Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1673-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1673-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemical characterization of the Punta de Fuencaliente CO2-enriched system (La Palma, NE Atlantic Ocean): a new natural laboratory for ocean acidification studies
Sara González-Delgado
CORRESPONDING AUTHOR
Departamento de Biología Animal, Edafología y
Geología, Facultad de Ciencias, Universidad de La Laguna, Canary
Islands, Spain
David González-Santana
Instituto de Oceanografía y Cambio Global, IOCAG – ULPGC,
Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
LEMAR (CNRS, IRD, Ifremer), Université de Brest, 29280, Plouzané, France
Magdalena Santana-Casiano
Instituto de Oceanografía y Cambio Global, IOCAG – ULPGC,
Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
Melchor González-Dávila
Instituto de Oceanografía y Cambio Global, IOCAG – ULPGC,
Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
Celso A. Hernández
Departamento de Biología Animal, Edafología y
Geología, Facultad de Ciencias, Universidad de La Laguna, Canary
Islands, Spain
Carlos Sangil
Departamento de Biología Animal, Edafología y
Geología, Facultad de Ciencias, Universidad de La Laguna, Canary
Islands, Spain
José Carlos Hernández
Departamento de Biología Animal, Edafología y
Geología, Facultad de Ciencias, Universidad de La Laguna, Canary
Islands, Spain
Related authors
No articles found.
Irene Sánchez-Mendoza, Melchor González-Dávila, David González-Santana, David Curbelo-Hernández, David Estupiñan-Santana, Aridane G. González, and J. Magdalena Santana-Casiano
EGUsphere, https://doi.org/10.5194/egusphere-2025-3699, https://doi.org/10.5194/egusphere-2025-3699, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study looked at ocean CO2 and pH near the Canary Islands using satellite and local data. Of four methods tested, the bagging machine learning worked best. More CO2 and lower pH were found in the west due to ocean currents. CO2 released to the air rose from 2019 to 2024, partly due to warmer seas and a 2023 heatwave. The study shows how combining long-term data and smart tools can help us understand how the ocean and air exchange CO2 in changing coastal waters.
David Curbelo-Hernández, David González-Santana, Aridane G. González, J. Magdalena Santana-Casiano, and Melchor González-Dávila
Biogeosciences, 22, 3329–3356, https://doi.org/10.5194/bg-22-3329-2025, https://doi.org/10.5194/bg-22-3329-2025, 2025
Short summary
Short summary
This study offers a unique high-resolution dataset (2019–2024) on surface physicochemical properties in the western Mediterranean Sea. It reveals accelerated surface warming, significantly altering CO2 levels and pH. Currently a net CO2 sink, the region may become a CO2 source by 2030 due to weakening in-gassing. The research highlights the value of VOS (volunteer observing ship) lines for monitoring climate impacts and emphasizes the need for ongoing observations to enhance long-term trend accuracy and future projections.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 5561–5589, https://doi.org/10.5194/bg-21-5561-2024, https://doi.org/10.5194/bg-21-5561-2024, 2024
Short summary
Short summary
The study evaluated CO2–carbonate system dynamics in the North Atlantic subpolar gyre during 2009–2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of ocean acidification and improve our knowledge about its impact on marine ecosystems.
Milagros Rico, Paula Santiago-Díaz, Guillermo Samperio-Ramos, Melchor González-Dávila, and Juana Magdalena Santana-Casiano
Biogeosciences, 21, 4381–4394, https://doi.org/10.5194/bg-21-4381-2024, https://doi.org/10.5194/bg-21-4381-2024, 2024
Short summary
Short summary
Changes in pH generate stress conditions, either because high pH drastically decreases the availability of trace metals such as Fe(II), a restrictive element for primary productivity, or because reactive oxygen species are increased with low pH. The metabolic functions and composition of microalgae can be affected. These modifications in metabolites are potential factors leading to readjustments in phytoplankton community structure and diversity and possible alteration in marine ecosystems.
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024, https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Short summary
In a recent experiment off the coast of Gran Canaria (Spain), scientists explored a method called ocean alkalinization enhancement (OAE), where carbonate minerals were added to seawater. This process changed the levels of certain ions in the water, affecting its pH and buffering capacity. The researchers were particularly interested in how this could impact the levels of essential trace metals in the water.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Elise S. Droste, Mario Hoppema, Melchor González-Dávila, Juana Magdalena Santana-Casiano, Bastien Y. Queste, Giorgio Dall'Olmo, Hugh J. Venables, Gerd Rohardt, Sharyn Ossebaar, Daniel Schuller, Sunke Trace-Kleeberg, and Dorothee C. E. Bakker
Ocean Sci., 18, 1293–1320, https://doi.org/10.5194/os-18-1293-2022, https://doi.org/10.5194/os-18-1293-2022, 2022
Short summary
Short summary
Tides affect the marine carbonate chemistry of a coastal polynya neighbouring the Ekström Ice Shelf by movement of seawater with different physical and biogeochemical properties. The result is that the coastal polynya in the summer can switch between being a sink or a source of CO2 multiple times a day. We encourage consideration of tides when collecting in polar coastal regions to account for tide-driven variability and to avoid overestimations or underestimations of air–sea CO2 exchange.
Cited articles
Agostini, S., Wada, S., Kon, K., Omori, A., Kohtsuka, H., Fujimura, H.,
Tsuchiyaa, Y., Satoa, T., Shinagawaa, H., Yamadaa, Y., and Inaba, K.:
Geochemistry of two shallow CO2 seeps in Shikine Island (Japan) and
their potential for ocean acidification research, Reg. Stud. Mar. Sci., 2,
45–53, 2015.
Aiuppa, A., Hall-Spencer, J. M., Milazzo, M., Turco, G., Caliro, S., and Di Napoli, R.: Volcanic CO2 seep geochemistry and use in understanding ocean acidification, Biogeochemistry, 152, 93–115, 2021.
Boatta, F., D'Alessandro, W., Gagliano, A. L., Liotta, M., Milazzo, M.,
Rodolfo-Metalpa, R., Hall-Spencer, J. M., and Parello, F.: Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of
ocean acidification, Mar. Pollut. Bull. 73, 485–494, 2013.
Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E., Charette, M. A., Kontar, E., Krupa, S., Kulkarni, K. M., Loveless, A., and Moore, W. S.: Quantifying submarine groundwater discharge in the coastal zone via multiple methods, Sci. Total Environ. 367, 498–543
https://doi.org/10.1016/j.scitotenv.2006.05.009, 2006.
Calvet, F., Cabrera, M. C., Carracedo, J. C., Mangas, J., Recio, C., and
Travé, A.: Beachrocks from the island of La Palma (Canary Islands,
Spain), Mar. Geol., 197, 75–93, https://doi.org/10.1016/S0025-3227(03)00090-2, 2003.
Carracedo, J. C., Rodríguez-Badiola, E., Guillou, H., de la Nuez, J. D. L., and
Pérez-Torrado, F. J.: Geology and volcanology of La Palma and El Hierro,
Western Canaries, Estudios Geologicos, 57, 5–6, 2001.
Charette, M.A., Lam, P.J., Lohan, M. C., Kwon, E. Y., Hatje, V., Jeandel,
C., Shiller, A. M., Cutter, G. A., Thomas, A., Boyd, P. W., and Homoky, W. B.: Coastal ocean and shelf-sea biogeochemical cycling of trace elements and
isotopes: lessons learned from GEOTRACES, Philos. T. Roy. Soc. A,
374, 20160076, https://doi.org/10.1098/rsta.2016.0076, 2016.
Crook, E. D., Potts, D., Rebolledo-Vieyra, M., Hernandez, L., and Paytan, A.:
Calcifying coral abundance near low-pH springs: implications for future
ocean acidification, Coral Reefs, 31, 239–245, https://doi.org/10.1007/s00338-011-0839-y, 2012.
Dando, P. R., Stüben, D., and Varnavas, S. P.: Hydrothermalism in the
Mediterranean sea, Prog. Oceanogr., 44, 333–367, https://doi.org/10.1016/S0079-6611(99)00032-4, 1999.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, North Pacific Marine Science Organization
Sidney, British Columbia, available at:
http://hdl.handle.net/11329/249 (last access: 17 June 2019), 191 pp., 2007.
Fabricius, K .E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S.,
De'ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M.:
Losers and winners in coral reefs acclimatized to elevated carbon dioxide
concentrations, Nat. Clim. Change, 1, 165–169, 2011.
Foo, S. A., Byrne, M., Ricevuto, E., and Gambi, M. C.: The carbon dioxide
vents of Ischia, Italy, a natural system to assess impacts of ocean
acidification on marine ecosystems: an overview of research and comparisons
with other vent systems, Oceanogr. Mar. Biol. Annu. Rev., 56, 237–310, 2018.
Gattuso, J. P., Frankignoulle, M., Bourge, I., Romaine, S., and Buddemeier,
R. W.: Effect of calcium carbonate saturation of seawater on coral
calcification. Global Planet. Change, 18, 37–46, https://doi.org/10.1016/S0921-8181(98)00035-6, 1998.
González-Dávila, M., Santana-Casiano, J. M., and
González-Dávila, E. F.: Interannual variability of the upper ocean
carbon cycle in the northeast Atlantic Ocean, Geophys. Res. Lett., 34,
L07608, https://doi.org/10.1029/2006GL028145, 2007.
González-Delgado, S. and Hernández, J. C.: The importance of natural
acidified systems in the study of ocean acidification: what have we
learned?, Adv. Mar. Biol., 80, 57–99, https://doi.org/10.1016/bs.amb.2018.08.001, 2018.
González-Delgado, S., Hernández, J. C., Epherra, L., Hernández,
C., and Alfonso, B.: Effect of a natural CO2 gradient on egg characteristics
of Arbacia lixula, 16th International echinoderm Conference,
Nagoya, Japan, 28 May–1 June 2018, 165 pp., 2018a.
González-Delgado, S., Hernández, J. C., Wangensteen, O., Alfonso,
B., and Soto, A.: Changes in echinoderm populations due to a natural CO2
gradient. Program & Abstracts: 16th International echinoderm Conference,
Nagoya, Japan, 28 May–1 June 2018, 58 pp., 2018b.
González-Delgado, S., Sangil, C., Wangensteen, O. S., Hernández, C. A., Soto, A. Z., Alfonso, B., Mariani S., and Hernández, J. C.: Persistent natural CO2 disturbances increase taxonomic diversity of a benthic community, in preparation, 2021.
Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M.,
Turner, S. M., Rowley, S. J., Tedesco, D., and Buia, M. C.: Volcanic carbon
dioxide vents show ecosystem effects of ocean acidification, Nature,
454, 96–99, https://doi.org/10.1038/nature07051, 2008.
Hall-Spencer, J. M. and Harvey, B. P.: Ocean acidification impacts on coastal
ecosystem services due to habitat degradation, Emerg. Top. Life Sci., 3,
197–206, https://doi.org/10.1042/ETLS20180117, 2019.
Hernández, C. A., Epherra, L., Alfonso, B., González-Delgado, S.,
Hernández, J. C. Characterization of a CO2 vent in La Palma (Canary
Islands) and its effects on the calcified structures of Arbacia lixula. Program &
Abstracts: 16th International echinoderm Conference, Nagoya, Japan, 28 May–1 June 2018, 63 pp., 2018.
Hernández, C. A., Sangil, C., and Hernández, J. C.: A new CO2
vent for the study of ocean acidification in the Atlantic, Mar. Pollut.
B. 109, 419–426, https://doi.org/10.1016/j.marpolbul.2016.05.040,
2016.
Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A.,
Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson,
P. G., Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder,
C. A., Yu, P. C., and Martz, T. R.: High-frequency dynamics of ocean pH: a
multi-ecosystem comparison, Plos One, 6, e28983, https://doi.org/10.1371/journal.pone.0028983, 2011.
IPCC: Core Writing Team, Pachauri, R. K., and Meyer, L. A.: Climate
Change 2014: Synthesis Report. Contribution of Working Groups I, II and III
to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, Geneva, Switzerland, 151 pp., 2014.
Jeandel, C.: Overview of the mechanisms that could explain the `Boundary
Exchange'at the land–ocean contact. Philos. T. Roy. Soc. A., 374, 20150287, https://doi.org/10.1098/rsta.2015.0287, 2016.
Kasting, J. F.: Earth's early atmosphere, Science, 259, 920–926, https://doi.org/10.1126/science.11536547, 1993.
Kerrison, P., Hall-Spencer, J. M., Suggett, D. J., Hepburn, L. J., and
Steinke, M.: Assessment of pH variability at a coastal CO2 vent for
ocean acidification studies, Estuar. Coast. Shelf Sci., 94, 129–137,
2011.
Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G.: Meta-analysis
reveals negative yet variable effects of ocean acidification on marine
organisms, Ecol. Lett., 13, 1419–1434, https://doi.org/10.1111/j.1461-0248.2010.01518.x, 2010.
Ma Y., Aichmayer B., Paris O., Fratzl P., Meibom A., Metzler R. A., Politi
Y., Addadi L., Gilbert P. U., and Weiner S.: The grinding tip of the sea
urchin tooth exhibits exquisite control over calcite crystal orientation and
Mg distribution, P. Natl. Acad. Sci. USA, 106, 6048–6053, https://doi.org/10.1073/pnas.0810300106, 2009.
Marrero, R., López, D. L., Hernández, P. A., and Pérez, N. M.:
Carbon dioxide discharged through the las Cañadas aquifer, Tenerife,
Canary Islands, Pure Appl. Geophys., 165, 147–172, https://doi.org/10.1007/s00024-007-0287-3, 2008.
Martin, W., Baross, J., Kelley, D., and Russell, M. J.: Hydrothermal vents and the origin of life, Nat. Rev. Microbiol., 6, 805, https://doi.org/10.1038/nrmicro1991, 2008.
Mintrop, L., Pérez, F. F., González-Dávila, M., Santana-Casiano,
J. M., and Körtzinger, A.: Alkalinity determination by potentiometry:
Intercalibration using three different methods, Cienc. Mar., 26, 23–37,
http://hdl.handle.net/10261/25136 (last access: 1 February 2020), 2000.
Moore, W. S.: The effect of submarine groundwater discharge on the ocean,
Ann. Rev. Mar. Sci. 2, 59–88, https://doi.org/10.1146/annurev-marine-120308-081019, 2010.
Mulligan, A. E., Charette, M. A., Tamborski, J. J., and Moosdorf, N.:
Submarine Groundwater Discharge, in: Encyclopedia of Ocean Sciences, edited by: Cochran, J. K., Yager, P. L., and Bokuniewicz, H. J., Reference Module in Earth Systems and Environmental Sciences, Elsevier, the Netherlands, 108–119, https://doi.org/10.1016/B978-0-12-409548-9.11482-4, 2019.
Nagelkerken, I., Russell, B. D., Gillanders, B. M., and Connell, S. D.: Ocean
acidification alters fish populations indirectly through habitat
modification, Nat. Clim. Change, 6, 89–93, 2016.
Nakamura, K. and Kato, Y.: Carbonatization of oceanic crust by the seafloor
hydrothermal activity and its significance as a CO2 sink in the Early
Archean, Geochim. Cosmochim. Ac., 68, 4595–4618, https://doi.org/10.1016/j.gca.2004.05.023, 2004.
Olivé, I., Silva, J., Lauritano, C., Costa, M. M., Ruocco, M.,
Procaccini, G., and Santos, R.: Linking gene expression to productivity to
unravel long-and short-term responses of seagrasses exposed to CO2 in
volcanic vents, Sci. Rep.-UK, 7, 42278, https://doi.org/10.1038/srep42278, 2017.
Paasche, E.: Silicon and the ecology of marine plankton diatoms. II.
Silicate-uptake kinetics in five diatom species, Mar. Biol., 19, 262–269,
https://doi.org/10.1007/BF02097147, 1973.
Padrón, E., Pérez, N. M., Rodríguez, F., Melián, G.,
Hernández, P. A., Sumino, H., Padilla, G., Barrancos, J., Dionis, S.,
Notsu, K., and Calvo, D.: Dynamics of carbon dioxide emissions from Cumbre
Vieja volcano, La Palma, Canary Islands. B. Volcanol., 77, 28,
https://doi.org/10.1007/s00445-015-0914-2, 2015.
Pérez, C.: Effects of a Natural CO2 Gradient on Benthic Coastal
Populations, Degree Project, University of La Laguna, available at:
https://riull.ull.es/xmlui/handle/915/6758 (last access: 6 July 2019), 2017.
Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for
CO2 system calculations, in: ORNL/CDIAC-105a. Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak
Ridge, Tennessee, 2006.
Ricevuto, E., Kroeker, K. J., Ferrigno, F., Micheli, F., and Gambi, M. C.:
Spatio-temporal variability of polychaete colonization at volcanic CO2
vents indicates high tolerance to ocean acidification, Mar. Biol., 161,
2909–2919, 2014.
Sangil, C., Clemente, S., and Francisco, L. C.: Ambientes litorales marginales en las islas Canarias: estructura y composición de las comunidades bentónicas en las Lagunas de Echentive (La Palma), Vieraea, 36, 143–162, 2008 (in Spanish).
Sangil, C., Martins, G. M., Hernández, J. C., Alves, F., Neto, A. I .,
Ribeiro, C., León-Cisneros, K., Canning-Clode, J., Rosas-Alquicira, E.,
Mendoza, J. C., and Titley, I.: Shallow subtidal macroalgae in the
North-eastern Atlantic archipelagos (Macaronesian region): a spatial
approach to community structure, Eur. J. Phycol., 53, 83–98,
https://doi.org/10.1080/09670262.2017.1385098, 2018.
Santana-Casiano, J. M., Fraile-Nuez, E., González-Dávila, M., Baker,
E. T., Resing, J. A., and Walker, S. L.: Significant discharge of CO2
from hydrothermalism associated with the submarine volcano of El Hierro
Island, Sci. Rep.-UK, 6, 25686, https://doi.org/10.1038/srep25686, 2016.
Smith, A. M., Berman, J., Key Jr., M. M., and Winter, D. J.: Not all sponges
will thrive in a high-CO2 ocean: Review of the mineralogy of
calcifying sponges, Palaeogeogr. Palaeocll., 392, 463–472,
https://doi.org/10.1016/j.palaeo.2013.10.004, 2013.
Smith, A. M., Clark, D. E., Lamare, M. D., Winter, D. J., and Byrne, M.: Risk
and resilience: variations in magnesium in echinoid skeletal calcite, Mar.
Ecol. Prog. Ser., 561, 1–16, https://doi.org/10.3354/meps11908, 2016.
Smith, A. M., Key Jr, M. M., and Gordon, D. P.: Skeletal mineralogy of
bryozoans: taxonomic and temporal patterns, Earth-Sci. Rev., 78,
287–306, https://doi.org/10.1016/j.earscirev.2006.06.001, 2006.
Soler-Liceras, C.: La historia de la Fuente Santa, Editorial Turquesa, Santa
Cruz de Tenerife, 2007 (in Spanish).
Szymczycha, B., Maciejewska, A., Winogradow, A., and Pempkowiak, J.: Could
submarine groundwater discharge be a significant carbon source to the
southern Baltic Sea?, Oceanologia, 56, 327–347, https://doi.org/10.5697/oc.56-2.327, 2014.
Tarasov, V. G., Gebruk, A. V., Mironov, A. N., and Moskalev, L. I.: Deep-sea
and shallow water hydrothermal vent communities: two different phenomena?,
Chem. Geol., 224, 5–39, https://doi.org/10.1016/j.chemgeo.2005.07.021, 2005.
Uthicke, S., Deshpande, N. P., Liddy, M., Patel, F., Lamare, M., and Wilkins,
M. R.: Little evidence of adaptation potential to ocean acidification in sea
urchins living in “Future Ocean” conditions at a CO2 vent, Ecol.
Evol., 9, 10004–10016, 2019.
Viotti, S., Sangil, C., Hernández, C. A., and Hernández, J. C.:
Effects of long-term exposure to reduced pH conditions on the shell and
survival of an intertidal gastropod, Mar. Environ. Res., 152, 104789,
https://doi.org/10.1016/j.marenvres.2019.104789 , 2019.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362, https://doi.org/10.1029/92JC00188, 2014.
Weber J. N.: The incorporation of magnesium into the skeletal calcites of
echinoderms, Am. J. Sci., 267, 537–566, https://doi.org/10.2475/ajs.267.5.537, 1969.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(5482 KB) - Full-text XML
- Corrigendum
-
Supplement
(3093 KB) - BibTeX
- EndNote
Short summary
We describe the carbon system dynamics of a new CO2 seep system located off the coast of La Palma. We explored for over a year, finding points with lower levels of pH and alkalinity; high levels of carbon; and poorer levels of aragonite and calcite, both essential for calcifying species. The seeps are a key feature for robust experimental designs, aimed at comprehending how life has persisted through past eras or at predicting the consequences of ocean acidification in the marine realm.
We describe the carbon system dynamics of a new CO2 seep system located off the coast of La...
Altmetrics
Final-revised paper
Preprint