Articles | Volume 16, issue 19
https://doi.org/10.5194/bg-16-3777-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-3777-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal and spatial patterns of primary production in a high-latitude fjord affected by Greenland Ice Sheet run-off
Arctic Research Centre, Aarhus University, Ny Munkegade 114, bldg.
1540, 8000 Aarhus C, Denmark
Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600,
Silkeborg, Denmark
Stiig Markager
Arctic Research Centre, Aarhus University, Ny Munkegade 114, bldg.
1540, 8000 Aarhus C, Denmark
Department of Bioscience, Aarhus University, Frederiksborgvej 399,
4000 Roskilde, Denmark
Thomas Juul-Pedersen
Greenland Climate Research Centre, Greenland Institute of Natural
Resources, Kivioq 2, 3900 Nuuk, Greenland
Maria L. Paulsen
Arctic Research Centre, Aarhus University, Ny Munkegade 114, bldg.
1540, 8000 Aarhus C, Denmark
Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600,
Silkeborg, Denmark
Eva F. Møller
Arctic Research Centre, Aarhus University, Ny Munkegade 114, bldg.
1540, 8000 Aarhus C, Denmark
Department of Bioscience, Aarhus University, Frederiksborgvej 399,
4000 Roskilde, Denmark
Lorenz Meire
Greenland Climate Research Centre, Greenland Institute of Natural
Resources, Kivioq 2, 3900 Nuuk, Greenland
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands
Institute of Sea Research and Utrecht University, Yerseke, the Netherlands
Mikael K. Sejr
Arctic Research Centre, Aarhus University, Ny Munkegade 114, bldg.
1540, 8000 Aarhus C, Denmark
Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600,
Silkeborg, Denmark
Related authors
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Anneke L. Vries, Willem Jan van de Berg, Brice Noël, Lorenz Meire, and Michiel R. van den Broeke
The Cryosphere, 19, 3897–3914, https://doi.org/10.5194/tc-19-3897-2025, https://doi.org/10.5194/tc-19-3897-2025, 2025
Short summary
Short summary
Freshwater flows into Greenland's fjords from various sources. Solid ice discharge (e.g. calving icebergs) dominates freshwater input in the southeast and northwest. In contrast, in the southwest, runoff from the ice sheet and tundra are the most significant. Seasonal data revealed that fjord precipitation and tundra runoff contribute up to 11 % and 35 % of the monthly freshwater input, respectively. Our results provide valuable input for ocean models and for researchers studying fjord ecosystems.
Jana Krause, Dustin Carroll, Juan Höfer, Jeremy Donaire, Eric P. Achterberg, Emilio Alarcón, Te Liu, Lorenz Meire, Kechen Zhu, and Mark J. Hopwood
The Cryosphere, 18, 5735–5752, https://doi.org/10.5194/tc-18-5735-2024, https://doi.org/10.5194/tc-18-5735-2024, 2024
Short summary
Short summary
Here we analysed calved ice samples from both the Arctic and Antarctic to assess the variability in the composition of iceberg meltwater. Our results suggest that low concentrations of nitrate and phosphate in ice are primarily from the ice matrix, whereas sediment-rich layers impart a low concentration of silica and modest concentrations of iron and manganese. At a global scale, there are very limited differences in the nutrient composition of ice.
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Robert W. Schlegel, Rakesh Kumar Singh, Bernard Gentili, Simon Bélanger, Laura Castro de la Guardia, Dorte Krause-Jensen, Cale A. Miller, Mikael Sejr, and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 16, 2773–2788, https://doi.org/10.5194/essd-16-2773-2024, https://doi.org/10.5194/essd-16-2773-2024, 2024
Short summary
Short summary
Fjords play a vital role in the Arctic ecosystems and human communities. It is therefore important to have as clear of an understanding of the processes within these systems as possible. While temperature and salinity tend to be well measured, light is usually not. The dataset described in this paper uses remotely sensed data from 2003 to 2022 to address this problem by providing high-spatial-resolution surface, water column, and seafloor light data for several well-studied Arctic fjords.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Cited articles
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E.:
Recent large increases in freshwater fluxes from Greenland into the North
Atlantic, Geophys. Res. Lett., 39, L19501, https://doi.org/10.1029/2012GL052552, 2012.
Bendtsen, J., Gustafsson, K. E., Rysgaard, S., and Vang, T.: Physical
conditions, dynamics and model simulations during the ice-free period of the
Yound Sound/Tyrolerfjord system, in: Carbon cycling in Arctic marine
ecosystems: Case study Young Sound, edited by: Rysgaard, S. and Glud, R. N.,
45–59, Bioscience, Copenhagen, 2007.
Bendtsen, J., Mortensen, J., and Rysgaard, S.: Seasonal surface layer
dynamics and sensitivity to runoff in a high Arctic fjord (Young
Sound/Tyrolerfjord, 74∘ N), J. Geophys. Res.-Ocean., 119,
6461–6478, https://doi.org/10.1002/2014JC010077, 2014.
Bergeron, M. and Tremblay, J.-E.: Shifts in biological productivity inferred
from nutrient drawdown in the southern Beaufort Sea (2003–2011) and the
northern Baffin Bay (1997–2011), Canadian Arctic, Geophys. Res. Lett., 41,
3979–3987, https://doi.org/10.1002/2014GL059649, 2014.
Blicher, M., Sejr, M., and Høgslund, S.: Population structure of Mytilus
edulis in the intertidal zone in a sub-Arctic fjord, SW Greenland, Mar.
Ecol.-Prog. Ser., 487, 89–100, https://doi.org/10.3354/meps10317, 2013.
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., and Bamber, J.
L.: Emerging impact of Greenland meltwater on deepwater formation in the
North Atlantic Ocean, Nat. Geosci., 9, 523–527, https://doi.org/10.1038/ngeo2740,
2016.
Boone, W., Rysgaard, S., Carlson, D. F., Meire, L., Kirillov, S., Mortensen,
J., Dmitrenko, I., Vergeynst, L., and Sejr, M. K.: Coastal Freshening
Prevents Fjord Bottom Water Renewal in Northeast Greenland: A Mooring Study
From 2003 to 2015, Geophys. Res. Lett., 45, 2726–2733,
https://doi.org/10.1002/2017GL076591, 2018.
Chen, J. L., Wilson, C. R., and Tapley, B. D.: Satellite gravity measurements
confirm accelerated melting of Greenland ice sheet, Science, 313, 1958–1960, https://doi.org/10.1126/science.1129007, 2006.
Christensen, T. R., Topp-Jørgensen, E., Sejr, M. K., and Schmidt, N. M.:
Foreword: Synthesis of the Greenland Ecosystem Monitoring program, Ambio,
46, 1–2, https://doi.org/10.1007/s13280-016-0860-z, 2017.
Citterio, M., Sejr, M. K., Langen, P. L., Mottram, R. H., Abermann, J.,
Larsen, S. H., Skov, K., and Lund, M.: Towards quantifying the glacial runoff
signal in the freshwater input to Tyrolerfjord – Young Sound, NE
Greenland, Ambio, 46, 146–159, https://doi.org/10.1007/s13280-016-0876-4, 2017.
Cottier, F. R., Nilsen, F., Skogseth, R., Tverberg, V., Skarðhamar, J.,
and Svendsen, H.: Arctic fjords: a review of the oceanographic environment
and dominant physical processes, Geol. Soc. Lond. Spec. Publ., 344,
35–50, https://doi.org/10.1144/SP344.4, 2010.
Coupel, P., Jin, H. Y., Joo, M., Horner, R., Bouvet, H. A., Sicre, M.-A., Gascard, J.-C., Chen, J. F., Garçon, V., and Ruiz-Pino, D.: Phytoplankton distribution in unusually low sea ice cover over the Pacific Arctic, Biogeosciences, 9, 4835–4850, https://doi.org/10.5194/bg-9-4835-2012, 2012.
Coupel, P., Ruiz-Pino, D., Sicre, M. A., Chen, J. F., Lee, S. H.,
Schiffrine, N., Li, H. L., and Gascard, J. C.: The impact of freshening on
phytoplankton production in the Pacific Arctic Ocean, Prog. Oceanogr., 131,
113–125, https://doi.org/10.1016/j.pocean.2014.12.003, 2015.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Fernández-Méndez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., Flores, H., and Boetius, A.: Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012, Biogeosciences, 12, 3525–3549, https://doi.org/10.5194/bg-12-3525-2015, 2015.
Gallegos, C. L., Platt, T., Harrison, W. G., and Irwin, B.: Photosynthetic
parameters of arctic marine phytoplankton: Vertical variations and time
scales of adaptation, Limnol. Oceanogr., 28, 698–708,
https://doi.org/10.4319/lo.1983.28.4.0698, 1983.
Glud, R. N., Rysgaard, S., Kühl, M., and Hansen, J. W.: The sea ice in
Young Sound: Implications for carbon cycling, in: Carbon cycling in Arctic
marine ecosystems: Case study Young Sound, edited by: Rysgaard, S. and
Glud, R. N., 61–85, Bioscience, Copenhagen, 2007.
Hopwood, M. J., Carroll, D., Browning, T. J., Meire, L., Mortensen, J.,
Krisch, S., and Achterberg, E. P.: Non-linear response of summertime marine
productivity to increased meltwater discharge around Greenland, Nat.
Commun., 9, 3256, https://doi.org/10.1038/s41467-018-05488-8, 2018.
Howat, I. M., Joughin, I., and Scambos, T. A.: Rapid changes in ice discharge
from Greenland outlet glaciers., Science, 315, 1559–1561,
https://doi.org/10.1126/science.1138478, 2007.
Jensen, H. M., Pedersen, L., Burmeister, A. D., and Hansen, B. W.: Pelagic
primary production during summer along 65 to 72∘ N off West
Greenland, Polar Biol., 21, 269–278, https://doi.org/10.1007/s003000050362, 1999.
Jespersen, A. M. and Christoffersen, K.: Measurement of chlorophyll-a from
phytoplankton using ethanol as extraction solvent, Arch. Hydrobiol., 109,
445–454, 1987.
Juul-Pedersen, T., Arendt, K. E., Mortensen, J., Blicher, M. E., Søgaard,
D. H., and Rysgaard, S.: Seasonal and interannual phytoplankton production in
a sub-Arctic tidewater outlet glacier fjord, SW Greenland, Mar. Ecol.-Prog.
Ser., 524, 27–38, https://doi.org/10.3354/meps11174, 2015.
Krawczyk, D., Arendt, K., Juul-Pedersen, T., Sejr, M., Blicher, M., and
Jakobsen, H.: Spatial and temporal distribution of planktonic protists in
the East Greenland fjord and offshore waters, Mar. Ecol.-Prog. Ser., 538,
99–116, https://doi.org/10.3354/meps11439, 2015a.
Krawczyk, D. W., Witkowski, A., Juul-Pedersen, T., Arendt, K. E., Mortensen,
J., and Rysgaard, S.: Microplankton succession in a SW Greenland tidewater
glacial fjord influenced by coastal inflows and run-off from the Greenland
Ice Sheet, Polar Biol., 38, 1515–1533, https://doi.org/10.1007/s00300-015-1715-y,
2015b.
Lovejoy, C., Vincent, W. F., Bonilla, S., Roy, S., Martineau, M.-J.,
Terrado, R., Potvin, M., Massana, R., and Pedrós-Alió, C.:
Distribution, phenology, and growth of cold-adapted picoprasinophytes in
Arctic seas, J. Phycol., 43, 78–89,
https://doi.org/10.1111/j.1529-8817.2006.00310.x, 2007.
Lyngsgaard, M. M., Markager, S., and Richardson, K.: Changes in the vertical
distribution of primary production in response to land-based nitrogen
loading, Limnol. Oceanogr., 59, 1679–1690,
https://doi.org/10.4319/lo.2014.59.5.1679, 2014.
Markager, S., Vincent, W. F., and Tang, E. P. Y.: Carbon fixation by
phytoplankton in high Arctic lakes: Implications of low temperature for
photosynthesis, Limnol. Oceanogr., 44, 597–607,
https://doi.org/10.4319/lo.1999.44.3.0597, 1999.
McLaughlin, F. A. and Carmack, E. C.: Deepening of the nutricline and
chlorophyll maximum in the Canada Basin interior, 2003–2009, Geophys. Res.
Lett., 37, L24602, https://doi.org/10.1029/2010GL045459, 2010.
Meire, L., Søgaard, D. H., Mortensen, J., Meysman, F. J. R., Soetaert, K., Arendt, K. E., Juul-Pedersen, T., Blicher, M. E., and Rysgaard, S.: Glacial meltwater and primary production are drivers of strong CO2 uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet, Biogeosciences, 12, 2347–2363, https://doi.org/10.5194/bg-12-2347-2015, 2015.
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M. K.,
Rysgaard, S., Nygaard, R., Huybrechts, P., and Meysman, F. J. R.:
Marine-terminating glaciers sustain high productivity in Greenland fjords,
Glob. Change Biol., 12, 5344–57, https://doi.org/10.1111/gcb.13801, 2017.
Mernild, S. H., Hasholt, B., and Liston, G. E.: Climatic control on river
discharge simulations, Zackenberg River drainage basin, northeast Greenland,
Hydrol. Process., 22, 1932–1948, https://doi.org/10.1002/hyp.6777, 2008.
Michel, C., Hamilton, J., Hansen, E., Barber, D., Reigstad, M., Iacozza, J.,
Seuthe, L., and Niemi, A.: Arctic Ocean outflow shelves in the changing
Arctic: A review and perspectives, Prog. Oceanogr., 139, 66–88,
https://doi.org/10.1016/J.POCEAN.2015.08.007, 2015.
Middelbo, A. B., Møller, E. F., Arendt, K. E., Thyrring, J., and Sejr, M.
K.: Spatial, seasonal and inter-annual variation in abundance and carbon
turnover of small copepods in Young Sound, Northeast Greenland, Polar Biol.,
42, 179–193, https://doi.org/10.1007/s00300-018-2416-0, 2019.
Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M.,
Fahnestock, M., and Rysgaard, S.: On the seasonal freshwater stratification
in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic
sill fjord, J. Geophys. Res.-Ocean., 118, 1382–1395,
https://doi.org/10.1002/jgrc.20134, 2013.
Murray, C., Markager, S., Stedmon, C. A., Juul-Pedersen, T., Sejr, M. K., and
Bruhn, A.: The influence of glacial melt water on bio-optical properties in
two contrasting Greenlandic fjords, Estuar. Coast. Shelf Sc., 163,
72–83, https://doi.org/10.1016/j.ecss.2015.05.041, 2015.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan,
K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt
across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20502,
https://doi.org/10.1029/2012GL053611, 2012.
Nielsen, S. E.: The use of radio-active carbon (14C) for measuring organic production in the sea, J. Cons. Int. Explor. Mer., 18, 117–140, 1952.
Nielsen, T. G., Ottosen, L. D., and Hansen, B. W.: Structure and function of
the pelagic ecosystem in Young Sound, NE Greenland, in: Carbon cycling in
Arctic marine ecosystems: Case study Young Sound, edited by: Rysgaard, S. and
Glud, R. N., 87–107, Bioscience, Copenhagen, 2007.
Omand, M. M. and Mahadevan, A.: The shape of the oceanic nitracline, Biogeosciences, 12, 3273–3287, https://doi.org/10.5194/bg-12-3273-2015, 2015.
Paulsen, M. L., Nielsen, S. E. B., Müller, O., Møller, E. F.,
Stedmon, C. A., Juul-Pedersen, T., Markager, S., Sejr, M. K., Delgado
Huertas, A., Larsen, A., and Middelboe, M.: Carbon Bioavailability in a High
Arctic Fjord Influenced by Glacial Meltwater, NE Greenland, Front. Mar.
Sci., 4, 176, https://doi.org/10.3389/fmars.2017.00176, 2017.
Raven, J. A.: Small is beautiful: the picophytoplankton, Funct. Ecol.,
12, 503–513, https://doi.org/10.1046/j.1365-2435.1998.00233.x, 1998.
R Core Team: A language and environment for statistical computing, available from: http://www.r-project.org/ (last access: September 2019), 2014.
Reisdorph, S. C. and Mathis, J. T.: Assessing net community production in a glaciated Alaskan fjord, Biogeosciences, 12, 5185–5198, https://doi.org/10.5194/bg-12-5185-2015, 2015.
Rignot, E., Koppes, M., and Velicogna, I.: Rapid submarine melting of the
calving faces of West Greenland glaciers, Nat. Geosci., 3, 187–191,
https://doi.org/10.1038/ngeo765, 2010.
Rysgaard, S., Nielsen, T. G., and Hansen, B. W.: Seasonal variation in
nutrients, pelagic primary production and grazing in a high-Arctic coastal
marine ecosystem, Young Sound, Northeast Greenland, Mar. Ecol.-Prog. Ser.,
179, 13–25, https://doi.org/10.3354/meps179013, 1999.
Rysgaard, S., Kühl, M., Glud, R. N., and Hansen, J. W.: Biomass,
Production and Horizontal Patchiness of sea ice algae in a high-Arctic fjord
(Young Sound, NE Greenland), Mar. Ecol.-Prog. Ser., 223, 15–26,
https://doi.org/10.3354/meps223015, 2001.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de/ (last access: September 2019), 2016.
Schwaderer, A. S., Yoshiyama, K., de Tezanos Pinto, P., Swenson, N. G.,
Klausmeier, C. A., and Litchman, E.: Eco-evolutionary differences in light
utilization traits and distributions of freshwater phytoplankton, Limnol.
Oceanogr., 56, 589–598, https://doi.org/10.4319/lo.2011.56.2.0589, 2011.
Sejr, M., Nielsen, T., Rysgaard, S., Risgaard-Petersen, N., Sturluson, M.,
and Blicher, M.: Fate of pelagic organic carbon and importance of
pelagic–benthic coupling in a shallow cove in Disko Bay, West Greenland,
Mar. Ecol.-Prog. Ser., 341, 75–88, https://doi.org/10.3354/meps341075, 2007.
Sejr, M. K., Stedmon, C. A., Bendtsen, J., Abermann, J., Juul-Pedersen, T.,
Mortensen, J., and Rysgaard, S.: Evidence of local and regional freshening of
Northeast Greenland coastal waters, Sci. Rep.-UK, 7, 13183,
https://doi.org/10.1038/s41598-017-10610-9, 2017.
Simo-Matchim, A. G., Gosselin, M., Blais, M., Gratton, Y., and Tremblay, J.
É.: Seasonal variations of phytoplankton dynamics in Nunatsiavut fjords
(Labrador, Canada) and their relationships with environmental conditions, J.
Marine Syst., 156, 56–75, https://doi.org/10.1016/j.jmarsys.2015.11.007, 2016.
Sørensen, N., Daugbjerg, N., and Gabrielsen, T. M.: Molecular diversity
and temporal variation of picoeukaryotes in two Arctic fjords, Svalbard,
Polar Biol., 35, 519–533, https://doi.org/10.1007/s00300-011-1097-8, 2012.
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43,
https://doi.org/10.1038/nature12854, 2013.
Taguchi, S.: Relationship between photosynthesis and cell size of marine
diatoms, J. Phycol., 12, 185–189,
https://doi.org/10.1111/j.1529-8817.1976.tb00499.x, 1976.
Terrado, R., Medrinal, E., Dasilva, C., Thaler, M., Vincent, W. F., and
Lovejoy, C.: Protist community composition during spring in an Arctic flaw
lead polynya, Polar Biol., 34, 1901–1914,
https://doi.org/10.1007/s00300-011-1039-5, 2011.
Tremblay, G., Belzile, C., Gosselin, M., Poulin, M., Roy, S., and Tremblay,
J.: Late summer phytoplankton distribution along a 3500 km transect in
Canadian Arctic waters: strong numerical dominance by picoeukaryotes, Aquat.
Microb. Ecol., 54, 55–70, https://doi.org/10.3354/ame01257, 2009.
Wassmann, P. and Reigstad, M.: Future Arctic Acean Seasonal Ice Zones and
implications for pelagic-benthic coupling, Oceanography, 24, 220–231,
2011.
Wiktor, J., Węslawski, J. M., Wieczorek, P., Zajackowski, M., and
Okolodkov, Y. B.: Phytoplankton and suspensions in relation to the
freshwater in Arctic coastal marine ecosystems, Pol. Polar Res., 19,
219–234, 1998.
Yun, M. S., Whitledge, T. E., Stockwell, D., Son, S. H., Lee, J. H., Park, J. W., Lee, D. B., Park, J., and Lee, S. H.: Primary production in the Chukchi Sea with potential effects of freshwater content, Biogeosciences, 13, 737–749, https://doi.org/10.5194/bg-13-737-2016, 2016.
Zeileis, A. and Grothendieck, G.: zoo: S3 Infrastructure for Regular and
Irregular Time Series, J. Stat. Softw., 14, 1–27, 2005.
Short summary
Phytoplankton sustain important fisheries along the coast of Greenland. However, climate change is causing severe melting of the Greenland Ice Sheet, and continued melting has the potential to alter fjord ecosystems. We investigate how freshwater from the ice sheet is impacting the environment of one fjord in northeast Greenland, causing a low production of phytoplankton. This fjord may be a model for how some fjord ecosystems will be altered following increased melting and glacial retreat.
Phytoplankton sustain important fisheries along the coast of Greenland. However, climate change...
Altmetrics
Final-revised paper
Preprint