Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Download
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Altmetrics
Final-revised paper
Preprint
BG | Articles | Volume 15, issue 14
Biogeosciences, 15, 4405–4429, 2018
https://doi.org/10.5194/bg-15-4405-2018
Biogeosciences, 15, 4405–4429, 2018
https://doi.org/10.5194/bg-15-4405-2018

Research article 19 Jul 2018

Research article | 19 Jul 2018

Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale

Kerstin Kretschmer et al.

Related authors

Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019,https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary

Related subject area

Earth System Science/Response to Global Change: Models, Holocene/Anthropocene
Climate change will cause non-analog vegetation states in Africa and commit vegetation to long-term change
Mirjam Pfeiffer, Dushyant Kumar, Carola Martens, and Simon Scheiter
Biogeosciences, 17, 5829–5847, https://doi.org/10.5194/bg-17-5829-2020,https://doi.org/10.5194/bg-17-5829-2020, 2020
Short summary
Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC-based global gridded crop model
Tony W. Carr, Juraj Balkovič, Paul E. Dodds, Christian Folberth, Emil Fulajtar, and Rastislav Skalsky
Biogeosciences, 17, 5263–5283, https://doi.org/10.5194/bg-17-5263-2020,https://doi.org/10.5194/bg-17-5263-2020, 2020
Short summary
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020,https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Variable phytoplankton size distributions reduce the sensitivity of global export flux to climate change
Shirley W. Leung, Thomas Weber, Jacob A. Cram, and Curtis Deutsch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-156,https://doi.org/10.5194/bg-2020-156, 2020
Revised manuscript accepted for BG
Short summary
The capacity of northern peatlands for long-term carbon sequestration
Georgii A. Alexandrov, Victor A. Brovkin, Thomas Kleinen, and Zicheng Yu
Biogeosciences, 17, 47–54, https://doi.org/10.5194/bg-17-47-2020,https://doi.org/10.5194/bg-17-47-2020, 2020

Cited articles

Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18, 1050, https://doi.org/10.1029/2002PA000846, 2003. a
Asahi, H. and Takahashi, K.: A 9-year time-series of planktonic foraminifer fluxes and environmental change in the Bering sea and the central subarctic Pacific Ocean, 1990-1999, Prog. Oceanogr., 72, 343–363, https://doi.org/10.1016/j.pocean.2006.03.021, 2007. a, b
Bauch, D., Carstens, J., and Wefer, G.: Oxygen isotope composition of living Neogloboquadrina pachyderma (sin.) in the Arctic Ocean, Earth Planet. Sc. Lett., 146, 47–58, https://doi.org/10.1016/S0012-821X(96)00211-7, 1997. a
Bé, A. W. H.: Some observations on Arctic planktonic foraminifera, Contrib. Cushman Found. Foram. Res., 11, 64–68, 1960. a
Bé, A. W. H.: Planktonic Foraminifera, in: Antarctic Map Folio Series 11: Distribution of Selected Groups of Marine Invertebrates in Waters South of 35 S Latitude, 9–12, American Geographical Society, 1969. a, b
Publications Copernicus
Download
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Citation
Altmetrics
Final-revised paper
Preprint