Bidle, K. D., Brzezinski, M. A., Long, R. A., Jones, J. L., and Azam, F.:
Diminished efficiency in the oceanic silica pump caused by bacteria-mediated
silica dissolution, Limnol. Oceanogr., 48, 1855–1868,
https://doi.org/10.4319/lo.2003.48.5.1855 , 2003.
Birgel, D., Meister, P., Lundberg, R., Horath, T. D., Bontognali, T. R.,
Bahniuk, A. M., de Rezende, C. E., Vásconcelos, C., and McKenzie, J. A.:
Methanogenesis produces strong
13C enrichment in stromatolites of Lagoa
Salgada, Brazil: a modern analogue for Palaeo-/Neoproterozoic
stromatolites?, Geobiology, 13, 245–266, https://doi.org/10.1111/gbi.12130,
2015.
Birsoy, R.: Formation of sepiolite-palygorskite and related minerals from
solution, Clay. Clay Miner., 50, 736–745,
https://doi.org/10.1346/000986002762090263, 2002.
Blohm, M.: Sedimentpetrographische Untersuchungen am Neusiedler See,
Österreich, Dissertation, Ruprecht-Karl-Universität Heidelberg, 1–85,
1974.
Bontognali, T. R., Vasconcelos, C., Warthmann, R. J., Bernasconi, S. M.,
Dupraz, C., Strohmenger, C. J., and McKenzie, J. A.: Dolomite formation
within microbial mats in the coastal sabkha of Abu Dhabi (United Arab
Emirates), Sedimentology, 57, 824–844,
https://doi.org/10.1111/j.1365-3091.2009.01121.x, 2010.
Bontognali, T. R., McKenzie, J. A., Warthmann, R. J., and Vasconcelos, C.:
Microbially influenced formation of Mg-calcite and Ca-dolomite in the
presence of exopolymeric substances produced by sulphate-reducing bacteria,
Terra Nova, 26, 72–77, https://doi.org/10.1111/ter.12072, 2014.
Boros, E., Horváth, Z., Wolfram, G., and Vörös, L.: Salinity and
ionic composition of the shallow astatic soda pans in the Carpathian Basin,
Int. J. Limnol., 50, 59–69,
https://doi.org/10.1051/limn/2013068, 2014.
Brady, P.V., Krumhansl, J. L., and Papenguth, H. W.: Surface complexation
clues to dolomite growth, Geochem. Cosmochem. Ac., 60, 727–731,
https://doi.org/10.1016/0016-7037(95)00436-x, 1996.
Callahan, B. J., McMurdie, P. J., and Holmes, S. P.: Exact sequence variants
should replace operational taxonomic units in marker-gene data analysis,
ISME J., 11, 2639–2643, https://doi.org/10.1038/ismej.2017.119, 2017.
Celik, M., Özdemir, B., Turan, M., Koyuncu, I., Atesok, G., and
Sarikaya, H.: Removal of ammonia by natural clay minerals using fixed and
fluidised bed column reactors, Water Sci. Technol.,
1, 81–88, https://doi.org/10.2166/ws.2001.0010, 2001.
Chen, S., Zhou, Y., Chen, Y., and Gu, J.: fastp: an ultra-fast all-in-one
FASTQ preprocessor, Bioinformatics, 34, i884–i890,
https://doi.org/10.1093/bioinformatics/bty560, 2018.
Chiang, E., Schmidt, M. L., Berry, M. A., Biddanda, B. A., Burtner, A.,
Johengen, T. H., Palladino, D., and Denef, V. J.: Verrucomicrobia are
prevalent in north-temperate freshwater lakes and display class-level
preferences between lake habitats, PLoS One, 13, e0195112,
https://doi.org/10.1371/journal.pone.0195112, 2018.
Court, W. M., Paul, A., and Lokier, S. W.: The preservation potential of
environmentally diagnostic sedimentary structures from a coastal sabkha,
Mar. Geol., 386, 1–18, https://doi.org/10.1016/j.margeo.2017.02.003,
2017.
De Choudens-Sanchez, V. and Gonzalez, L. A.: Calcite and aragonite
precipitation under controlled instantaneous supersaturation: elucidating
the role of
CaCO3 saturation state and
Mg∕Ca ration on calcium
carbonate polymorphism, J. Sediment. Res., 79, 363–376,
https://doi.org/10.2110/jsr.2009.043, 2009.
Deelman, J.: Low-temperature nucleation of magnesite and dolomite, Neues
Jb. Miner. Monat., 7, 289–302, 1999.
Deng, S., Dong, H., Lv, G., Jiang, H., Yu, B., and Bishop, M. E.: Microbial
dolomite precipitation using sulfate reducing and halophilic bacteria:
Results from Qinghai Lake, Tibetan Plateau, NW China, Chem. Geol., 278,
151–159, https://doi.org/10.1016/j.chemgeo.2010.09.008, 2010.
Fernandez-Diaz, L., Putnis, A., Prieto, M., and Putnis, C. V.: The role of magnesium in the crystallization of calcite and aragonite in a porous medium, J. Sed. Res., 66, 482–491, https://doi.org/10.1306/d4268388-2b26-11d7-8648000102c1865d, 1996.
Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L.
L., Jiao, N., Karl, D. M., Li, W. K., Lomas, M. W., and Veneziano, D.:
Present and future global distributions of the marine Cyanobacteria
Prochlorococcus and
Synechococcus, P. Natl. Acad. Sci. USA, 110, 9824–9829,
https://doi.org/10.1073/pnas.1307701110, 2013.
Frisia, S., Borsato, A., and Hellstrom, J.: High spatial resolution
investigation of nucleation, growth and early diagenesis in speleothems as
exemplar for sedimentary carbonates, Earth-Sci. Rev., 178, 68–91,
https://doi.org/10.1016/j.earscirev.2018.01.014, 2018.
Fussmann, D., von Hoyningen-Huene, A., Reimer, A., Schneider, D., Maier, A., Peticzka, R., Babkova, H., Arp, G., Rolf, D., and Meister, P.: Analytical Data Lake Neusiedl, PANGAEA, https://doi.org/10.1594/PANGAEA.909663, 2019.
Given, R. K. and Wilkinson, B. H.: Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates, J. Sed. Res., 55, 109–119, https://doi.org/10.1306/212f862a-2b24-11d7-8648000102c1865d, 1985.
Gregg, J. M., Bish, D. L., Kaczmarek, S. E., and Machel, H. G.: Mineralogy,
nucleation and growth of dolomite in the laboratory and sedimentary
environment: a review, Sedimentology, 62, 1749–1769,
https://doi.org/10.1111/sed.12202, 2015.
He, S., Stevens, S. L., Chan, L.-K., Bertilsson, S., del Rio, T. G., Tringe,
S. G., Malmstrom, R. R., and McMahon, K. D.: Ecophysiology of freshwater
Verrucomicrobia inferred from metagenome-assembled genomes, mSphere, 2,
e00277-17, https://doi.org/10.1128/msphere.00277-17, 2017.
Hegedüs, J. N.: Lake Neusiedl and Hansag: Universal map of the County of
Sopron, State archive of Sopron, 1783.
Herzig, A.: Der Neusiedler See – Limnologie eines Steppensees, Denisia 33,
zugleich Kataloge des oberösterreichischen Landesmuseums, 163, 101–114,
2014.
Herzig, A. and Dokulil, M.: Neusiedler See – ein Steppensee in Europa, in:
Ökologie und Schutz von Seen, edited by: Dokulil, M., Hamm, A., and
Kohl, J.-G., Facultas-Universitäts-Verlag, Wien, 401–415, 2001.
Horváth, F.: Towards a mechanical model for the formation of the
Pannonian basin, Tectonophysics, 226, 333–357,
https://doi.org/10.1016/0040-1951(93)90126-5, 1993.
Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C., Sharon, I.,
Frischkorn, K. R., Williams, K. H., Tringe, S. G., and Banfield, J. F.:
Community genomic analyses constrain the distribution of metabolic traits
across the Chloroflexi phylum and indicate roles in sediment carbon cycling,
Microbiome, 1, 22, https://doi.org/10.1186/2049-2618-1-22, 2013.
Jørgensen, B. B. and Kasten, S.: Sulfur cycling and methane oxidation,
in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer,
Berlin, 271–309, https://doi.org/10.1007/3-540-32144-6_8,
2006.
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M.,
and Glöckner, F. O.: Evaluation of general 16S ribosomal RNA gene PCR
primers for classical and next-generation sequencing-based diversity
studies, Nucl. Acid. Res., 41, e1, https://doi.org/10.1093/nar/gks808,
2013.
Kotlar, E., Tartakovsky, B., Argaman, Y., and Sheintuch, M.: The nature of
interaction between immobilized nitrification and denitrification bacteria,
J. Biotechnol., 51, 251–258,
https://doi.org/10.1016/s0168-1656(96)01603-3, 1996.
Krachler, R., Korner, I., Dvorak, M., Milazowszky, N., Rabitsch, W., Werba,
F., Zulka, P., and Kirschner, A.: Die Salzlacken des Seewinkels: Erhebung
des aktuellen ökologischen Zustandes sowie Entwicklung individueller
Lackenerhaltungskonzepte für die Salzlacken des Seewinkels (2008–2011),
Österreichischer Naturschutzbund, Eisenstadt, Österreich, 2012.
Krachler, R., Krachler, R., Gülce, F., Keppler, B. K., and Wallner, G.:
Uranium concentrations in sediment pore waters of Lake Neusiedl, Austria,
Sci. Total Environ., 633, 981–988,
https://doi.org/10.1016/j.scitotenv.2018.03.259, 2018.
Land, L. S.: Failure to Precipitate Dolomite at
25C from dilute solution
despite 1000-fold oversaturation after 32 years, Aquat. Geochem., 4,
361–368, 1998.
Lippmann, F.: The System
CaCO3-
MgCO3, in: Sedimentary Carbonate
Minerals, edited by: Lippmann, F., Springer, Berlin, 148–190,
https://doi.org/10.1007/978-3-642-65474-9_4, 1973.
Liu, D., Xu, Y., Papineau, D., Yu, N., Fan, Q., Qiu, X., and Wang, H.:
Experimental evidence for abiotic formation of low-temperature
proto-dolomite facilitated by clay minerals, Geochim. Cosmochim.
Ac., 247, 83–95, https://doi.org/10.1016/j.gca.2018.12.036, 2019.
Löffler, H.: Neusiedlersee: The limnology of a shallow lake in central
europe, in: Monographiae Biologicae, 37, edited by: Junk, W., bv Publishers, The
Hague, 543 pp., https://doi.org/10.1007/978-94-009-9168-2, 1979.
Loisl, J., Tari, G., Draganits, E., Zámolyi, A., and Gjerazi, I.:
High-resolution seismic reflection data acquisition and interpretation, Lake
Neusiedl, Austria, northwest Pannonian Basin, Interpretation, 6, SB77–SB974,
https://doi.org/10.1190/int-2017-0086.1, 2018.
Lutterotti, L., Bortolotti, M., Ischia, G., Lonardelli, I., and Wenk, H.:
Rietveld texture analysis from diffraction images, Z.
Kristallogr., Supplements, 26, 125–130,
https://doi.org/10.1524/zksu.2007.2007.suppl_26.125, 2007.
Machel, H. G.: Concepts and models of dolomitization: a critical
reappraisal, Geol. Soc. Lond. Spec. Publ. 235, 7–63,
https://doi.org/10.1144/gsl.sp.2004.235.01.02, 2004.
Martin, M.: Cutadapt removes adapter sequences from high-throughput
sequencing reads, EMBnet J., 17, 10–12,
https://doi.org/10.14806/ej.17.1.200, 2011.
McCormack, J., Bontognali, T. R., Immenhauser, A., and Kwiecien, O.:
Controls on cyclic formation of Quaternary early diagenetic dolomite,
Geophys. Res. Lett., 45, 3625–3634,
https://doi.org/10.1002/2018gl077344, 2018.
Meister, P.: Two opposing effects of sulfate reduction on carbonate
precipitation in normal marine, hypersaline, and alkaline environments,
Geology, 41, 499–502, https://doi.org/10.1130/g34185.1, 2013.
Meister, P. and Frisia, S.: Dolomite formation by nano-crystal aggregation
in the Dolomia Principale of the Brenta Dolomites (Northern Italy), Riv.
Ital. Paleontol. S., 125, 183–196, 2019.
Meister, P., Reyes, C., Beaumont, W., Rincon, M., Collins, L., Berelson, W.,
Stott, L., Corsetti, F., and Nealson, K. H.: Calcium- and magnesium-limited
dolomite precipitation at Deep Springs Lake, California, Sedimentology, 58,
1810–1830, https://doi.org/10.1111/j.1365-3091.2011.01240.x, 2011.
More, K. D., Giosan, L., Grice, K., and Coolen, M. J.: Holocene
paleodepositional changes reflected in the sedimentary microbiome of the
Black Sea, Geobiology, 17, 436–448, https://doi.org/10.1111/gbi.12338, 2019.
Moreira, N., Walter, L. M., Vasconcelos, C., McKenzie, J. A., and McCall, P.:
Role of sulfide oxidation in dolomitization: Sediments and pore-water
geochemistry of a modern hypersaline lagoon system, Geology, 32, 701–704,
https://doi.org/10.1130/g20353.1, 2004.
Moser, I.: Der abgetrocknete Boden des Neusiedler See's, Jahrbuch der
Kaiserlich-Königlichen Geologischen Reichsanstalt Wien, 16, 338–344,
1866.
Müller, G., Irion, G., and Förstner, U.: Formation and diagenesis of
inorganic Ca-Mg carbonates in the lacustrine environment,
Naturwissenschaften, 59, 158–164, https://doi.org/10.1007/bf00637354, 1972.
Neuenschwander, S. M., Ghai, R., Pernthaler, J., and Salcher, M. M.:
Microdiversification in genome streamlined ubiquitous freshwater
Actinobacteria, ISME J., 12, 185–198,
https://doi.org/10.1038/ismej.2017.156, 2018.
Neuhuber, F.: Ein Beitrag zum Chemismus des Neusiedler Sees,
Sitzungsberichte der Akademie der Wissenschaften in Wien,
mathematisch-naturwissenschaftliche Klasse, Abteilung 1, 179, 225–231, 1971.
Neuhuber, S., Steier, P., Gier, S., Draganits, E., and Kogelbauer, I.:
Radiogenic Carbon Isotopes in Authigenic Carbonate from Lake Neusiedl,
Austria, EGU General Assembly Conference Abstracts, 2015.
Niedermayr, A., Köhler, S. J., and Dietzel, M.: Impacts of aqueous
carbonate accumulation rate, magnesium and polyaspartic acid on calcium
carbonate formation (6–40
∘C), Chem. Geol., 340, 105–120,
https://doi.org/10.1016/j.chemgeo.2012.12.014, 2013.
Parkhurst, D. L. and Appelo, C.: Description of input and examples for
PHREEQC version 3: a computer program for speciation, batch-reaction,
one-dimensional transport, and inverse geochemical calculations, US
Geological Survey, 2328–7055, https://doi.org/10.3133/tm6a43, 2013.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database
project: improved data processing and web-based tools, Nucl. Acid.
Res., 41, D590, https://doi.org/10.1093/nar/gks1219, 2012.
R Core Team: RStudio: integrated development for R (RStudio, Inc., Boston, MA,
USA), 2016.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, available at:
https://www.r-project.org (last access: 10 April 2020), 2019.
Rivadeneyra, M. a. A., Delgado, G., Soriano, M., Ramos-Cormenzana, A., and
Delgado, R.: Precipitation of carbonates by Nesterenkonia halobia in liquid
media, Chemosphere, 41, 617–624,
https://doi.org/10.1016/s0045-6535(99)00496-8, 2000.
Roberts, J. A., Bennett, P. C., González, L. A., Macpherson, G., and
Milliken, K. L.: Microbial precipitation of dolomite in methanogenic
groundwater, Geology, 32, 277–280, https://doi.org/10.1130/g20246.2, 2004.
Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F.: VSEARCH:
a versatile open source tool for metagenomics, Peer J., 4, e2584,
https://doi.org/10.7717/peerj.2584, 2016.
Rosen, M. R., Miser, D. E., Starcher, M. A., and Warren, J. K.: Formation of
dolomite in the Coorong region, South Australia, Geochim. Cosmochim.
Ac., 53, 661–669, https://doi.org/10.1016/0016-7037(89)90009-4, 1989.
Ryves, D. B., Battarbee, R. W., Juggins, S., Fritz, S. C., and Anderson, N.
J.: Physical and chemical predictors of diatom dissolution in freshwater and
saline lake sediments in North America and West Greenland, Limnol.
Oceanogr., 51, 1355–1368, https://doi.org/10.4319/lo.2006.51.3.1355,
2006.
Sánchez-Román, M., Vasconcelos, C., Warthmann, R., Rivadeneyra, M.,
McKenzie, J. A., and Swart, P.: Microbial dolomite precipitation under
aerobic conditions: results from Brejo do Espinho Lagoon (Brazil) and
culture experiments, in: Perspectives in Carbonate Geology: A Tribute to the
Career of Robert Nathan Ginsburg, edited by: Swart, P. K., Eberli, G. P.,
McKenzie, J. A., Jarvis, I., and Stevens, T., IAS Special Publication, 41,
167–178, https://doi.org/10.1002/9781444312065, 2009.
Schiemer, F. and Weisser, P.: Zur Verteilung der submersen Makrophyten in
der schilffreien Zone des Neusiedler Sees, Sitzungsberichte der Akademie der
Wissenschaften in Wien, mathematische-naturwissenschaftliche Klasse,
Abteilung 1., 180, 87–97, 1972.
Schneider, D., Wemheuer, F., Pfeiffer, B., and Wemheuer, B.: Extraction of
total DNA and RNA from marine filter samples and generation of a cDNA as
universal template for marker gen
e studies, in: Metagenomics, edited by:
Streit, W. and Daniel, R., Springer, Berlin, 13–22,
https://doi.org/10.1007/978-1-4939-6691-2_2, 2017.
Schroll, E. and Wieden, P.: Eine rezente Bildung von Dolomit im Schlamm des
Neusiedler Sees, Tscher. Miner. Petrog.,
7, 286–289, https://doi.org/10.1007/bf01127917, 1960.
Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., and Kölling, M.:
Rhizon sampling of porewaters near the sediment-water interface of aquatic
systems, Limnol. Oceanogr.-Method., 3, 361–371,
https://doi.org/10.4319/lom.2005.3.361, 2005
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J., and
Greenwood, J.: The effect of biogeochemical processes on pH, Mar.
Chem., 105, 30–51, https://doi.org/10.1016/j.marchem.2007.06.008, 2007.
Steiner, Z., Lazar, B., Erez, J., and Turchyn, A. V.: Comparing Rhizon
samplers and centrifugation for pore- water separation in studies of the
marine carbonate system in sediments, Limnol. Oceanogr.-Method.,
16, 828–839, https://doi.org/10.1002/lom3.10286, 2018.
Sun, J., Steindler, L., Thrash, J. C., Halsey, K. H., Smith, D. P., Carter, A. E., Landry, Z. C., and Giovannoni, S. J.: One carbon metabolism in SAR11 pelagic bacteria, PloS one, 6, e23973, https://doi.org/10.1371/journal.pone.0023973, 2011.
Thompson, J. and Ferris, F.: Cyanobacterial precipitation of gypsum,
calcite, and magnesite from natural alkaline lake water, Geology, 18,
995–998, 1990.
van Husen, D.: Quaternary glaciations in Austria, in: Quaternary Glaciations
– Extent and Chronology, Part I, Europe, Developments in Quaternary
Science, 2, Elsevier, Amsterdam, 1–13,
https://doi.org/10.1016/s1571-0866(04)80051-4, 2004.
van Lith, Y., Vasconcelos, C., Warthmann, R., Martins, J .C. F., and McKenzie, J. A.: Bacterial sulfate reduction and salinity: two
controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho
(Brazil), Hydrobiologia, 485, 35–49,
https://doi.org/10.1007/s00792-005-0441-8, 2002.
Vasconcelos, C., McKenzie, J. A., Bernasconi, S., Grujic, D., and Tiens, A.
J.: Microbial mediation as a possible mechanism for natural dolomite
formation at low temperatures, Nature, 377, 220–222,
https://doi.org/10.1038/377220a0, 1995.
Vasconcelos, C. and McKenzie, J. A.: Microbial mediation of modern dolomite
precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de
Janeiro, Brazil), J. Sediment. Res., 67, 378–390,
https://doi.org/10.1306/d4268577-2b26-11d7-8648000102c1865d, 1997.
von Breymann, M. T., Collier, R., and Suess, E.: Magnesium adsorption and
ion exchange in marine sediments: A multi-component model, Geochim.
Cosmochim. Ac., 54, 3295–3313,
https://doi.org/10.1016/0016-7037(90)90286-t, 1990.
von der Borch, C. C., Lock, D. E., and Schwebel, D.: Ground-water formation
of dolomite in the Coorong region of South Australia, Geology, 3, 283–285,
https://doi.org/10.1130/0091-7613(1975)3<283:gfodit>2.0.co;2, 1975.
von Hoyningen-Huene, A. J. E., Schneider, D., Fussmann, D., Reimer, A., Arp,
G., and Daniel, R.: Bacterial succession along a sediment porewater gradient
at Lake Neusiedl in Austria, Sci. Data, 6, 163,
https://doi.org/10.1038/s41597-019-0172-9, 2019.
Warren, J. K.: Sedimentology and mineralogy of dolomitic Coorong lakes,
South Australia, J. Sediment. Res., 60, 843–858,
https://doi.org/10.1306/212f929b-2b24-11d7-8648000102c1865d, 1990.
Whitman, W. B.: Bergey's manual of systematics of Archaea and Bacteria,
Wiley Online Library, 19–1314, 2015.
Wolfram, G.: Bedeutung und Vorkommen von Salzlebensräumen, in:
Salzlebensräume in Österreich, edited by: Wolfram, G., Zulka, K. P.,
Albert, R., Danihelka, J., Eder, E., Fröhlich, W., Holzer, T.,
Holzinger, W. E., Huber, H.-J., Korner, I., Lang, A., Mazzucco, K.,
Milasowszky, N., Oberleitner, I., Rabitsch, W., Sauberer, N., Schagerl, M.,
Schlick-Steiner, B. C., Steiner, F. M. and Steiner, K.-H., Umweltbundesamt,
Wien, 13–26, 2006.
Wright, D. T. and Wacey, D.: Precipitation of dolomite using
sulphate-reducing bacteria from the Coorong Region, South Australia:
significance and implications, Sedimentology, 52, 987–1008,
https://doi.org/10.1111/j.1365-3091.2005.00732.x, 2005.
Zámolyi, A., Salcher, B., Draganits, E., Exner, U., Wagreich, M., Gier,
S., Fiebig, M., Lomax, J., Surányi, G., and Diel, M.: Latest Pannonian
and Quaternary evolution at the transition between Eastern Alps and
Pannonian Basin: new insights from geophysical, sedimentological and
geochronological data, Int. J. Earth Sci., 106,
1695–1721, https://doi.org/10.1007/s00531-016-1383-3, 2017.
Zhang, F., Yan, C., Teng, H. H., Roden, E. E., and Xu, H.: In situ AFM
observations of Ca-Mg carbonate crystallization catalyzed by dissolved
sulfide: Implications for sedimentary dolomite formation, Geochem.
Cosmochem. Ac., 105, 44–55, https://doi.org/10.1016/j.gca.2012.11.010,
2013.
Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A.: PEAR: a fast and
accurate Illumina Paired-End reAd mergeR, Bioinformatics, 30, 614–620,
https://doi.org/10.1093/bioinformatics/btt593, 2013.