Articles | Volume 15, issue 14
https://doi.org/10.5194/bg-15-4405-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-4405-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale
MARUM – Center for Marine Environmental Sciences and Faculty of
Geosciences, University of Bremen, Bremen, Germany
Lukas Jonkers
MARUM – Center for Marine Environmental Sciences and Faculty of
Geosciences, University of Bremen, Bremen, Germany
Michal Kucera
MARUM – Center for Marine Environmental Sciences and Faculty of
Geosciences, University of Bremen, Bremen, Germany
Michael Schulz
MARUM – Center for Marine Environmental Sciences and Faculty of
Geosciences, University of Bremen, Bremen, Germany
Related authors
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Jean-Philippe Baudouin, Nils Weitzel, Maximilian May, Lukas Jonkers, Andrew M. Dolman, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1387, https://doi.org/10.5194/egusphere-2024-1387, 2024
Short summary
Short summary
We explore past global temperatures, critical for climate change comprehension. We devise a method to test temperature reconstruction using climate simulations. Uncertainties, mainly from past temperature measurement methods and age determination, impact reconstructions over time. While more data enhances accuracy for long-term trends, high quality data are more important for short-term precision. Our study lays the groundwork for better reconstructions and suggests avenues for improvement.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Brian R. Crow, Lev Tarasov, Michael Schulz, and Matthias Prange
Clim. Past, 20, 281–296, https://doi.org/10.5194/cp-20-281-2024, https://doi.org/10.5194/cp-20-281-2024, 2024
Short summary
Short summary
An abnormally warm period around 400,000 years ago is thought to have resulted in a large melt event for the Greenland Ice Sheet. Using a sequence of climate model simulations connected to an ice model, we estimate a 50 % melt of Greenland compared to today. Importantly, we explore how the exact methodology of connecting the temperatures and precipitation from the climate model to the ice sheet model can influence these results and show that common methods could introduce errors.
Sabrina Hohmann, Michal Kucera, and Anne de Vernal
Clim. Past, 19, 2027–2051, https://doi.org/10.5194/cp-19-2027-2023, https://doi.org/10.5194/cp-19-2027-2023, 2023
Short summary
Short summary
Drivers for dinocyst assemblage compositions differ regionally and through time. Shifts in the assemblages can sometimes only be interpreted robustly by locally and sometimes globally calibrated transfer functions, questioning the reliability of environmental reconstructions. We suggest the necessity of a thorough evaluation of transfer function performance and significance for downcore applications to disclose the drivers for present and fossil dinocyst assemblages in a studied core location.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Michal Kučera and Geert-Jan A. Brummer
J. Micropalaeontol., 42, 33–34, https://doi.org/10.5194/jm-42-33-2023, https://doi.org/10.5194/jm-42-33-2023, 2023
Pauline Cornuault, Thomas Westerhold, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
Biogeosciences, 20, 597–618, https://doi.org/10.5194/bg-20-597-2023, https://doi.org/10.5194/bg-20-597-2023, 2023
Short summary
Short summary
We generated high-resolution records of carbonate accumulation rate from the Miocene to the Quaternary in the tropical Atlantic Ocean to characterize the variability in pelagic carbonate production during warm climates. It follows orbital cycles, responding to local changes in tropical conditions, as well as to long-term shifts in climate and ocean chemistry. These changes were sufficiently large to play a role in the carbon cycle and global climate evolution.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Takasumi Kurahashi-Nakamura, André Paul, Ute Merkel, and Michael Schulz
Clim. Past, 18, 1997–2019, https://doi.org/10.5194/cp-18-1997-2022, https://doi.org/10.5194/cp-18-1997-2022, 2022
Short summary
Short summary
With a comprehensive Earth-system model including the global carbon cycle, we simulated the climate state during the last glacial maximum. We demonstrated that the CO2 concentration in the atmosphere both in the modern (pre-industrial) age (~280 ppm) and in the glacial age (~190 ppm) can be reproduced by the model with a common configuration by giving reasonable model forcing and total ocean inventories of carbon and other biogeochemical matter for the respective ages.
Brian R. Crow, Matthias Prange, and Michael Schulz
Clim. Past, 18, 775–792, https://doi.org/10.5194/cp-18-775-2022, https://doi.org/10.5194/cp-18-775-2022, 2022
Short summary
Short summary
To better understand the climate conditions which lead to extensive melting of the Greenland ice sheet, we used climate models to reconstruct the climate conditions of the warmest period of the last 800 000 years, which was centered around 410 000 years ago. Surprisingly, we found that atmospheric circulation changes may have acted to reduce the melt of the ice sheet rather than enhance it, despite the extensive warmth of the time.
Geert-Jan A. Brummer and Michal Kučera
J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, https://doi.org/10.5194/jm-41-29-2022, 2022
Short summary
Short summary
To aid researchers working with living planktonic foraminifera, we provide a comprehensive review of names that we consider appropriate for extant species. We discuss the reasons for the decisions we made and provide a list of species and genus-level names as well as other names that have been used in the past but are considered inappropriate for living taxa, stating the reasons.
Lukas Jonkers, Geert-Jan A. Brummer, Julie Meilland, Jeroen Groeneveld, and Michal Kucera
Clim. Past, 18, 89–101, https://doi.org/10.5194/cp-18-89-2022, https://doi.org/10.5194/cp-18-89-2022, 2022
Short summary
Short summary
The variability in the geochemistry among individual foraminifera is used to reconstruct seasonal to interannual climate variability. This method requires that each foraminifera shell accurately records environmental conditions, which we test here using a sediment trap time series. Even in the absence of environmental variability, planktonic foraminifera display variability in their stable isotope ratios that needs to be considered in the interpretation of individual foraminifera data.
Lukas Jonkers, Oliver Bothe, and Michal Kucera
Clim. Past, 17, 2577–2581, https://doi.org/10.5194/cp-17-2577-2021, https://doi.org/10.5194/cp-17-2577-2021, 2021
Julie Meilland, Michael Siccha, Maike Kaffenberger, Jelle Bijma, and Michal Kucera
Biogeosciences, 18, 5789–5809, https://doi.org/10.5194/bg-18-5789-2021, https://doi.org/10.5194/bg-18-5789-2021, 2021
Short summary
Short summary
Planktonic foraminifera population dynamics has long been assumed to be controlled by synchronous reproduction and ontogenetic vertical migration (OVM). Due to contradictory observations, this concept became controversial. We here test it in the Atlantic ocean for four species of foraminifera representing the main clades. Our observations support the existence of synchronised reproduction and OVM but show that more than half of the population does not follow the canonical trajectory.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary
Short summary
We observed that living planktonic foraminifera had distinct vertically distributed communities across the Subtropical South Atlantic. In addition, a hierarchic alternation of environmental parameters was measured to control the distribution of planktonic foraminifer's species depending on the water depth. This implies that not only temperature but also productivity and subsurface processes are signed in fossil assemblages, which could be used to perform paleoceanographic reconstructions.
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Takasumi Kurahashi-Nakamura, André Paul, Guy Munhoven, Ute Merkel, and Michael Schulz
Geosci. Model Dev., 13, 825–840, https://doi.org/10.5194/gmd-13-825-2020, https://doi.org/10.5194/gmd-13-825-2020, 2020
Short summary
Short summary
Chemical processes in ocean-floor sediments have a large influence on the marine carbon cycle, hence the global climate, at long timescales. We developed a new coupling scheme for a chemical sediment model and a comprehensive climate model. The new coupled model outperformed the original uncoupled climate model in reproducing the global distribution of sediment properties. The sediment model will also act as a
bridgebetween the ocean model and paleoceanographic data.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Haruka Takagi, Katsunori Kimoto, Tetsuichi Fujiki, Hiroaki Saito, Christiane Schmidt, Michal Kucera, and Kazuyoshi Moriya
Biogeosciences, 16, 3377–3396, https://doi.org/10.5194/bg-16-3377-2019, https://doi.org/10.5194/bg-16-3377-2019, 2019
Short summary
Short summary
Photosymbiosis (endosymbiosis with algae) is an evolutionary important ecology for many marine organisms but has poorly been identified among planktonic foraminifera. In this study, we identified and characterized photosymbiosis of various species of planktonic foraminifera by focusing on their photosynthesis–related features. We finally proposed a new framework showing a potential strength of photosymbiosis, which will serve as a basis for future ecological studies of planktonic foraminifera.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Charlotte Breitkreuz, André Paul, and Michael Schulz
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-52, https://doi.org/10.5194/cp-2019-52, 2019
Publication in CP not foreseen
Short summary
Short summary
We combined a model simulation of the Last Glacial Maximum ocean with sea surface temperature and calcite oxygen isotope data through data assimilation. The reconstructed ocean state is very similar to the modern and it follows that the employed proxy data do not require an ocean state very different from today's. Sensitivity experiments reveal that data from the deep North Atlantic but also from the global deep Southern Ocean are most important to constrain the Atlantic overturning circulation.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Charlotte Breitkreuz, André Paul, Stefan Mulitza, Javier García-Pintado, and Michael Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-32, https://doi.org/10.5194/gmd-2019-32, 2019
Publication in GMD not foreseen
Short summary
Short summary
We present a technique for ocean state estimation based on the combination of a simple data assimilation method with a state reduction approach. The technique proves to be very efficient and successful in reducing the model-data misfit and reconstructing a target ocean circulation from synthetic observations. In an application to Last Glacial Maximum proxy data the model-data misfit is greatly reduced but some misfit remains. Two different ocean states are found with similar model-data misfit.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Andrea Klus, Matthias Prange, Vidya Varma, Louis Bruno Tremblay, and Michael Schulz
Clim. Past, 14, 1165–1178, https://doi.org/10.5194/cp-14-1165-2018, https://doi.org/10.5194/cp-14-1165-2018, 2018
Short summary
Short summary
Numerous proxy records from the northern North Atlantic suggest substantial climate variability including the occurrence of multi-decadal-to-centennial cold events during the Holocene. We analyzed two abrupt cold events in a Holocene simulation using a comprehensive climate model. It is shown that the events were ultimately triggered by prolonged phases of positive North Atlantic Oscillation causing changes in ocean circulation followed by severe cooling, freshening, and expansion of sea ice.
Amanda Frigola, Matthias Prange, and Michael Schulz
Geosci. Model Dev., 11, 1607–1626, https://doi.org/10.5194/gmd-11-1607-2018, https://doi.org/10.5194/gmd-11-1607-2018, 2018
Short summary
Short summary
The application of climate models to study the Middle Miocene Climate Transition, characterized by major Antarctic ice-sheet expansion and global cooling at the interval 15–13 million years ago, is currently hampered by the lack of boundary conditions. To fill this gap, we compiled two internally consistent sets of boundary conditions, including global topography, bathymetry, vegetation and ice volume, for the periods before and after the transition.
Rike Völpel, André Paul, Annegret Krandick, Stefan Mulitza, and Michael Schulz
Geosci. Model Dev., 10, 3125–3144, https://doi.org/10.5194/gmd-10-3125-2017, https://doi.org/10.5194/gmd-10-3125-2017, 2017
Short summary
Short summary
This study presents the implementation of stable water isotopes in the MITgcm and describes the results of an equilibrium simulation under pre-industrial conditions. The model compares well to observational data and measurements of plankton tow records and thus opens wide prospects for long-term simulations in a paleoclimatic context.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Philipp M. Munz, Stephan Steinke, Anna Böll, Andreas Lückge, Jeroen Groeneveld, Michal Kucera, and Hartmut Schulz
Clim. Past, 13, 491–509, https://doi.org/10.5194/cp-13-491-2017, https://doi.org/10.5194/cp-13-491-2017, 2017
Short summary
Short summary
We present the results of several independent proxies of summer SST and upwelling SST from the Oman margin indicative of monsoon strength during the early Holocene. In combination with indices of carbonate preservation and bottom water redox conditions, we demonstrate that a persistent solar influence was modulating summer monsoon intensity. Furthermore, bottom water conditions are linked to atmospheric forcing, rather than changes of intermediate water masses.
Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Helge Meggers, Ralf Schiebel, Igaratza Fraile, Michael Schulz, and Michal Kucera
Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, https://doi.org/10.5194/bg-14-827-2017, 2017
Short summary
Short summary
Planktonic foraminifera species depth habitat remains poorly constrained and the existing conceptual models are not sufficiently tested by observational data. Here we present a synthesis of living planktonic foraminifera abundance data in the subtropical eastern North Atlantic from vertical plankton tows. We also test potential environmental factors influencing the species depth habitat and investigate yearly or lunar migration cycles. These findings may impact paleoceanographic studies.
Vidya Varma, Matthias Prange, and Michael Schulz
Geosci. Model Dev., 9, 3859–3873, https://doi.org/10.5194/gmd-9-3859-2016, https://doi.org/10.5194/gmd-9-3859-2016, 2016
Short summary
Short summary
We compare the results from simulations of the present and the last interglacial, with and without acceleration of the orbital forcing, using a comprehensive coupled climate model. In low latitudes, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique and hence model–data comparison of surface variables is therefore not hampered but major repercussions of the orbital forcing are obvious below thermocline.
Rima Rachmayani, Matthias Prange, and Michael Schulz
Clim. Past, 12, 677–695, https://doi.org/10.5194/cp-12-677-2016, https://doi.org/10.5194/cp-12-677-2016, 2016
Short summary
Short summary
A set of 13 interglacial time slice experiments was carried out using a CCSM3-DGVM to study global climate variability between and within the Quaternary interglaciations of MIS 1, 5, 11, 13, and 15. Seasonal surface temperature anomalies can be explained by local insolation anomalies induced by the astronomical forcing in most regions and by GHG forcing at high latitudes and early Bruhnes interglacials. However, climate feedbacks may modify the surface temperature response in specific regions.
L. Jonkers, C. E. Reynolds, J. Richey, and I. R. Hall
Biogeosciences, 12, 3061–3070, https://doi.org/10.5194/bg-12-3061-2015, https://doi.org/10.5194/bg-12-3061-2015, 2015
L. Jonkers and M. Kučera
Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, https://doi.org/10.5194/bg-12-2207-2015, 2015
R. Rachmayani, M. Prange, and M. Schulz
Clim. Past, 11, 175–185, https://doi.org/10.5194/cp-11-175-2015, https://doi.org/10.5194/cp-11-175-2015, 2015
Short summary
Short summary
The role of vegetation-precipitation feedbacks in modifying the North African rainfall response to enhanced early to mid-Holocene summer insolation is analysed using the climate-vegetation model CCSM3-DGVM. Dynamic vegetation amplifies the positive early to mid-Holocene summer precipitation anomaly by ca. 20% in the Sahara-Sahel region. The primary vegetation feedback operates through surface latent heat flux anomalies by canopy evapotranspiration and their effect on the African easterly jet.
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
A. J. Enge, U. Witte, M. Kucera, and P. Heinz
Biogeosciences, 11, 2017–2026, https://doi.org/10.5194/bg-11-2017-2014, https://doi.org/10.5194/bg-11-2017-2014, 2014
M. F. G. Weinkauf, T. Moller, M. C. Koch, and M. Kučera
Biogeosciences, 10, 6639–6655, https://doi.org/10.5194/bg-10-6639-2013, https://doi.org/10.5194/bg-10-6639-2013, 2013
Y. Milker, R. Rachmayani, M. F. G. Weinkauf, M. Prange, M. Raitzsch, M. Schulz, and M. Kučera
Clim. Past, 9, 2231–2252, https://doi.org/10.5194/cp-9-2231-2013, https://doi.org/10.5194/cp-9-2231-2013, 2013
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Models, Holocene/Anthropocene
Frost matters: incorporating late-spring frost into a dynamic vegetation model regulates regional productivity dynamics in European beech forests
Coupling numerical models of deltaic wetlands with AirSWOT, UAVSAR, and AVIRIS-NG remote sensing data
Meteorological history of low-forest-greenness events in Europe in 2002–2022
Modelling long-term alluvial-peatland dynamics in temperate river floodplains
Variable particle size distributions reduce the sensitivity of global export flux to climate change
Climate change will cause non-analog vegetation states in Africa and commit vegetation to long-term change
Uncertainties, sensitivities and robustness of simulated water erosion in an EPIC-based global gridded crop model
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections
The capacity of northern peatlands for long-term carbon sequestration
Towards a more complete quantification of the global carbon cycle
An enhanced forest classification scheme for modeling vegetation–climate interactions based on national forest inventory data
Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests
Modelling past, present and future peatland carbon accumulation across the pan-Arctic region
Biogenic sediments from coastal ecosystems to beach–dune systems: implications for the adaptation of mixed and carbonate beaches to future sea level rise
Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model
Effects of climate change and land management on soil organic carbon dynamics and carbon leaching in northwestern Europe
Quantifying regional, time-varying effects of cropland and pasture on vegetation fire
HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
Impact of human population density on fire frequency at the global scale
Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art
A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe
Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions
A new concept for simulation of vegetated land surface dynamics – Part 1: The event driven phenology model
Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology – Part 2: The event driven phenology model
The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate
Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model
Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization
Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model
Projected 21st century decrease in marine productivity: a multi-model analysis
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
Luca Cortese, Carmine Donatelli, Xiaohe Zhang, Justin A. Nghiem, Marc Simard, Cathleen E. Jones, Michael Denbina, Cédric G. Fichot, Joshua P. Harringmeyer, and Sergio Fagherazzi
Biogeosciences, 21, 241–260, https://doi.org/10.5194/bg-21-241-2024, https://doi.org/10.5194/bg-21-241-2024, 2024
Short summary
Short summary
This study shows that numerical models in coastal areas can greatly benefit from the spatial information provided by remote sensing. Three Delft3D numerical models in coastal Louisiana are calibrated using airborne SAR and hyperspectral remote sensing products from the recent NASA Delta-X mission. The comparison with the remote sensing allows areas where the models perform better to be spatially verified and yields more representative parameters for the entire area.
Mauro Hermann, Matthias Röthlisberger, Arthur Gessler, Andreas Rigling, Cornelius Senf, Thomas Wohlgemuth, and Heini Wernli
Biogeosciences, 20, 1155–1180, https://doi.org/10.5194/bg-20-1155-2023, https://doi.org/10.5194/bg-20-1155-2023, 2023
Short summary
Short summary
This study examines the multi-annual meteorological history of low-forest-greenness events in Europe's temperate and Mediterranean biome in 2002–2022. We systematically identify anomalies in temperature, precipitation, and weather systems as event precursors, with noteworthy differences between the two biomes. We also quantify the impact of the most extensive event in 2022 (37 % coverage), underlining the importance of understanding the forest–meteorology interaction in a changing climate.
Ward Swinnen, Nils Broothaerts, and Gert Verstraeten
Biogeosciences, 18, 6181–6212, https://doi.org/10.5194/bg-18-6181-2021, https://doi.org/10.5194/bg-18-6181-2021, 2021
Short summary
Short summary
Here we present a new modelling framework specifically designed to simulate alluvial peat growth, taking into account the river dynamics. The results indicate that alluvial peat growth is strongly determined by the number, spacing and movement of the river channels in the floodplain, rather than by environmental changes or peat properties. As such, the amount of peat that can develop in a floodplain is strongly determined by the characteristics and dynamics of the local river network.
Shirley W. Leung, Thomas Weber, Jacob A. Cram, and Curtis Deutsch
Biogeosciences, 18, 229–250, https://doi.org/10.5194/bg-18-229-2021, https://doi.org/10.5194/bg-18-229-2021, 2021
Short summary
Short summary
A global model is constrained with empirical relationships to quantify how shifts in sinking-particle sizes modulate particulate organic carbon export production changes in a warming ocean. Including the effect of dynamic particle sizes on remineralization reduces the magnitude of predicted 100-year changes in export production by ~14 %. Projections of future export could thus be improved by considering dynamic phytoplankton and particle-size-dependent remineralization depths.
Mirjam Pfeiffer, Dushyant Kumar, Carola Martens, and Simon Scheiter
Biogeosciences, 17, 5829–5847, https://doi.org/10.5194/bg-17-5829-2020, https://doi.org/10.5194/bg-17-5829-2020, 2020
Short summary
Short summary
Lags caused by delayed vegetation response to changing environmental conditions can lead to disequilibrium vegetation states. Awareness of this issue is relevant for ecosystem conservation. We used the aDGVM vegetation model to quantify the difference between transient and equilibrium vegetation states in Africa during the 21st century for two potential climate trajectories. Lag times increased over time and vegetation was non-analog to any equilibrium state due to multi-lag composite states.
Tony W. Carr, Juraj Balkovič, Paul E. Dodds, Christian Folberth, Emil Fulajtar, and Rastislav Skalsky
Biogeosciences, 17, 5263–5283, https://doi.org/10.5194/bg-17-5263-2020, https://doi.org/10.5194/bg-17-5263-2020, 2020
Short summary
Short summary
We generate 30-year mean water erosion estimates in global maize and wheat fields based on daily simulation outputs from an EPIC-based global gridded crop model. Evaluation against field data confirmed the robustness of the outputs for the majority of global cropland and overestimations at locations with steep slopes and strong rainfall. Additionally, we address sensitivities and uncertainties of model inputs to improve water erosion estimates in global agricultural impact studies.
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, https://doi.org/10.5194/bg-17-3439-2020, 2020
Short summary
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Georgii A. Alexandrov, Victor A. Brovkin, Thomas Kleinen, and Zicheng Yu
Biogeosciences, 17, 47–54, https://doi.org/10.5194/bg-17-47-2020, https://doi.org/10.5194/bg-17-47-2020, 2020
Miko U. F. Kirschbaum, Guang Zeng, Fabiano Ximenes, Donna L. Giltrap, and John R. Zeldis
Biogeosciences, 16, 831–846, https://doi.org/10.5194/bg-16-831-2019, https://doi.org/10.5194/bg-16-831-2019, 2019
Short summary
Short summary
Globally, C is added to the atmosphere from fossil fuels and deforestation, balanced by ocean uptake and atmospheric increase. The difference (residual sink) is equated to plant uptake. But this omits cement carbonation; transport to oceans by dust; riverine organic C and volatile organics; and increased C in plastic, bitumen, wood, landfills, and lakes. Their inclusion reduces the residual sink from 3.6 to 2.1 GtC yr-1 and thus the inferred ability of the biosphere to alter human C emissions.
Titta Majasalmi, Stephanie Eisner, Rasmus Astrup, Jonas Fridman, and Ryan M. Bright
Biogeosciences, 15, 399–412, https://doi.org/10.5194/bg-15-399-2018, https://doi.org/10.5194/bg-15-399-2018, 2018
Short summary
Short summary
Forest management shapes forest structure and in turn surface–atmosphere interactions. We used Fennoscandian forest maps and inventory data to develop a classification system for forest structure. The classification was integrated with the ESA Climate Change Initiative land cover map to achieve complete surface representation. The result is an improved product for modeling surface–atmosphere exchanges in regions with intensively managed forests.
Anna T. Trugman, David Medvigy, William A. Hoffmann, and Adam F. A. Pellegrini
Biogeosciences, 15, 233–243, https://doi.org/10.5194/bg-15-233-2018, https://doi.org/10.5194/bg-15-233-2018, 2018
Short summary
Short summary
Tree fire tolerance strategies may significantly impact woody carbon stability and the existence of tropical savannas under global climate change. We used a numerical ecosystem model to test the impacts of fire survival strategy under differing fire and rainfall regimes. We found that the high survival rate of large fire-tolerant trees reduced carbon losses with increasing fire frequency, and reduced the range of conditions leading to either complete tree loss or complete grass loss.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 4023–4044, https://doi.org/10.5194/bg-14-4023-2017, https://doi.org/10.5194/bg-14-4023-2017, 2017
Short summary
Short summary
We employed an individual- and patch-based dynamic global ecosystem model to quantify long-term C accumulation rates and to assess the effects of historical and projected climate change on peatland C balances across the pan-Arctic. We found that peatlands in Scandinavia, Europe, Russia and central and eastern Canada will become C sources, while Siberia, far eastern Russia, Alaska and western and northern Canada will increase their sink capacity by the end of the 21st century.
Giovanni De Falco, Emanuela Molinaroli, Alessandro Conforti, Simone Simeone, and Renato Tonielli
Biogeosciences, 14, 3191–3205, https://doi.org/10.5194/bg-14-3191-2017, https://doi.org/10.5194/bg-14-3191-2017, 2017
Short summary
Short summary
This study quantifies the contribution of carbonate sediments, produced in seagrass meadows and in photophilic algal communities, to the sediment budget of a beach–dune system. The contribution to the beach sediment budget represents a further ecosystem service provided by seagrass. The dependence of the beach sediment budget on carbonate production associated with coastal ecosystems has implications for the adaptation of carbonate beaches to the seagrass decline and sea level rise.
Nitin Chaudhary, Paul A. Miller, and Benjamin Smith
Biogeosciences, 14, 2571–2596, https://doi.org/10.5194/bg-14-2571-2017, https://doi.org/10.5194/bg-14-2571-2017, 2017
Short summary
Short summary
We incorporated peatland dynamics into
Arcticversion of dynamic vegetation model LPJ-GUESS to understand the long-term evolution of northern peatlands and effects of climate change on peatland carbon balance. We found that the Stordalen mire may be expected to sequester more carbon before 2050 due to milder and wetter climate conditions, a longer growing season and CO2 fertilization effect, turning into a C source after 2050 because of higher decomposition rates in response to warming soils.
Maria Stergiadi, Marcel van der Perk, Ton C. M. de Nijs, and Marc F. P. Bierkens
Biogeosciences, 13, 1519–1536, https://doi.org/10.5194/bg-13-1519-2016, https://doi.org/10.5194/bg-13-1519-2016, 2016
Short summary
Short summary
We modelled the effects of changes in climate and land management on soil organic carbon (SOC) and dissolved organic carbon (DOC) levels in sandy and loamy soils under forest, grassland, and arable land. Climate change causes a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC slightly increases. A reduction in fertilizer application leads to a decrease in SOC and DOC levels under arable land but has a negligible effect under grassland.
S. S. Rabin, B. I. Magi, E. Shevliakova, and S. W. Pacala
Biogeosciences, 12, 6591–6604, https://doi.org/10.5194/bg-12-6591-2015, https://doi.org/10.5194/bg-12-6591-2015, 2015
Short summary
Short summary
People worldwide use fire to manage agriculture, but often also suppress fire in the landscape surrounding their fields. Here, we estimate the net result of these effects of cropland and pasture on fire at a regional, monthly level. Pasture is shown, for the first time, to contribute strongly to global patterns of burning. Our results could be used to improve representations of burning in global vegetation and climate models, improving our understanding of how people affect the Earth system.
Y. Le Page, D. Morton, B. Bond-Lamberty, J. M. C. Pereira, and G. Hurtt
Biogeosciences, 12, 887–903, https://doi.org/10.5194/bg-12-887-2015, https://doi.org/10.5194/bg-12-887-2015, 2015
W. Knorr, T. Kaminski, A. Arneth, and U. Weber
Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, https://doi.org/10.5194/bg-11-1085-2014, 2014
A. M. Foley, D. Dalmonech, A. D. Friend, F. Aires, A. T. Archibald, P. Bartlein, L. Bopp, J. Chappellaz, P. Cox, N. R. Edwards, G. Feulner, P. Friedlingstein, S. P. Harrison, P. O. Hopcroft, C. D. Jones, J. Kolassa, J. G. Levine, I. C. Prentice, J. Pyle, N. Vázquez Riveiros, E. W. Wolff, and S. Zaehle
Biogeosciences, 10, 8305–8328, https://doi.org/10.5194/bg-10-8305-2013, https://doi.org/10.5194/bg-10-8305-2013, 2013
R. Fuchs, M. Herold, P. H. Verburg, and J. G. P. W. Clevers
Biogeosciences, 10, 1543–1559, https://doi.org/10.5194/bg-10-1543-2013, https://doi.org/10.5194/bg-10-1543-2013, 2013
P. W. Keys, R. J. van der Ent, L. J. Gordon, H. Hoff, R. Nikoli, and H. H. G. Savenije
Biogeosciences, 9, 733–746, https://doi.org/10.5194/bg-9-733-2012, https://doi.org/10.5194/bg-9-733-2012, 2012
V. Kovalskyy and G. M. Henebry
Biogeosciences, 9, 141–159, https://doi.org/10.5194/bg-9-141-2012, https://doi.org/10.5194/bg-9-141-2012, 2012
V. Kovalskyy and G. M. Henebry
Biogeosciences, 9, 161–177, https://doi.org/10.5194/bg-9-161-2012, https://doi.org/10.5194/bg-9-161-2012, 2012
A. Dallmeyer and M. Claussen
Biogeosciences, 8, 1499–1519, https://doi.org/10.5194/bg-8-1499-2011, https://doi.org/10.5194/bg-8-1499-2011, 2011
B. D. Stocker, K. Strassmann, and F. Joos
Biogeosciences, 8, 69–88, https://doi.org/10.5194/bg-8-69-2011, https://doi.org/10.5194/bg-8-69-2011, 2011
A. Oschlies, W. Koeve, W. Rickels, and K. Rehdanz
Biogeosciences, 7, 4017–4035, https://doi.org/10.5194/bg-7-4017-2010, https://doi.org/10.5194/bg-7-4017-2010, 2010
S. Bathiany, M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 7, 1383–1399, https://doi.org/10.5194/bg-7-1383-2010, https://doi.org/10.5194/bg-7-1383-2010, 2010
M. Steinacher, F. Joos, T. L. Frölicher, L. Bopp, P. Cadule, V. Cocco, S. C. Doney, M. Gehlen, K. Lindsay, J. K. Moore, B. Schneider, and J. Segschneider
Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, https://doi.org/10.5194/bg-7-979-2010, 2010
A. Oschlies
Biogeosciences, 6, 1603–1613, https://doi.org/10.5194/bg-6-1603-2009, https://doi.org/10.5194/bg-6-1603-2009, 2009
Cited articles
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg/Ca thermometry
in planktonic foraminifera from a sediment trap time series,
Paleoceanography, 18, 1050, https://doi.org/10.1029/2002PA000846,
2003. a
Asahi, H. and Takahashi, K.: A 9-year time-series of planktonic foraminifer
fluxes and environmental change in the Bering sea and the central subarctic
Pacific Ocean, 1990-1999, Prog. Oceanogr., 72, 343–363,
https://doi.org/10.1016/j.pocean.2006.03.021, 2007. a, b
Bauch, D., Carstens, J., and Wefer, G.: Oxygen isotope composition of living
Neogloboquadrina pachyderma (sin.) in the Arctic Ocean, Earth Planet. Sc. Lett., 146, 47–58, https://doi.org/10.1016/S0012-821X(96)00211-7,
1997. a
Bé, A. W. H.: Some observations on Arctic planktonic foraminifera, Contrib.
Cushman Found. Foram. Res., 11, 64–68, 1960. a
Bé, A. W. H. and Hamlin, W. H.: Ecology of Recent Planktonic Foraminifera:
Part 3: Distribution in the North Atlantic during the Summer of 1962,
Micropaleontology, 13, 87–106, 1967. a
Bé, A. W. H. and Hutson, W. H.: Ecology of Planktonic Foraminifera and
Biogeographic Patterns of Life and Fossil Assemblages in the Indian Ocean,
Micropaleontology, 23, 369–414, https://doi.org/10.2307/1485406,
1977. a, b, c, d
Beckmann, W., Auras, A., and Hemleben, C.: Cyclonic cold-core eddy in the
eastern North Atlantic. III. Zooplankton, Marine Ecology – Progress Series,
39, 165–173, https://doi.org/10.3354/meps039165, 1987. a
Bergami, C., Capotondi, L., Langone, L., Giglio, F., and Ravaioli, M.:
Distribution of living planktonic foraminifera in the Ross Sea and the
Pacific sector of the Southern Ocean (Antarctica), Mar. Micropaleontol.,
73, 37–48, https://doi.org/10.1016/j.marmicro.2009.06.007,
2009. a, b, c, d
Bijma, J.: Lunar pulses of carbonate output by spinose planktonic
foraminifera, in: Protozoa and Their Role in Marine Processes. NATO ASI
Series G: Ecological Sciences, edited by: Reid, P. C., Turley, C. M., and
Burkill, P. H., 353–354, Springer, Berlin, Heidelberg, 1991. a
Bijma, J. and Hemleben, C.: Population dynamics of the planktic foraminifer
Globigerinoides sacculifer (Brady) from the central Red Sea,
Deep-Sea Res. Pt. I, 41, 485–510, 1994. a
Bijma, J., Hemleben, C., and Wellnitz, K.: Lunar-influenced carbonate flux of
the planktic foraminifer Globigerinoides sacculifer (Brady) from the
central Red Sea, Deep-Sea Res. Pt. I, 41, 511–530, 1994. a
Bird, C., Darling, K. F., Russell, A. D., Davis, C. V., Fehrenbacher, J.,
Free, A., Wyman, M., and Ngwenya, B. T.: Cyanobacterial endobionts within a
major marine planktonic calcifier (Globigerina bulloides, Foraminifera)
revealed by 16S rRNA metabarcoding, Biogeosciences, 14, 901–920,
https://doi.org/10.5194/bg-14-901-2017, 2017. a
Boltovskoy, E.: Planktonic foraminiferal assemblages of the epipelagic zone
and their thanatocoenoses, in: The Micropalaeontology of Oceans, edited
by:
Funnell, B. M. and Riedel, W. R., 277–288, Cambridge University Press,
London, 1971. a
Boltovskoy, E., Boltovskoy, D., Correa, N., and Brandini, F.: Planktic
foraminifera from the southwestern Atlantic (30∘–60∘ S): species-specific
patterns in the upper 50 m, Mar. Micropaleontol., 28, 53–72,
https://doi.org/10.1016/0377-8398(95)00076-3, 1996. a
Bradshaw, J. S.: Ecology of living foraminifera in the North and Equatorial
Pacific Ocean, Cushman Foundation for Foraminiferal Research: Contributions,
10, 25–64, 1959. a
Caron, D. A., Bé, A. W. H., and Anderson, O. R.: Effects of variations
in light intensity on life processes of the planktonic foraminifer
Globigerinoides sacculifer in laboratory culture, Journal of the
Marine Biological Association of the United Kingdom, 62, 435–451,
https://doi.org/10.1017/S0025315400057374,
1982. a
Caron, D. A., Faber, W. W., and Bé, A. W. H.: Effects of temperature and
salinity on the growth and survival of the planktonic foraminifer
Globigerinoides sacculifer, Journal of the Marine Biological
Association of the United Kingdom, 67, 323–341,
https://doi.org/10.1017/S0025315400026643,
1987. a
Colebrook, J. M.: Continuous Plankton Records: Seasonal Cycles of
Phytoplankton and Copepods in the North Atlantic Ocean and the North Sea,
Mar. Biol., 51, 23–32, https://doi.org/10.1016/0011-7471(66)90628-0, 1979. a
Colebrook, J. M.: Continuous plankton records: seasonal variations in the
distribution and abundance of plankton in the North Atlantic Ocean and the
North Sea, J. Plankton Res., 4, 435–462, 1982. a
Craig, A. P., Vertenstein, M., and Jacob, R.: A New Flexible Coupler for Earth
System Modeling developed for CCSM4 and CESM1, Int. J. High Perform. C., 26, 31–42,
https://doi.org/10.1177/1094342011428141,
2012. a
Curry, W. B., Ostermann, D. R., Guptha, M. V. S., and Ittekkot, V.:
Foraminiferal production and monsoonal upwelling in the Arabian Sea:
evidence from sediment traps, Geological Society, London, Special
Publications, 64, 93–106, https://doi.org/10.1144/GSL.SP.1992.064.01.06,
1992. a
Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M.,
Large, W. G., Peacock, S., and Yeager, S. G.: The CCSM4 Ocean Component,
J. Climate, 25, 1361–1389, https://doi.org/10.1175/JCLI-D-11-00091.1, 2012. a, b, c
Danabasoglu, G., Yeager, S. G., Bailey, D., Behrens, E., Bentsen, M., Bi, D.,
Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Cassou, C.,
Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti,
R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M.,
Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W. G.,
Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S., Navarra,
A., Nurser, A. J. G., Pirani, A., Salas y Mélia, D., Samuels, B. L.,
Scheinert, M., Sidorenko, D., Treguier, A.-M., Tsujino, H., Uotila, P.,
Valcke, S., Voldoire, A., and Wang, Q.: North Atlantic simulations in
Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean
states, Ocean Model., 73, 76–107, https://doi.org/10.1016/j.ocemod.2013.10.005,
2014. a, b
Darling, K. F., Kucera, M., Pudsey, C. J., and Wade, C. M.: Molecular evidence
links cryptic diversification in polar planktonic protists to Quaternary
Clim. Dynam., P. Natl. Acad. Sci. USA, 101, 7657–7662, 2004. a
Darling, K. F., Kucera, M., Kroon, D., and Wade, C. M.: A resolution for the
coiling direction paradox in Neogloboquadrina pachyderma,
Paleoceanography, 21, PA2011, https://doi.org/10.1029/2005PA001189, 2006. a, b, c, d
Darling, K. F., Kucera, M., and Wade, C. M.: Global molecular phylogeography
reveals persistent Arctic circumpolar isolation in a marine planktonic
protist, P. Natl. Acad. Sci. USA, 104, 5002–5007, https://doi.org/10.1073/pnas.0700520104, 2007. a
Dee, S., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., and Thompson,
D. M.: PRYSM: An open-source framework for PRoxY System Modeling, with
applications to oxygen-isotope systems, J. Adv. Model. Earth Sy., 7, 1220–1247, https://doi.org/10.1002/2015MS000447, 2015. a
Dee, S. G., Steiger, N. J., Emile-Geay, J., and Hakim, G. J.: On the utility
of proxy system models for estimating climate states over the common era,
J. Adv. Model. Earth Sy., 8, 1164–1179,
https://doi.org/10.1002/2016MS000677, 2016. a
Deuser, W. G., Ross, E. H., Hemleben, C., and Spindler, M.: Seasonal changes
in species composition, numbers, mass, size, and isotopic composition of
planktonic foraminifera settling into the deep Sargasso Sea,
Palaeogeogr. Palaeocl., 33, 103–127,
https://doi.org/10.1016/0031-0182(81)90034-1, 1981. a
Doney, S. C., Glover, D. M., and Najjar, R. G.: A new coupled, one-dimensional
biological-physical model for the upper ocean: Applications to the JGOFS
Bermuda Atlantic Time-series Study (BATS) site, Deep-Sea Res. Pt. II,
43, 591–624,
https://doi.org/10.1016/0967-0645(95)00104-2,
1996. a, b
Doney, S. C., Lindsay, K., Fung, I., and John, J.: Natural Variability in a
Stable, 1000-Yr Global Coupled Climate-Carbon Cycle Simulation, J. Climate, 19, 3033–3054, https://doi.org/10.1175/JCLI3783.1, 2006. a
Eguchi, N. O., Kawahata, H., and Taira, A.: Seasonal Response of Planktonic
Foraminifera to Surface Ocean Condition: Sediment Trap Results from the
Central North Pacific Ocean, J. Oceanogr., 55, 681–691, 1999. a
Eguchi, N. O., Ujiié, H., Kawahata, H., and Taira, A.: Seasonal
variations in planktonic foraminifera at three sediment traps in the
Subarctic, Transition and Subtropical zones of the central North Pacific
Ocean, Mar. Micropaleontol., 48, 149–163,
https://doi.org/10.1016/S0377-8398(03)00020-3, 2003. a
Erez, J.: Calcification Rates, Photosynthesis and Light in Planktonic
Foraminifera, in: Biomineralization and Biological Metal Accumulation:
Biological and Geological Perspectives Papers presented at the Fourth
International Symposium on Biomineralization, Renesse, the Netherlands,
2–5 June 1982, edited by: Westbroek, P. and de Jong, E. W., 307–312,
Springer Netherlands, Dordrecht, the Netherlands,
https://doi.org/10.1007/978-94-009-7944-4_29, 1983. a
Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M., and Anchukaitis, K. J.:
Applications of proxy system modeling in high resolution paleoclimatology,
Quaternary Sci. Rev., 76, 16–28,
https://doi.org/10.1016/j.quascirev.2013.05.024, 2013. a
Fraile, I., Mulitza, S., and Schulz, M.: Modeling planktonic foraminiferal
seasonality: Implications for sea-surface temperature reconstructions,
Mar. Micropaleontol., 72, 1–9, https://doi.org/10.1016/j.marmicro.2009.01.003,
2009a. a, b
Fraile, I., Schulz, M., Mulitza, S., Merkel, U., Prange, M., and Paul, A.:
Modeling the seasonal distribution of planktonic foraminifera during the
Last Glacial Maximum, Paleoceanography, 24, PA2216,
https://doi.org/10.1029/2008PA001686, 2009b. a, b
Friedland, K. D., Record, N. R., Asch, R. G., Kristiansen, T., Saba, V. S.,
Drinkwater, K. F., Henson, S., Leaf, R. T., Morse, R. E., Johns, D. G.,
Large, S. I., Hjøllo, S. S., Nye, J. A., Alexander, M. A., and Ji, R.:
Seasonal phytoplankton blooms in the North Atlantic linked to the
overwintering strategies of copepods, Elementa: Science of the Anthropocene,
4, 000099, https://doi.org/10.12952/journal.elementa.000099,
2016. a
Ganssen, G. M. and Kroon, D.: The isotopic signature of planktonic
foraminifera from NE Atlantic surface sediments: implications for the
reconstruction of past oceanic conditions, J. Geol. Soc. London, 157, 693–699, https://doi.org/10.1144/jgs.157.3.693, 2000. a, b
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M.,
Baranova, O. K., and Johnson, D. R.: World Ocean Atlas 2009, Volume 4:
Nutrients (phosphate, nitrate, silicate), U.S. Government Printing Office,
Washington, DC, https://doi.org/10.1182/blood-2011-06-357442, 2010. a
Gastrich, M. D.: Ultrastructure of a new intracellular symbiotic alga found
within planktonic foraminifera, J. Phycol., 23, 623–632,
https://doi.org/10.1111/j.1529-8817.1987.tb04215.x, 1987. a
Gastrich, M. D. and Bartha, R.: Primary productivity in the planktonic
foraminifer Globigerinoides ruber (D'Orbigny), J. Foramin. Res., 18, 137–142, 1988. a
Geider, R. J., Maclntyre, H. L., and Kana, T. M.: A dynamic regulatory model
of phytoplanktonic acclimation to light, nutrients, and temperature, Limnol.
Oceanography, 43, 679–694, 1998. a
Giraudeau, J.: Planktonic foraminiferal assemblages in surface sediments from
the south western African continental margin, Mar. Geol., 110, 47–62,
https://doi.org/10.1016/0025-3227(93)90104-4, 1993. a, b
Goosse, H., Crespin, E., de Montety, A., Mann, M. E., Renssen, H., and
Timmermann, A.: Reconstructing surface temperature changes over the past 600
years using climate model simulations with data assimilation, J. Geophys. Res., 115, D09108, https://doi.org/10.1029/2009JD012737, 2010. a
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G.,
Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W.,
Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels,
B. L., Scheinert, M., Gupta, A. S., Severijns, C. A., Simmons, H. L.,
Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice
Reference Experiments (COREs), Ocean Model., 26, 1–46,
https://doi.org/10.1016/j.ocemod.2008.08.007,
2009. a
Hakim, G. J., Emile-Geay, J., Steig, E. J., Noone, D., Anderson, D. M., Tardif,
R., Steiger, N., and Perkins, W. A.: The last millennium climate reanalysis
project: Framework and first results, J. Geophys. Res.-Atmos., 121, 6745–6764, https://doi.org/10.1002/2016JD024751, 2016. a
Hemleben, C. and Bijma, J.: Foraminiferal Population Dynamics And STable
Carbon Isotopes, in: Carbon Cycling in the Glacial Ocean: Constraints on the
Ocean's Role in Global Change, edited by: Zahn, R., Pedersen, T. F., Kaminski,
M. A., and Labeyrie, L., 145–166, Springer, Berlin, Heidelberg, 1994. a
Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke, E.:
Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact of Melt
Ponds and Aerosols on Arctic Sea Ice, J. Climate, 25, 1413–1430,
https://doi.org/10.1175/JCLI-D-11-00078.1, 2012. a
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos Sea Ice Model,
Documentation and Software User's Manual, version 4.0, Tech. rep., Los
Alamos National Laboratory, 2008. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A framework for
collaborative research, B. Am. Meteorol. Soc., 94,
1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a, b
Husum, K. and Hald, M.: Arctic planktic foraminiferal assemblages:
Implications for subsurface temperature reconstructions, Mar. Micropaleontol., 96–97, 38–47, https://doi.org/10.1016/j.marmicro.2012.07.001,
2012. a
Jodłowska, S. and Śliwińska, S.: Effects of light intensity and
temperature on the photosynthetic irradiance response curves and chlorophyll
fluorescence in three picocyanobacterial strains of Synechococcus,
Photosynthetica, 52, 223–232, https://doi.org/10.1007/s11099-014-0024-y, 2014. a, b
Jonkers, L. and Kucera, M.: Quantifying the effect of seasonal and vertical
habitat tracking on planktonic foraminifera proxies, Clim. Past, 13,
573–586, https://doi.org/10.5194/cp-13-573-2017, 2017. a, b
Jonkers, L., Brummer, G.-J. A., Peeters, F. J. C., van Aken, H. M., and De
Jong, M. F.: Seasonal stratification, shell flux, and oxygen isotope
dynamics of left-coiling N. pachyderma and T. quinqueloba
in the western subpolar North Atlantic, Paleoceanography, 25, PA2204,
https://doi.org/10.1029/2009PA001849, 2010. a
Jonkers, L., van Heuven, S., Zahn, R., and Peeters, F. J. C.: Seasonal
patterns of shell flux, δ18O and δ13C of small and large
N. pachyderma (s) and G. bulloides in the subpolar North
Atlantic, Paleoceanography, 28, 164–174, https://doi.org/10.1002/palo.20018, 2013. a, b
Jørgensen, B. B., Erez, J., Revsbech, N. P., and Cohen, Y.: Symbiotic
photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady), studied with microelectrodes, Limnol. Oceanogr., 30, 1253–1267, https://doi.org/10.4319/lo.1985.30.6.1253, 1985. a, b, c
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister,
J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global
ocean carbon climatology: Results from Global Data Analysis Project
(GLODAP), Global Biogeochem. Cy., 18, GB4031,
https://doi.org/10.1029/2004GB002247, 2004. a
Kincaid, E., Thunell, R. C., Le, J., Lange, C. B., Weinheimer, A. L., and Reid,
F. M. H.: Planktonic foraminiferal fluxes in the Santa Barbara Basin:
response to seasonal and interannual hydrographic changes, Deep-Sea Res.
Pt. II, 47, 1157–1176, https://doi.org/10.1016/S0967-0645(99)00140-X, 2000. a, b
Kohfeld, K. E., Fairbanks, R. G., Smith, S. L., and Walsh, I. D.:
Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers
in polar oceans: Evidence from Northeast Water Polynya plankton tows,
sediment traps, and surface sediments, Paleoceanography, 11, 679–699, 1996. a, b, c, d, e, f, g, h, i
Kretschmer, K., Jonkers, L., Kucera, M., and Schulz, M.: Investigation of the
seasonal and vertical habitats of planktonic foraminifera using an ecosystem
modeling approach, PANGAEA,
https://doi.pangaea.de/10.1594/PANGAEA.892469,
2018.
Krishnamurthy, A., Moore, J. K., Zender, C. S., and Luo, C.: Effects of
atmospheric inorganic nitrogen deposition on ocean biogeochemistry,
J. Geophys. Res., 112, G02019, https://doi.org/10.1029/2006JG000334, 2007. a
Kucera, M.: Planktonic Foraminifera as Tracers of Past Oceanic Environments,
in: Proxies in Late Cenozoic Paleoceanography, edited by Hillaire-Marcel, C.
and de Vernal, A., chap. 6, 213–262, Elsevier, Amsterdam,
https://doi.org/10.1016/S1572-5480(07)01011-1, 2007. a
Kucera, M. and Darling, K. F.: Cryptic species of planktonic foraminifera:
their effect on palaeoceanographic reconstructions, Philos. T. R. Soc. Lond., 360, 695–718, 2002. a
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M.,
Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins,
S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from
assemblages of planktonic foraminifera: multi-technique approach based on
geographically constrained calibration data sets and its application to
glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24,
951–998, https://doi.org/10.1016/j.quascirev.2004.07.014, 2005. a, b
Kuroyanagi, A., Kawahata, H., Nishi, H., and Honda, M. C.: Seasonal changes in
planktonic foraminifera in the northwestern North Pacific Ocean: sediment
trap experiments from subarctic and subtropical gyres, Deep-Sea Res.
Pt. II, 49, 5627–5645, https://doi.org/10.1016/S0967-0645(02)00202-3, 2002. a
Large, W. G. and Yeager, S. G.: Diurnal to Decadal Global Forcing For Ocean
and Sea-Ice Models: The Data Sets and Flux Climatologies, Tech. Rep. May,
NCAR Technical Note NCAR/TN-460+STR, 2004. a
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air–sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3,
2009. a
Lindsay, K., Bonan, G. B., Doney, S. C., Hoffman, F. M., Lawrence, D. M., Long,
M. C., Mahowald, N. M., Moore, J. K., Randerson, J. T., and Thornton, P. E.:
Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with
the Earth System Model CESM1(BGC), J. Climate, 27, 8981–9005,
https://doi.org/10.1175/JCLI-D-12-00565.1, 2014. a, b, c
Lombard, F., Labeyrie, L., Michel, E., Bopp, L., Cortijo, E., Retailleau, S.,
Howa, H., and Jorissen, F.: Modelling planktic foraminifer growth and
distribution using an ecophysiological multi-species approach,
Biogeosciences, 8, 853–873, https://doi.org/10.5194/bg-8-853-2011, 2011. a, b
Luo, C., Mahowald, N. M., and del Corral, J.: Sensitivity study of
meteorological parameters on mineral aerosol mobilization, transport, and
distribution, J. Geophys. Res., 108, 4447,
https://doi.org/10.1029/2003JD003483,
2003. a
Mann, K. H. and Lazier, J. R. N.: Dynamics of Marine Ecosystems:
Biological-Physical Interactions in the Oceans, Blackwell Publishing Ltd,
2nd edn., 1996. a
Mix, A. C.: The oxygen-isotope record of glaciation, in: The Geology of North
America, chap. 6, 111–135, The Geological Society of America, 1987. a
Mohiuddin, M. M., Nishimura, A., Tanaka, Y., and Shimamoto, A.: Regional and
interannual productivity of biogenic components and planktonic foraminiferal
fluxes in the northwestern Pacific Basin, Mar. Micropaleontol., 45,
57–82, https://doi.org/10.1016/S0377-8398(01)00045-7, 2002. a, b, c
Mohiuddin, M. M., Nishimura, A., Tanaka, Y., and Shimamoto, A.: Seasonality of
biogenic particle and planktonic foraminifera fluxes: Response to
hydrographic variability in the Kuroshio Extension, northwestern Pacific
Ocean, Deep-Sea Res. Pt. I, 51, 1659–1683,
https://doi.org/10.1016/j.dsr.2004.06.002, 2004. a, b, c, d, e
Mohiuddin, M. M., Nishimura, A., and Tanaka, Y.: Seasonal succession, vertical
distribution, and dissolution of planktonic foraminifera along the Subarctic
Front: Implications for paleoceanographic reconstruction in the northwestern
Pacific, Mar. Micropaleontol., 55, 129–156,
https://doi.org/10.1016/j.marmicro.2005.02.007, 2005. a, b, c
Moore, J. K. and Braucher, O.: Sedimentary and mineral dust sources of
dissolved iron to the world ocean, Biogeosciences, 5, 631–656,
https://doi.org/10.5194/bg-5-631-2008, 2008. a
Moore, J. K., Doney, S. C., Glover, D. M., and Fung, I. Y.: Iron cycling and
nutrient-limitation patterns in surface waters of the World Ocean, Deep-Sea Res. Pt. II, 49, 463–507, 2002a. a
Moore, J. K., Doney, S. C., Lindsay, K., Mahowald, N., and Michaels, A. F.:
Nitrogen fixation amplifies the ocean biogeochemical response to decadal
timescale variations in mineral dust deposition, Tellus, 58B, 560–572,
https://doi.org/10.1111/j.1600-0889.2006.00209.x, 2006. a
Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C., and Misumi, K.: Marine
Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System
Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5
and RCP8.5 Scenarios, J. Climate, 26, 9291–9312,
https://doi.org/10.1175/JCLI-D-12-00566.1, 2013. a, b, c, d, e, f, g
Morard, R., Quillévéré, F., Escarguel, G., de Garidel-Thoron, T.,
de Vargas, C., and Kucera, M.: Ecological modeling of the temperature
dependence of cryptic species of planktonic Foraminifera in the Southern
Hemisphere, Palaeogeogr. Palaeocl., 391, 13–33,
https://doi.org/10.1016/j.palaeo.2013.05.011,
2013. a, b
Mulitza, S., Wolff, T., Pätzold, J., Hale, W., and Wefer, G.:
Temperature sensitivity of planktic foraminifera and its influence on the
oxygen isotope record, Mar. Micropaleontol., 33, 223–240, 1998. a
Northcote, L. C. and Neil, H. L.: Seasonal variations in foraminiferal flux in
the Southern Ocean, Campbell Plateau, New Zealand, Mar. Micropaleontol.,
56, 122–137, https://doi.org/10.1016/j.marmicro.2005.05.001, 2005. a, b
Nyland, B. F., Jansen, E., Elderfield, H., and Andersson, C.:
Neogloboquadrina pachyderma (dex. and sin.) Mg/Ca and
δ18O records from the Norwegian Sea, Geochem. Geophy. Geosy., 7, Q10P17, https://doi.org/10.1029/2005GC001055, 2006. a
Ortiz, J. D., Mix, A. C., Rugh, W., Watkins, J. M., and Collier, R. W.:
Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean
reveal environmental control of oxygen and carbon isotopic disequilibria,
Geochim. Cosmochim. Ac., 60, 4509–4523, 1996. a
Pados, T. and Spielhagen, R. F.: Species distribution and depth habitat of
recent planktic foraminifera in Fram Strait, Arctic Ocean, Polar Res.,
33, 22483, https://doi.org/10.3402/polar.v33.22483,
2014. a, b, c, d
Pflaumann, U., Sarnthein, M., Chapman, M., de Abreu, L., Funnell, B., Huels,
M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S.,
Vautravers, M., Vogelsang, E., and Weinelt, M.: Glacial North Atlantic:
Sea-surface conditions reconstructed by GLAMAP 2000, Paleoceanography, 18,
1065, https://doi.org/10.1029/2002PA000774, 2003. a, b
Pollard, D. and Schulz, M.: A model for the potential locations of Triassic
evaporite basins driven by paleoclimatic GCM simulations, Global Planet. Change, 9, 233–249, 1994. a
Prell, W. L., Martin, A., Cullen, J. L., and Trend, M.: The Brown University
Foraminiferal Data Base, IGBP PAGES/World Data Center-A for
Paleoclimatology, Data Contribution Series # 1999-027, NOAA/NGDC
Paleoclimatology Program, Boulder CO, USA,
available at: https://www.ncdc.noaa.gov/paleo/metadata/noaa-ocean-5908.html,
1999. a, b
Rebotim, A., Voelker, A. H. L., Jonkers, L., Waniek, J. J., Meggers, H.,
Schiebel, R., Fraile, I., Schulz, M., and Kucera, M.: Factors controlling the
depth habitat of planktonic foraminifera in the subtropical eastern North
Atlantic, Biogeosciences, 14, 827–859,
https://doi.org/10.5194/bg-14-827-2017, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Rippert, N., Nürnberg, D., Raddatz, J., Maier, E., Hathorne, E., Bijma,
J., and Tiedemann, R.: Constraining foraminiferal calcification depths in
the western Pacific warm pool, Mar. Micropaleontol., 128, 14–27,
https://doi.org/10.1016/j.marmicro.2016.08.004, 2016. a, b
Salmon, K. H., Anand, P., Sexton, P. F., and Conte, M.: Upper ocean mixing
controls the seasonality of planktonic foraminifer fluxes and associated
strength of the carbonate pump in the oligotrophic North Atlantic,
Biogeosciences, 12, 223–235, https://doi.org/10.5194/bg-12-223-2015, 2015. a, b, c, d, e
Schiebel, R., Waniek, J., Zeltner, A., and Alves, M.: Impact of the Azores
Front on the distribution of planktic foraminifers, shelled gastropods, and
coccolithophorids, Deep-Sea Res. Pt. II, 49, 4035–4050, 2002. a
Schmidt, G. A.: Forward modeling of carbonate proxy data from planktonic
foraminifera using oxygen isotope tracers in a global ocean model,
Paleoceanography, 14, 482–497, https://doi.org/10.1029/1999PA900025, 1999. a
Sherman, E., Moore, J. K., Primeau, F., and Tanouye, D.: Temperature influence
on phytoplankton community growth rates, Global Biogeochem. Cy., 30,
550–559, https://doi.org/10.1002/2015GB005272, 2016. a, b
Simstich, J., Sarnthein, M., and Erlenkeuser, H.: Paired δ18O
signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas, Mar. Micropaleontol., 48, 107–125, https://doi.org/10.1016/S0377-8398(02)00165-2, 2003. a, b, c, d
Skinner, L. C. and Elderfield, H.: Constraining ecological and biological bias
in planktonic foraminiferal Mg/Ca and δ18Occ: A multispecies
approach to proxy calibration testing, Paleoceanography, 20, PA1015,
https://doi.org/10.1029/2004PA001058, 2005. a
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J.,
Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S.,
Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S.,
Vertenstein, M., and Yeager, S.: The Parallel Ocean Program (POP) reference
manual: Ocean component of the Community Climate System Model (CCSM) and
Community Earth System Model (CESM), Tech. rep., Los Alamos National
Laboratory,
2010. a
Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B. S., Rappo, S., Poole,
C. R., Morard, R., and Stalder, C.: Fossil and Genetic Evidence for the
Polyphyletic Nature of the Planktonic Foraminifera
“Globigerinoides”, and Description of the New Genus
Trilobatus, PLoS ONE, 10, 1–20,
https://doi.org/10.1371/journal.pone.0128108,
2015. a
Stangeew, E.: Distribution and Isotopic Composition of Living Planktonic
Foraminifera N. pachyderma (sinistral) and T. quinqueloba
in the High Latitude North Atlantic, PhD thesis,
Christian-Albrechts-Universität zu Kiel, 2001. a
Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S., and Roe, G. H.:
Assimilation of Time-Averaged Pseudoproxies for Climate Reconstruction,
J. Climate, 27, 426–441, https://doi.org/10.1175/JCLI-D-12-00693.1, 2014.
a
Storz, D., Schulz, H., Waniek, J. J., Schulz-Bull, D. E., and Kučera, M.:
Seasonal and interannual variability of the planktic foraminiferal flux in
the vicinity of the Azores Current, Deep-Sea Res. Pt. I, 56, 107–124,
https://doi.org/10.1016/j.dsr.2008.08.009, 2009. a, b, c, d
Taboada, F. G. and Anadón, R.: Seasonality of North Atlantic phytoplankton
from space: Impact of environmental forcing on a changing phenology
(1998–2012), Glob. Change Biol., 20, 698–712, https://doi.org/10.1111/gcb.12352,
2014. a
Thiede, J.: Distribution of foraminifera in surface waters of a coastal
upwelling area, Nature, 253, 712–714, https://doi.org/10.1038/253712a0,
1975. a, b
Ting, C. S., Rocap, G., King, J., and Chisholm, S. W.: Cyanobacterial
photosynthesis in the oceans: The origins and significance of divergent
light-harvesting strategies, Trends Microbiol., 10, 134–142,
https://doi.org/10.1016/S0966-842X(02)02319-3, 2002. a
van Raden, U. J., Groeneveld, J., Raitzsch, M., and Kucera, M.: Mg/Ca in the
planktonic foraminifera Globorotalia inflata and
Globigerinoides bulloides from Western Mediterranean plankton tow
and core top samples, Mar. Micropaleontol., 78, 101–112,
https://doi.org/10.1016/j.marmicro.2010.11.002,
2011. a
Völpel, R., Paul, A., Krandick, A., Mulitza, S., and Schulz, M.: Stable
water isotopes in the MITgcm, Geosci. Model Dev., 10, 3125–3144,
https://doi.org/10.5194/gmd-10-3125-2017, 2017. a
Yu, E.-F., Francois, R., Bacon, M. P., Honjo, S., Fleer, A. P., Manganini,
S. J., Rutgers van der Loeff, M. M., and Ittekot, V.: Trapping efficiency
of bottom-tethered sediment traps estimated from the intercepted fluxes of
230Th and 230Pa, Deep-Sea Res. Pt. I, 48, 865–889,
https://doi.org/10.1016/S0967-0637(00)00067-4, 2001. a
Žarić, S., Donner, B., Fischer, G., Mulitza, S., and Wefer, G.:
Sensitivity of planktic foraminifera to sea surface temperature and export
production as derived from sediment trap data, Mar. Micropaleontol., 55,
75–105, https://doi.org/10.1016/j.marmicro.2005.01.002, 2005. a
Žarić, S., Schulz, M., and Mulitza, S.: Global prediction of planktic
foraminiferal fluxes from hydrographic and productivity data, Biogeosciences,
3, 187–207, https://doi.org/10.5194/bg-3-187-2006, 2006. a
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate...
Altmetrics
Final-revised paper
Preprint