oxidation of methane in brackish coastal sediments, Environ. Sci. Technol., 49, 277–283, https://doi.org/10.1021/es503663z, 2015a.
Egger, M., Jilbert, T., Behrends, T., Rivard, C., and Slomp, C. P.: Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments, Geochim. Cosmochim. Ac., 169, 217–235, https://doi.org/10.1016/j.gca.2015.09.012, 2015b.
Egger, M., Kraal, P., Jilbert, T., Sulu-Gambari, F., Sapart, C. J., Rockmann, T., and Slomp, C. P.: Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea, Biogeosciences, 13, 5333–5355, https://doi.org/10.5194/bg-13-5333-2016, 2016.
Eusterhues, K., Wagner, F. E., Haeusler, W., Hanzlik, M., Knicker, H., Totsche, K. U., Koegel-Knabner, I., and Schwertmann, U.: Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray Diffraction and Mössbauer spectroscopy, Environ. Sci. Technol., 42, 7891–7897, https://doi.org/10.1021/es800881w, 2008.
Forsgren, G., Jansson, M., and Nilsson, P.: Aggregation and sedimentation of iron, phosphorus and organic carbon in experimental mixtures of freshwater and estuarine water, Estuar. Coast. Shelf Sci., 43, 259–268, https://doi.org/10.1006/ecss.1996.0068, 1996.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Frančišković-Bilinski, S., Bilinski, H., Tibljas, D., and Hanžel. D.: Estuarine sediments from the boreal region – an indication of weathering, Croat. Chem. Ac., 76, 167–176, 2003.
Goñi, M., Teixeira, M., and Perkey, D.: Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA), Estuar. Coast. Shelf Sci., 57, 1023–1048, https://doi.org/10.1016/S0272-7714(03)00008-8, 2003.
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M., Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and Zorita, E.: Reconstructing the development of Baltic Sea eutrophication 1850–2006, Ambio, 41, 534–548, https://doi.org/10.1007/s13280-012-0318-x, 2012.
Gütlich, P. and Schröder, C.: Mössbauer Spectroscopy, in: Methods in Physical Chemistry, edited by: Schäfer, R. and Schmidt, P. C., Wiley-VCH, Weinheim, Germany, 351–389, https://doi.org/10.1002/9783527636839.ch11, 2012.
Hausen, H.: Ytgestaltningen i Åbolands-Ålands skärgård och dess orsaker, in: Skärgårdsboken, Nordenskiöld-samfundet i Finland, Helsinki, Finland, 30–73, 1948 (in Swedish).
Hedges, J., Mayorga, E., Tsamakis, E., McClain, M., Aufdenkampe, A., Quay, P., Richey, J., Benner, R., Opsahl, S., Black, B., Pimentel, T., Quintanilla, J., and Maurice, L.: Organic matter in Bolivian tributaries of the Amazon River: A comparison to the lower mainstream, Limnol. Oceanogr., 45, 1449–1466, 2000.
Hiemstra, T.: Surface and mineral structure of ferrihydrite, Geochim. Cosmochim. Ac., 105, 316–325, https://doi.org/10.1016/j.gca.2012.12.002, 2013.
Hietanen, S. and Kuparinen, J.: Seasonal and short-term variation in denitrification and anammox at a coastal station on the Gulf of Finland, Baltic Sea, Hydrobiologia, 596, 67–77, https://doi.org/10.1007/s10750-007-9058-5, 2008.
Holmkvist, L., Ferdelman, T. G., and Jørgensen, B. B.: A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark), Geochim. Cosmochim. Ac., 75, 3581–3599, https://doi.org/10.1016/j.gca.2011.03.033, 2011.
Ingri, J. and Conrad, S.: Distinct iron isotope signatures in suspended matter in the northern Baltic Sea; implications for cycling of organic carbon and phosphorus, EGU General Assembly, Vienna, Austria, 12–17 April 2015, EGU2015-11738, 2015.
James, F.: MINUIT Tutorial – Function Minimization, in: Proceedings of the 1972 CERN computing and data processing school, Pertisau, Austria, 10–24 September, 1972, CERN, Switzerland, 72–21, https://doi.org/10.5170/CERN-1972-021, 2004.
Jilbert, T. and Slomp, C. P.: Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea, Geochim. Cosmochim. Ac., 107, 155–169, https://doi.org/10.1016/j.gca.2013.01.005, 2013.
Jilbert, T., Asmala, E., Schröder, C., Tiihonen, R., Myllykangas, J.-P., Virtasalo, J. J., Kotilainen, A., Peltola, P., Ekholm, P., and Hietanen, S.: Water column, sediment and pore water data from Mustionjoki estuary, Finland, 2014–2015, https://doi.org/10.1594/PANGAEA.886792, 2018.
Kim, H.-J. Park, J.-H., and Vescovo, E.: Oxidation of the Fe(110) surface: An Fe3O4(111) ∕ Fe(110) bilayer, Phys. Rev. B., 61, 15284–15287, 2000.
Klingelhöfer, G., Morris, R. V., Bernhardt, B., Rodionov, D., de Souza Jr., P. A., Squyres, S. W., Foh, J., Kankeleit, E., Bonnes, U., Gellert, R., Schröder, C., Linkin, S., Evlanov, E., Zubkov, B., and Prilutski, O.: Athena MIMOS II Mössbauer spectrometer investigation, J. Geophys. Res., 108, E128067, https://doi.org/10.1029/2003JE002138, 2003.
Kortelainen, P., Mattsson, T., Finer, L., Ahtiainen, M., Saukkonen, S., and Sallantaus, T.: Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland, Aquat. Sci., 68, 453–468, https://doi.org/10.1007/s00027-006-0833-6, 2006.
Kraal, P., Burton, E. D., Rose, A. L., Kocar, B. D., Lockhart, R. S., Grice, K., Bush, R. T., Tan, E., and Webb, S. M.: Sedimentary iron-phosphorus cycling under contrasting redox conditions in a eutrophic estuary, Chem. Geol., 392, 19–31, https://doi.org/10.1016/j.chemgeo.2014.11.006, 2015.
Krachler, R., Krachler, R. F., Wallner, G., Steier, P., El Abiead, Y., Wiesinger, H., Jirsa, F., and Keppler, B. K.: Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters, Sci. Total Environ., 556, 53–62, https://doi.org/10.1016/j.scitotenv.2016.03.012, 2016.
Kritzberg, E. S. and Ekstrom, S. M.: Increasing iron concentrations in surface waters – a factor behind brownification?, Biogeosciences, 9, 1465–1478, https://doi.org/10.5194/bg-9-1465-2012, 2012.
Kritzberg, E. S., Villanueva, A. B., Jung, M., and Reader, H. E.: Importance of boreal rivers in providing iron to marine waters, PLoS One, 9, e107500, https://doi.org/10.1371/journal.pone.0107500, 2014.
Lahermo, P., Väänänen, P., Tarvainen, T., and Salminen, R.: Geochemical Atlas of Finland Part 3: Environmental Geochemistry – stream waters and sediments, Geological Survey of Finland, Espoo, Finland, 1996.
Lalonde, K., Mucci, A., Ouellet, A., and Gélinas, Y.: Preservation of organic matter in sediments promoted by iron, Nature, 483, 198–200, https://doi.org/10.1038/nature10855, 2012.
Lenz, C., Jilbert, T., Conley, D. J., and Slomp, C. P.: Hypoxia-driven variations in iron and manganese shuttling in the Baltic Sea over the past 8 kyr, Geochem. Geophy. Geosy., 16, 3754–3766, https://doi.org/10.1002/2015GC005960, 2015.
Leppäranta, M. and Myrberg, K.: Physical Oceanography of the Baltic Sea, Springer-Praxis, Heidelberg, Germany, 2009.
Li, C., Yang, S., Lian, E., Wang, Q., Fan, D., and Huang, X.: Chemical speciation of iron in sediments from the Changjiang Estuary and East China Sea: Iron cycle and paleoenvironmental implications, Quatern. Int., 452, 116–128, https://doi.org/10.1016/j.quaint.2016.07.014, 2017.
Lovley, D., Holmes, D., and Nevin, K.: Dissimilatory Fe(III) and Mn(IV) reduction, Adv. Microb. Physiol., 49, 219–286, https://doi.org/10.1016/S0065-2911(04)49005-5, 2004.
Manning, P. G. and Ash, L. A.: Mössbauer spectral studies of Lake Erie sediments, Can. Mineral., 16, 577–580, 1978.
Manning, P. G., Jones, W., and Birchall, T.: Mössbauer spectral studies of iron-enriched sediments from Hamilton Harbor, Ontario, Can. Mineral., 18, 291–299, 1980.
Mattievich, E. and Danon, J.: Hydrothermal synthesis and Mössbauer studies of ferrous phosphates of the homologous series Fe32+(PO4)2(H2O)n, J. Inorg. Nucl. Chem. 39, 569–580, 1977.
Mattsson, T., Kortelainen, P., and Räike, A.: Export of DOM from boreal catchments: Impacts of land use cover and climate, Biogeochemistry, 76, 373–394, https://doi.org/10.1007/s10533-005-6897-x,
Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Hogasen, T., Wilander, A., Skjelkvale, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopacek, J., and Vesely, J.: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature, 450, 537–541, https://doi.org/10.1038/nature06316, 2007.
Moran, M., Sheldon, W., and Zepp, R.: Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter, Limnol. Oceanogr., 45, 1254–1264, 2000.
Morris, R. V., Ruff, S. W., Gellert, R., Ming, D. W., Arvidson, R. E., Clark, B. C., Golden, D. C., Siebach, K., Klingelhöfer, G., Schröder, C., Fleischer, I., Yen, A., and Squyres, S. W.: Identification of carbonate-rich outcrops on Mars by the Spirit Rover, Science, 329, 421–424, https://doi.org/10.1126/science.1189667, 2010.
Murad, E. and Cashion, J.: Mössbauer spectroscopy of environmental materials and their industrial utilization, Springer, New York, USA, 1–417, https://doi.org/10.1007/978-1-4419-9040, 2004.
Neubauer, E., Kohler, S. J., von der Kammer, F., Laudon, H., and Hofmann, T.: Effect of pH and stream order on iron and arsenic speciation in boreal catchments, Environ. Sci. Technol., 47, 7120–7128, https://doi.org/10.1021/es401193j, 2013.
Niemi, Å.: Hydrography and oxygen fluctuations in Pojoviken, southern coast of Finland, 1972–1975, Meri, 4, 23–35, 1977.
Norkko, J., Reed, D. C., Timmermann, K., Norkko, A., Gustafsson, B. G., Bonsdorff, E., Slomp, C. P., Carstensen, J., and Conley, D. J.: A welcome can of worms? Hypoxia mitigation by an invasive species, Glob. Change Biol., 18, 422–434, https://doi.org/10.1111/j.1365-2486.2011.02513.x, 2012.
Omstedt, A., Edman, M., Anderson, L., and Laudon, H.: Factors influencing the acid–base (pH) balance in the Baltic Sea: a sensitivity analysis, Tellus B, 62, 280–295, https://doi.org/10.1111/j.1600-0889.2010.00463.x, 2010.
O'Sullivan, T. D. and Smith, N. O.: The solubility and partial molar volume of nitrogen and methane in water and in aqueous sodium chloride from 50 to 125'C and 100 to 600 atm, J. Phys. Chem., 74, 1460–1466, 1970.
Peltola, P., Virtasalo, J. J., Oberg, T., and Astrom, M.: Geochemistry of surface sediments in the Archipelago Sea, SW Finland: a multiparameter and multivariate study, Environ. Earth Sci., 62, 725–734, https://doi.org/10.1007/s12665-010-0561-z, 2011.
Poulton, S. and Canfield, D.: Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates, Chem. Geol., 214, 209–221, https://doi.org/10.1016/j.chemgeo.2004.09.003, 2005.
Poulton, S. and Raiswell, R.: The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition, Am. J. Sci., 302, 774–805, https://doi.org/10.2475/ajs.302.9.774, 2002.
Raiswell, R.: Iron transport from the continents to the open ocean: The aging-rejuvenation cycle, Elements, 7, 101–106, https://doi.org/10.2113/gselements.7.2.101, 2011.
Raiswell, R. and Anderson, T.: Reactive iron enrichment in sediments deposited beneath euxinic bottom waters: constraints on supply by shelf recycling, Geol. Soc. Spec. Publ., 248, 179–194, https://doi.org/10.1144/GSL.SP.2005.248.01.10, 2005.
Raiswell, R. and Canfield, D. E.: The iron biogeochemical cycle past and present, Geochem. Perspect., 1, 1–220, https://doi.org/10.7185/geochempersp.1.1, 2012.
Rancourt, D. G. and Ping, J. Y.: Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy, Nucl. Instrum. Meth. Phys. Res. B, 58, 85–97, 1991.
Reed, D. C., Slomp, C. P., and Gustafsson, B. G.: Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: A coupled benthic-pelagic model of a coastal system, Limnol. Oceanogr., 56, 1075–1092, https://doi.org/10.4319/lo.2011.56.3.1075, 2011.
Reese, B. K., Finneran, D. W., Mills, H. J., Zhu, M., and Morse, J. W.: Examination and refinement of the determination of aqueous hydrogen sulfide by the methylene blue method, Aquat. Geochem., 17, 567–582, https://doi.org/10.1007/s10498-011-9128-1, 2011.
Renberg, I., Bindler, R. ,and Brannvall, M. L.: Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe, Holocene, 11, 511–516, 2001.
Robertson, E. K., Roberts, K. L., Burdorf, L. D. W., Cook, P., and Thamdrup, B.: Dissimilatory nitrate reduction to ammonium coupled to Fe (II) oxidation in sediments of a periodically hypoxic estuary, Limnol. Oceanogr., 61, 365–381, 2016.
Rooze, J., Egger, M., Tsandev, I., and Slomp, C. P.: Iron-dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact, Limnol. Oceanogr., 61, S267–S282, https://doi.org/10.1002/lno.10275, 2016.
Sawicka, J. E. and Brüchert, V.: Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments, Biogeosciences, 14, 325–339, 0.5194/bg-14-325-2017, 2017.
Schulz, H. and Zabel, M.: Marine geochemistry, Springer-Verlag, Berlin-Heidelberg, Germany, 1–574, https://doi.org/10.1007/3-540-32144-6, 2009.
Schwertmann, U. and Taylor, R. M.: Iron oxides, in: Minerals in Soil Environments, edited by: Dixon, J. B., Weed, S. B., Kittrick, J. A., Milford, M. H., and White, J. L., Soil Science Society of America, Madison, Wisconsin, USA, 145–180, 1977.
Schwertmann, U., Stanjek, H., and Becher, H.: Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25 °C, Clay Miner., 39, 433–438, https://doi.org/10.1180/0009855043940145, 2004.
Shields, M. R., Bianchi, T. S., Gelinas, Y., Allison, M. A., and Twilley, R. R.: Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments, Geophys. Res. Lett., 43, 1149–1157, https://doi.org/10.1002/2015GL067388, 2016.
Sholkovitz, E., Boyle, E., and Price, N.: Removal of dissolved humic acids and iron during estuarine mixing, Earth Planet. Sc. Lett., 40, 130–136, https://doi.org/10.1016/0012-821X(78)90082-1, 1978.
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., and Eckert, W.: Geochemical evidence for iron-mediated anaerobic oxidation of methane, Limnol. Oceanogr., 56, 1536–1544, https://doi.org/10.4319/lo.2011.56.4.1536, 2011.
Slomp, C. P., Mort, H. P., Jilbert, T., Reed, D. C., Gustafsson, B. G., and Wolthers, M.: Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane, PLoS ONE, 8, e62386, https://doi.org/10.1371/journal.pone.0062386, 2013.
Slomp, C. P., Epping, E. H. G., Helder, W., and Van Raaphorst, W.: A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments, J. Mar. Res., 54, 1179–1205, 1996.
Slomp, C., Van der Gaast, S., and Van Raaphorst, W.: Phosphorus binding by poorly crystalline iron oxides in North Sea sediments, Mar. Chem., 52, 55–73, https://doi.org/10.1016/0304-4203(95)00078-X, 1996.
Stevens, J. G., Khasanov, A. M., Niller, J. W., Pollak, H., and Li, Z.: Mössbauer Mineral Handbook, Mössbauer Effect Data Center, 2002.
Stolpe, B. and Hassellov, M.: Changes in size distribution of fresh water nanoscale colloidal matter and associated elements on mixing with seawater, Geochim. Cosmochim. Ac., 71, 3292–3301, https://doi.org/10.1016/j.gca.2007.04.025, 2007.
Sundman, A., Karlsson, T., Laudon, H., and Persson, P.: XAS study of iron speciation in soils and waters from a boreal catchment, Chem. Geol., 364, 93–102, https://doi.org/10.1016/j.chemgeo.2013.11.023, 2014.
Syvitski, J. and Murray, J.: Particle interaction in fjord suspended sediment, Mar. Geol., 39, 215–242, https://doi.org/10.1016/0025-3227(81)90073-6, 1981.
Uher, G., Hughes, C., Henry, G., and Upstill-Goddard, R.: Non-conservative mixing behavior of colored dissolved organic matter in a humic-rich, turbid estuary, Geophys. Res. Lett., 28, 3309–3312, https://doi.org/10.1029/2000GL012509, 2001.
van der Zee, C., Roberts, D. R., Rancourt, D. G., and Slomp, C. P.: Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments, Geology, 31, 993–996, https://doi.org/10.1130/G19924.1, 2003.
Virta, J.: Estimating the water and salt budgets of a stratified estuary, Nord. Hydrol., 8, 11–32, 1977.
Virtasalo, J. J. and Kotilainen, A. T.: Phosphorus forms and reactive iron in late glacial, postglacial and brackish-water sediments of the Archipelago Sea, northern Baltic Sea, Mar. Geol., 252, 1–12, 2008.
Virtasalo, J., Kohonen, T., Vuorinen, I., and Huttula, T.: Sea bottom anoxia in the Archipelago Sea, northern Baltic Sea – Implications for phosphorus remineralization at the sediment surface, Mar. Geol., 224, 103–122, https://doi.org/10.1016/j.margeo.2005.07.010, 2005.
Virtasalo, J. J., Kotilainen, A. T., Räsänen, M. E., and Ojala, A. E. K.: Late-glacial and post-glacial deposition in a large, low relief, epicontinental basin: the northern Baltic Sea, Sedimentology, 54, 1323–1344, 2007.
Winterhalter, B., Flodén, T., Ignatius, H., Axberg, S., and Niemistö, L.: Geology of the Baltic Sea, in: The Baltic Sea, edited by: Voipio, A., Elsevier, Amsterdam, the Netherlands, 1981.
Yu, C., Virtasalo, J. J., Karlsson, T., Peltola, P., Osterholm, P., Burton, E. D., Arppe, L., Hogmalm, J. K., Ojala, A. E. K., and Åstrom, M. E.: Iron behavior in a northern estuary: Large pools of non-sulfidized Fe(II) associated with organic matter, Chem. Geol., 413, 73–85, https://doi.org/10.1016/j.chemgeo.2015.08.013, 2015.
Zillen, L., Lenz, C., and Jilbert, T.: Stable lead (Pb) isotopes and concentrations – A useful independent dating tool for Baltic Sea sediments, Quat. Geochronol., 8, 41–45, https://doi.org/10.1016/j.quageo.2011.11.001, 2012.
Short summary
Iron is a common dissolved element in river water, recognizable by its orange-brown colour. Here we show that when rivers reach the ocean much of this iron settles to the sediments by a process known as flocculation. The iron is then used by microbes in coastal sediments, which are important hotspots in the global carbon cycle.
Iron is a common dissolved element in river water, recognizable by its orange-brown colour. Here...
Altmetrics
Final-revised paper
Preprint