Articles | Volume 18, issue 8
https://doi.org/10.5194/bg-18-2755-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2755-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Destruction and reinstatement of coastal hypoxia in the South China Sea off the Pearl River estuary
Yangyang Zhao
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Environmental Physics, Institute of Biogeochemistry and Pollutant
Dynamics, ETH Zurich, 8092 Zurich, Switzerland
Khanittha Uthaipan
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Zhongming Lu
Division of Environment and Sustainability, The Hong Kong University of
Science and Technology, Kowloon, Hong Kong SAR, China
Yan Li
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Jing Liu
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Hongbin Liu
Division of Life Science, The Hong Kong University of Science and
Technology, Kowloon, Hong Kong SAR, China
Department of Ocean Science, The Hong Kong University of Science and
Technology, Kowloon, Hong Kong SAR, China
Jianping Gan
Division of Environment and Sustainability, The Hong Kong University of
Science and Technology, Kowloon, Hong Kong SAR, China
Department of Ocean Science, The Hong Kong University of Science and
Technology, Kowloon, Hong Kong SAR, China
Department of Mathematics, The Hong Kong University of Science and
Technology, Kowloon, Hong Kong SAR, China
Feifei Meng
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, 361102, China
Related authors
No articles found.
Jialu Huang, Moriaki Yasuhara, He Wang, Pedro Julião Jimenez, Jiying Li, and Minhan Dai
Biogeosciences, 22, 4763–4777, https://doi.org/10.5194/bg-22-4763-2025, https://doi.org/10.5194/bg-22-4763-2025, 2025
Short summary
Short summary
We investigated the abundance, diversity, composition, and distribution of ostracods (a meiobenthic group) and their interactions with eutrophication and pollution through high-resolution sampling of surface sediment in Deep Bay, a small semi-enclosed riverine bay adjacent to two of the world’s most populated cities: Hong Kong and Shenzhen. The results support the idea that ostracods are a useful bioindicator of coastal benthic ecosystems shaped by distinct environmental problems.
Yuye Han, Zvi Steiner, Zhimian Cao, Di Fan, Junhui Chen, Jimin Yu, and Minhan Dai
Biogeosciences, 22, 3681–3697, https://doi.org/10.5194/bg-22-3681-2025, https://doi.org/10.5194/bg-22-3681-2025, 2025
Short summary
Short summary
Our results suggest coccolithophore calcite accounts for a major fraction of PIC (particulate inorganic carbon) standing stocks in the western North Pacific, with a markedly higher contribution in the oligotrophic subtropical gyre than in the Kuroshio–Oyashio transition region, which highlights the importance of coccolithophores for PIC production in the pelagic ocean, particularly in oligotrophic ocean waters.
Yanmin Wang, Xianghui Guo, Guizhi Wang, Lifang Wang, Tao Huang, Yan Li, Zhe Wang, and Minhan Dai
EGUsphere, https://doi.org/10.5194/egusphere-2023-3155, https://doi.org/10.5194/egusphere-2023-3155, 2024
Preprint archived
Short summary
Short summary
This study reports higher nutrient release in fish farming system compared to river inputs and other sources with implications for coastal environment. DIN and DIP variation in Sansha Bay are dominated by mariculture activity relative to river input during spring. The N/P budget shows that 52.8 ± 4.7 % of DIN and 33.0 ± 3.7 % of DIP released from fish feeds exceeded other nutrient inputs. Co-culture strategies (e.g., of fish, kelp and oysters) allow effective mitigation of environmental impacts.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Wenfeng Lai and Jianping Gan
Ocean Sci., 19, 1107–1121, https://doi.org/10.5194/os-19-1107-2023, https://doi.org/10.5194/os-19-1107-2023, 2023
Short summary
Short summary
Our study shows a high-resolution regional atmospheric model improves near-surface wind and air temperature simulation, resulting in improved circulation and hydrographic simulations in the Pearl River estuary. High-resolution wind forcing is critical for coastal circulation and cross-isobath transport, while high-resolution heat forcing greatly improves sea surface temperature simulation. High-resolution atmospheric forcing is essential for accurately simulating dynamic coastal ocean processes.
Yifan Ma, Kuanbo Zhou, Weifang Chen, Junhui Chen, Jin-Yu Terence Yang, and Minhan Dai
Biogeosciences, 20, 2013–2030, https://doi.org/10.5194/bg-20-2013-2023, https://doi.org/10.5194/bg-20-2013-2023, 2023
Short summary
Short summary
We distinguished particulate organic carbon (POC) export fluxes out of the nutrient-depleted layer (NDL) and the euphotic zone. The amount of POC export flux at the NDL base suggests that the NDL could be a hotspot of particle export. The substantial POC export flux at the NDL base challenges traditional concepts that the NDL was limited in terms of POC export. The dominant nutrient source for POC export fluxes should be subsurface nutrients, which was determined by 15N isotopic mass balance.
Zhixuan Wang, Guizhi Wang, Xianghui Guo, Yan Bai, Yi Xu, and Minhan Dai
Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, https://doi.org/10.5194/essd-15-1711-2023, 2023
Short summary
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
Guizhi Wang, Samuel S. P. Shen, Yao Chen, Yan Bai, Huan Qin, Zhixuan Wang, Baoshan Chen, Xianghui Guo, and Minhan Dai
Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021, https://doi.org/10.5194/essd-13-1403-2021, 2021
Short summary
Short summary
This study reconstructs a complete field of summer sea surface partial pressure of CO2 (pCO2) over the South China Sea (SCS) with a 0.5° resolution in the period of 2000–2017 using the scattered underway pCO2 observations. The spectral optimal gridding method was used in this reconstruction with empirical orthogonal functions computed from remote sensing data. Our reconstructed data show that the rate of sea surface pCO2 increase in the SCS is 2.4 ± 0.8 µatm yr-1 during 2000–2017.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Hiu Suet Kung and Jianping Gan
Ocean Sci., 16, 1095–1110, https://doi.org/10.5194/os-16-1095-2020, https://doi.org/10.5194/os-16-1095-2020, 2020
Short summary
Short summary
Based on a well-validated ocean circulation model, we found that near-inertial oscillations (NIOs) and near-inertial kinetic energy (KEni) varied distinctly during forcing and relaxation stages of tropical cyclone (TC) forcing, and the horizontal and vertical transport of KEni was largely modulated by the velocity and vorticity of the jet in the semi-enclosed South China Sea (SCS). This study enriches our understanding of the spatial–temporal variability of NIOs in the frequently TC-affected SCS.
Cited articles
Allahdadi, M. N. and Li, C.: Numerical Experiment of Stratification Induced
by Diurnal Solar Heating Over the Louisiana Shelf, in: Modeling Coastal
Hypoxia: Numerical Simulations of Patterns, Controls and Effects of
Dissolved Oxygen Dynamics, edited by: Justic, D., Rose, K. A., Hetland, R.
D., and Fennel, K., Springer International Publishing, Cham, chap. 1, 1–22, https://doi.org/10.1007/978-3-319-54571-4_1, 2017.
Benson, B. B. and Krause Jr., D.: The concentration and isotopic
fractionation of oxygen dissolved in freshwater and seawater in equilibrium
with the atmosphere1, Limnol. Oceanogr., 29, 620–632, https://doi.org/10.4319/lo.1984.29.3.0620, 1984.
Bianchi, T. S., Dimarco, S. F., Cowan, J. H., Hetland, R. D., Chapman, P.,
Day, J. W., and Allison, M. A.: The science of hypoxia in the northern Gulf
of Mexico: A review, Sci. Total Environ., 408, 1471–1484, https://doi.org/10.1016/j.scitotenv.2009.11.047, 2010.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal
waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Cai, W.-J., Dai, M. H., Wang, Y. C., Zhai, W. D., Huang, T., Chen, S. T.,
Zhang, F., Chen, Z. Z., and Wang, Z. H.: The biogeochemistry of inorganic
carbon and nutrients in the Pearl River estuary and the adjacent Northern
South China Sea, Cont. Shelf Res., 24, 1301–1319, https://doi.org/10.1016/j.csr.2004.04.005, 2004.
Cai, W.-J., Hu, X., Huang, W.-J., Jiang, L.-Q., Wang, Y., Peng, T.-H., and
Zhang, X.: Alkalinity distribution in the western North Atlantic Ocean
margins, J. Geophys. Res.-Ocean., 115, C08014, https://doi.org/10.1029/2009JC005482, 2010.
Cao, Z. M., Dai, M. H., Zheng, N., Wang, D. L., Li, Q., Zhai, W. D., Meng,
F. F., and Gan, J. P.: Dynamics of the carbonate system in a large
continental shelf system under the influence of both a river plume and
coastal upwelling, J. Geophys. Res.-Biogeo., 116, G02010, https://doi.org/10.1029/2010jg001596, 2011.
Chen, X., Shen, Z., Li, Y., and Yang, Y.: Physical controls of hypoxia in
waters adjacent to the Yangtze Estuary: A numerical modeling study, Mar.
Pollut. Bull., 97, 349–364, https://doi.org/10.1016/j.marpolbul.2015.05.067, 2015.
Chen, Z., Gong, W., Cai, H., Chen, Y., and Zhang, H.: Dispersal of the Pearl
River plume over continental shelf in summer, Estuarine, Coast. Shelf
Sci., 194, 252–262, https://doi.org/10.1016/j.ecss.2017.06.025, 2017a.
Chen, Z., Pan, J., Jiang, Y., and Lin, H.: Far-reaching transport of Pearl
River plume water by upwelling jet in the northeastern South China Sea, J.
Mar. Syst., 173, 60–69, https://doi.org/10.1016/j.jmarsys.2017.04.008, 2017b.
Chu, J.-E., Lee, S.-S., Timmermann, A., Wengel, C., Stuecker, M. F., and
Yamaguchi, R.: Reduced tropical cyclone densities and ocean effects due to
anthropogenic greenhouse warming, Sci. Adv., 6, eabd5109, https://doi.org/10.1126/sciadv.abd5109, 2020.
Cui, Y. S., Wu, J. X., Ren, J., and Xu, J.: Physical dynamics structures and
oxygen budget of summer hypoxia in the Pearl River Estuary, Limnol. Oceanogr.,
64, 131–148, https://doi.org/10.1002/lno.11025, 2019.
Dai, M., Gan, J., Han, A., Kung, H., and Yin, Z.: Physical dynamics and
biogeochemistry of the Pearl River plume, in: Biogeochemical Dynamics at
Major River-Coastal Interfaces: Linkages with Global Change, edited by:
Bianchi, T. S., Allison, M., and Cai, W.-J., Cambridge University Press,
Cambridge, 321–352, 2014.
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for
Marine Ecosystems, Science, 321, 926, https://doi.org/10.1126/science.1156401, 2008.
Dortch, Q., Rabalais, N. N., Turner, R. E., and Rowe, G. T.: Respiration
rates and hypoxia on the Louisiana shelf, Estuaries, 17, 862–872, https://doi.org/10.2307/1352754, 1994.
Feng, Y., Dimarco, S. F., and Jackson, G. A.: Relative role of wind forcing
and riverine nutrient input on the extent of hypoxia in the northern Gulf of
Mexico, Geophys. Res. Lett., 39, L09601, https://doi.org/10.1029/2012GL051192, 2012.
Fennel, K. and Testa, J. M.: Biogeochemical Controls on Coastal Hypoxia,
Ann. Rev. Mar. Sci., 11, 105–130, https://doi.org/10.1146/annurev-marine-010318-095138, 2019.
Gan, J. P., Cheung, A., Guo, X., and Li, L.: Intensified upwelling over a
widened shelf in the northeastern South China Sea, J. Geophys.
Res.-Ocean., 114, C09019, https://doi.org/10.1029/2007JC004660,
2009a.
Gan, J. P., Li, L., Wang, D. X., and Guo, X. G.: Interaction of a river plume
with coastal upwelling in the northeastern South China Sea, Cont. Shelf Res.,
29, 728–740, https://doi.org/10.1016/j.csr.2008.12.002, 2009b.
Geng, B. X., Xiu, P., Shu, C., Zhang, W. Z., Chai, F., Li, S. Y., and Wang,
D. X.: Evaluating the Roles of Wind- and Buoyancy Flux-Induced Mixing on
Phytoplankton Dynamics in the Northern and Central South China Sea, J.
Geophys. Res.-Ocean., 124, 680–702, https://doi.org/10.1029/2018jc014170, 2019.
Gilbert, D., Rabalais, N. N., Díaz, R. J., and Zhang, J.: Evidence for
greater oxygen decline rates in the coastal ocean than in the open ocean,
Biogeosciences, 7, 2283–2296, https://doi.org/10.5194/bg-7-2283-2010, 2010.
Grantham, B. A., Chan, F., Nielsen, K. J., Fox, D. S., Barth, J. A., Huyer,
A., Lubchenco, J., and Menge, B. A.: Upwelling-driven nearshore hypoxia
signals ecosystem and oceanographic changes in the northeast Pacific,
Nature, 429, 749–754, https://doi.org/10.1038/nature02605,
2004.
Guo, X. H. and Wong, G. T. F.: Carbonate chemistry in the Northern South
China Sea Shelf-sea in June 2010, Deep-Sea Res. Pt. II, 117, 119–130,
https://doi.org/10.1016/j.dsr2.2015.02.024, 2015.
Guo, X. H., Cai, W. J., Zhai, W. D., Dai, M. H., Wang, Y. C., and Chen, B.
S.: Seasonal variations in the inorganic carbon system in the Pearl River
(Zhujiang) estuary, Cont. Shelf Res., 28, 1424–1434, https://doi.org/10.1016/j.csr.2007.07.011, 2008.
He, B. Y., Dai, M. H., Zhai, W. D., Guo, X. H., and Wang, L. F.: Hypoxia in
the upper reaches of the Pearl River Estuary and its maintenance mechanisms:
A synthesis based on multiple year observations during 2000–2008, Mar. Chem.,
167, 13–24, https://doi.org/10.1016/j.marchem.2014.07.003,
2014.
Hetland, R. D. and Dimarco, S. F.: How does the character of oxygen demand
control the structure of hypoxia on the Texas–Louisiana continental shelf?,
J. Mar. Syst., 70, 49–62, https://doi.org/10.1016/j.jmarsys.2007.03.002, 2008.
Hu, X. P., Li, Q., Huang, W. J., Chen, B. S., Cai, W. J., Rabalais, N. N.,
and Turner, R. E.: Effects of eutrophication and benthic respiration on
water column carbonate chemistry in a traditional hypoxic zone in the
Northern Gulf of Mexico, Mar. Chem., 194, 33–42, https://doi.org/10.1016/j.marchem.2017.04.004, 2017.
Huang, J., Hu, J., Li, S., Wang, B., Xu, Y., Liang, B., and Liu, D.: Effects
of Physical Forcing on Summertime Hypoxia and Oxygen Dynamics in the Pearl
River Estuary, Water, 11, 2080, https://doi.org/10.3390/w11102080, 2019.
Kalvelage, T., Lavik, G., Jensen, M. M., Revsbech, N. P., Löscher, C.,
Schunck, H., Desai, D. K., Hauss, H., Kiko, R., Holtappels, M., Laroche, J.,
Schmitz, R. A., Graco, M. I., and Kuypers, M. M. M.: Aerobic Microbial
Respiration In Oceanic Oxygen Minimum Zones, Plos One, 10, e0133526,
https://doi.org/10.1371/journal.pone.0133526, 2015.
Kemp, W. M., Sampou, P. A., Garber, J., Tuttle, J., and Boynton, W. R.:
Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of
benthic and planktonic respiration and physical exchange processes, Mar. Ecol.
Prog. Ser., 85, 137–152,
1992.
Knutson, T. R., Mcbride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea,
C., Held, I., Kossin, J. P., Srivastava, A. K., and Sugi, M.: Tropical
cyclones and climate change, Nat. Geosci., 3, 157–163, https://doi.org/10.1038/ngeo779, 2010.
Koweek, D. A., García-Sánchez, C., Brodrick, P. G., Gassett, P., and
Caldeira, K.: Evaluating hypoxia alleviation through induced downwelling,
Sci. Total Environ., 719, 137334, https://doi.org/10.1016/j.scitotenv.2020.137334, 2020.
Labasque, T., Chaumery, C., Aminot, A., and Kergoat, G.: Spectrophotometric
Winkler determination of dissolved oxygen: re-examination of critical
factors and reliability, Mar. Chem., 88, 53–60, https://doi.org/10.1016/j.marchem.2004.03.004, 2004.
Laurent, A. and Fennel, K.: Time-Evolving, Spatially Explicit Forecasts of
the Northern Gulf of Mexico Hypoxic Zone, Environ. Sci. Technol., 53, 14449–14458, https://doi.org/10.1021/acs.est.9b05790, 2019.
Li, D., Gan, J., Hui, R., Liu, Z., Yu, L., Lu, Z., and Dai, M.: Vortex and
Biogeochemical Dynamics for the Hypoxia Formation Within the Coastal
Transition Zone off the Pearl River Estuary, J. Geophys.
Res.-Ocean., 125, e2020JC016178, https://doi.org/10.1029/2020JC016178, 2020.
Li, D., Gan, J., Hui, C., Yu, L., Liu, Z., Lu, Z., Kao, S.-J., and Dai, M.:
Spatiotemporal Development and Dissipation of Hypoxia Induced by Variable
Wind-Driven Shelf Circulation off the Pearl River Estuary: Observational and
Modeling Studies, J. Geophys. Res.-Ocean., 126,
e2020JC016700, https://doi.org/10.1029/2020JC016700, 2021.
Li, M., Lee, Y. J., Testa, J. M., Li, Y., Ni, W., Kemp, W. M., and Di Toro,
D. M.: What drives interannual variability of hypoxia in Chesapeake Bay:
Climate forcing versus nutrient loading?, Geophys. Res. Lett., 43, 2127–2134,
https://doi.org/10.1002/2015GL067334, 2016.
Li, X. F., Xu, J., Shi, Z., and Li, R. H.: Response of Bacterial Metabolic
Activity to the River Discharge in the Pearl River Estuary: Implication for
CO2 Degassing Fluxes, Front. Microbiol., 10, 1026, https://doi.org/10.3389/fmicb.2019.01026, 2019.
Li, Y., Li, M., and Kemp, W. M.: A Budget Analysis of Bottom-Water Dissolved
Oxygen in Chesapeake Bay, Estuar. Coast., 38, 2132–2148, https://doi.org/10.1007/s12237-014-9928-9, 2015.
Lu, Z. M. and Gan, J. P.: Controls of seasonal variability of phytoplankton
blooms in the Pearl River Estuary, Deep-Sea Res. Pt. II, 117, 86–96,
https://doi.org/10.1016/j.dsr2.2013.12.011, 2015.
Lu, Z. M., Gan, J. P., Dai, M. H., Liu, H. B., and Zhao, X. Z.: Joint Effects
of Extrinsic Biophysical Fluxes and Intrinsic Hydrodynamics on the Formation
of Hypoxia West off the Pearl River Estuary, J. Geophys. Res.-Ocean., 123,
6241–6259, https://doi.org/10.1029/2018jc014199, 2018.
Lu, X., Yu, H., Ying, M., Zhao, B., Zhang, S., Lin, L., Bai, L., and Wan, R.: Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration, Adv. Atmos. Sci., 38, 690–699, https://doi.org//10.1007/s00376-020-0211-7, 2021.
Maccready, P., Banas, N. S., Hickey, B. M., Dever, E. P., and Liu, Y.: A
model study of tide- and wind-induced mixing in the Columbia River Estuary
and plume, Cont. Shelf Res., 29, 278–291, https://doi.org/10.1016/j.csr.2008.03.015, 2009.
Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact
of climate change on global tropical cyclone damage, Nat. Clim. Change, 2,
205–209, https://doi.org/10.1038/Nclimate1357, 2012.
Murphy, R. R., Kemp, W. M., and Ball, W. P.: Long-Term Trends in Chesapeake
Bay Seasonal Hypoxia, Stratification, and Nutrient Loading, Estuar. Coast.,
34, 1293–1309, https://doi.org/10.1007/s12237-011-9413-7, 2011.
Naqvi, S. W. A., Bange, H. W., Farías, L., Monteiro, P. M. S.,
Scranton, M. I., and Zhang, J.: Marine hypoxia anoxia as a source of CH4 and
N2O, Biogeosciences, 7, 2159–2190, https://doi.org/10.5194/bg-7-2159-2010, 2010.
Ni, X., Huang, D., Zeng, D., Zhang, T., Li, H., and Chen, J.: The impact of
wind mixing on the variation of bottom dissolved oxygen off the Changjiang
Estuary during summer, J. Mar. Syst., 154, 122–130, https://doi.org/10.1016/j.jmarsys.2014.11.010, 2016.
Obenour, D. R., Michalak, A. M., Zhou, Y., and Scavia, D.: Quantifying the
Impacts of Stratification and Nutrient Loading on Hypoxia in the Northern
Gulf of Mexico, Environ. Sci. Technol., 46, 5489–5496, https://doi.org/10.1021/es204481a, 2012.
Paerl, H. W., Bales, J. D., Ausley, L. W., Buzzelli, C. P., Crowder, L. B.,
Eby, L. A., Go, M., Peierls, B. L., Richardson, T. L., and Ramus, J. S.:
Hurricanes' hydrological, ecological effects linger in major U.S. estuary,
Eos, Trans. Am. Geophys. Un., 81, 457–462, https://doi.org/10.1029/00EO00338, 2000.
Pan, J. Y. and Gu, Y. Z.: Cruise observation and numerical modeling of
turbulent mixing in the Pearl River estuary in summer, Cont. Shelf Res., 120,
122–138, https://doi.org/10.1016/j.csr.2016.03.019, 2016.
Pan, J. Y., Gu, Y. Z., and Wang, D. X.: Observations and numerical modeling
of the Pearl River plume in summer season, J. Geophys. Res.-Ocean., 119,
2480–2500, https://doi.org/10.1002/2013jc009042, 2014.
Qian, W., Dai, M., Xu, M., Kao, S.-J., Du, C., Liu, J., Wang, H., Guo, L.,
and Wang, L.: Non-local drivers of the summer hypoxia in the East China Sea
off the Changjiang Estuary, Estuarine, Coast. Shelf Sci., 198,
393–399, https://doi.org/10.1016/j.ecss.2016.08.032, 2017.
Qian, W., Gan, J. P., Liu, J. W., He, B. Y., Lu, Z. M., Guo, X. H., Wang, D.
L., Guo, L. G., Huang, T., and Dai, M. H.: Current status of emerging hypoxia
in a eutrophic estuary: The lower reach of the Pearl River Estuary, China,
Estuar. Coast. Shelf S., 205, 58–67, https://doi.org/10.1016/j.ecss.2018.03.004, 2018.
Qiu, D., Zhong, Y., Chen, Y., Tan, Y., Song, X., and Huang, L.: Short-Term
Phytoplankton Dynamics During Typhoon Season in and Near the Pearl River
Estuary, South China Sea, J. Geophys. Res.-Biogeo.,
124, 274–292, https://doi.org/10.1029/2018JG004672, 2019.
Qu, T., Du, Y., Gan, J., and Wang, D.: Mean seasonal cycle of isothermal
depth in the South China Sea, J. Geophys. Res.-Ocean., 112, C02020,
https://doi.org/10.1029/2006JC003583, 2007.
Rabalais, N. N., Turner, R. E., Diaz, R. J., and Justic, D.: Global change
and eutrophication of coastal waters, ICES J. Mar. Sci., 66, 1528–1537,
https://doi.org/10.1093/icesjms/fsp047, 2009.
Rabalais, N. N., Cai, W. J., Carstensen, J., Conley, D. J., Fry, B., Hu, X.
P., Quinones-Rivera, Z., Rosenberg, R., Slomp, C. P., Turner, R. E., Voss,
M., Wissel, B., and Zhang, J.: Eutrophication-Driven Deoxygenation in the
Coastal Ocean, Oceanography, 27, 172–183, https://doi.org/10.5670/oceanog.2014.21, 2014.
Rabouille, C., Conley, D. J., Dai, M. H., Cai, W. J., Chen, C. T. A.,
Lansard, B., Green, R., Yin, K., Harrison, P. J., Dagg, M., and Mckee, B.:
Comparison of hypoxia among four river-dominated ocean margins: The
Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers, Cont. Shelf
Res., 28, 1527–1537, https://doi.org/10.1016/j.csr.2008.01.020,
2008.
Robinson, C.: Heterotrophic Bacterial Respiration, in: Microbial Ecology of
the Oceans, edited by: Kirchman, D. L., 299–334, https://doi.org/10.1002/9780470281840.ch9, 2008.
Schlitzer, R.: Ocean Data View, https://odv.awi.de (last access: 8 June 2020), 2018.
Song, G., Zhao, L., Chai, F., Liu, F., Li, M., and Xie, H.: Summertime Oxygen
Depletion and Acidification in Bohai Sea, China, Front. Mar. Sci., 7, 252,
https://doi.org/10.3389/fmars.2020.00252, 2020.
Su, J.: Overview of the South China Sea circulation and its influence on the
coastal physical oceanography outside the Pearl River Estuary, Cont. Shelf
Res., 24, 1745–1760, https://doi.org/10.1016/j.csr.2004.06.005,
2004.
Su, J. Z., Dai, M. H., He, B. Y., Wang, L. F., Gan, J. P., Guo, X. H., Zhao,
H. D., and Yu, F. L.: Tracing the origin of the oxygen-consuming organic
matter in the hypoxic zone in a large eutrophic estuary: the lower reach of
the Pearl River Estuary, China, Biogeosciences, 14, 4085–4099, https://doi.org/10.5194/bg-14-4085-2017, 2017.
Tedford, E. W., Carpenter, J. R., Pawlowicz, R., Pieters, R., and Lawrence,
G. A.: Observation and analysis of shear instability in the Fraser River
estuary, J. Geophys. Res.-Ocean., 114, C11006, https://doi.org/10.1029/2009JC005313, 2009.
Testa, J. M. and Kemp, W. M.: Spatial and Temporal Patterns of
Winter–Spring Oxygen Depletion in Chesapeake Bay Bottom Water, Estuar.
Coast., 37, 1432–1448, https://doi.org/10.1007/s12237-014-9775-8, 2014.
Testa, J. M., Clark, J. B., Dennison, W. C., Donovan, E. C., Fisher, A. W.,
Ni, W., Parker, M., Scavia, D., Spitzer, S. E., Waldrop, A. M., Vargas, V.
M. D., and Ziegler, G.: Ecological Forecasting and the Science of Hypoxia in
Chesapeake Bay, Bioscience, 67, 614–626, https://doi.org/10.1093/biosci/bix048, 2017.
Tomasko, D. A., Anastasiou, C., and Kovach, C.: Dissolved oxygen dynamics in
Charlotte Harbor and its contributing watershed, in response to hurricanes
Charley, Frances, and Jeanne—Impacts and recovery, Estuar. Coast., 29,
932–938, https://doi.org/10.1007/BF02798653, 2006.
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine
biodiversity, P. Natl. Acad. Sci. USA, 105, 15452,
https://doi.org/10.1073/pnas.0803833105, 2008.
Wang, B.: Hydromorphological mechanisms leading to hypoxia off the
Changjiang estuary, Mar. Environ. Res., 67, 53–58, https://doi.org/10.1016/j.marenvres.2008.11.001, 2009.
Wang, B., Chen, J. F., Jin, H. Y., Li, H. L., Huang, D. J., and Cai, W. J.:
Diatom bloom-derived bottom water hypoxia off the Changjiang estuary, with
and without typhoon influence, Limnol. Oceanogr., 62, 1552–1569, https://doi.org/10.1002/lno.10517, 2017a.
Wang, B., Hu, J. T., Li, S. Y., and Liu, D. H.: A numerical analysis of
biogeochemical controls with physical modulation on hypoxia during summer in
the Pearl River estuary, Biogeosciences, 14, 2979–2999, https://doi.org/10.5194/bg-14-2979-2017, 2017b.
Wang, B., Hu, J. T., Li, S. Y., Yu, L. Q., and Huang, J.: Impacts of
anthropogenic inputs on hypoxia and oxygen dynamics in the Pearl River
estuary, Biogeosciences, 15, 6105–6125, https://doi.org/10.5194/bg-15-6105-2018, 2018.
Wang, D. X., Shu, Y. Q., Xue, H. J., Hu, J. Y., Chen, J., Zhuang, W., Zu, T.
T., and Xu, J. D.: Relative contributions of local wind and topography to the
coastal upwelling intensity in the northern South China Sea, J. Geophys.
Res.-Ocean., 119, 2550–2567, https://doi.org/10.1002/2013jc009172, 2014.
Wang, L. and Justić, D.: A modeling study of the physical processes
affecting the development of seasonal hypoxia over the inner Louisiana-Texas
shelf: Circulation and stratification, Cont. Shelf Res., 29, 1464–1476,
https://doi.org/10.1016/j.csr.2009.03.014, 2009.
Wei, X., Zhan, H. G., Ni, P. T., and Cai, S. Q.: A model study of the effects
of river discharges and winds on hypoxia in summer in the Pearl River
Estuary, Mar. Pollut. Bull., 113, 414–427, https://doi.org/10.1016/j.marpolbul.2016.10.042, 2016.
Welschmeyer, N. A.: Fluorometric analysis of chlorophyll a in the presence
of chlorophyll b and pheopigments, Limnol. Oceanogr., 39, 1985–1992,
https://doi.org/10.4319/lo.1994.39.8.1985, 1994.
Wilson, R. E., Swanson, R. L., and Crowley, H. A.: Perspectives on long-term
variations in hypoxic conditions in western Long Island Sound, J.
Geophys. Res.-Ocean., 113, C12011, https://doi.org/10.1029/2007JC004693, 2008.
Wong, G. T. F., Ku, T.-L., Mulholland, M., Tseng, C.-M., and Wang, D.-P.: The
SouthEast Asian Time-series Study (SEATS) and the biogeochemistry of the
South China Sea—An overview, Deep-Sea Res. Pt. II, 54, 1434–1447, https://doi.org/10.1016/j.dsr2.2007.05.012, 2007.
Wong, L. A., Chen, J., Xue, H., Dong, L. X., Su, J. L., and Heinke, G.: A
model study of the circulation in the Pearl River Estuary (PRE) and its
adjacent coastal waters: 1. Simulations and comparison with observations, J.
Geophys. Res.-Ocean., 108, 3156, https://doi.org/10.1029/2002jc001451,
2003.
Xu, C., Xu, Y. J., Hu, J. T., Li, S. Y., and Wang, B.: A numerical analysis
of the summertime Pearl River plume from 1999 to 2010: Dispersal patterns
and intraseasonal variability, J. Mar. Syst., 192, 15–27, https://doi.org/10.1016/j.jmarsys.2018.12.010, 2019.
Yang, D., Yin, B., Sun, J., and Zhang, Y.: Numerical study on the origins and
the forcing mechanism of the phosphate in upwelling areas off the coast of
Zhejiang province, China in summer, J. Mar. Syst., 123/124, 1–18, https://doi.org/10.1016/j.jmarsys.2013.04.002, 2013.
Yin, K. D., Lin, Z. F., and Ke, Z. Y.: Temporal and spatial distribution of
dissolved oxygen in the Pearl River Estuary and adjacent coastal waters,
Cont. Shelf Res., 24, 1935–1948, https://doi.org/10.1016/j.csr.2004.06.017, 2004.
Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y., and Chen, D.: An Overview of the China Meteorological Administration Tropical Cyclone Database, J. Atmos. Ocean Tech., 31, 287–301, https://doi.org/10.1175/JTECH-D-12-00119.1, 2014.
Yu, L., Fennel, K., Laurent, A., Murrell, M. C., and Lehrter, J. C.:
Numerical analysis of the primary processes controlling oxygen dynamics on
the Louisiana shelf, Biogeosciences, 12, 2063–2076, https://doi.org/10.5194/bg-12-2063-2015, 2015.
Yu, L., Gan, J., Dai, M., Hui, C. R., Lu, Z., and Li, D.: Modeling the role
of riverine organic matter in hypoxia formation within the coastal
transition zone off the Pearl River Estuary, Limnol. Oceanogr., 66, 452–468, https://doi.org/10.1002/lno.11616, 2021.
Yuan, X., Yin, K., Harrison, P. J., Cai, W., He, L., and Xu, J.: Bacterial
production and respiration in subtropical Hong Kong waters: influence of the
Pearl River discharge and sewage effluent, Aquat. Microb. Ecol., 58, 167–179,
https://doi.org/10.3354/ame01346, 2010.
Zhang, H. and Li, S. Y.: Effects of physical and biochemical processes on
the dissolved oxygen budget for the Pearl River Estuary during summer, J.
Mar. Syst., 79, 65–88, https://doi.org/10.1016/j.jmarsys.2009.07.002, 2010.
Zhang, H., Fennel, K., Laurent, A., and Bian, C.: A numerical model study of
the main factors contributing to hypoxia and its interannual and short-term
variability in the East China Sea, Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, 2020.
Zhang, W., Wu, H., Hetland, R. D., and Zhu, Z.: On Mechanisms Controlling the
Seasonal Hypoxia Hot Spots off the Changjiang River Estuary, J.
Geophys. Res.-Ocean., 124, 8683–8700, https://doi.org/10.1029/2019jc015322, 2019.
Zhao, H., Tang, D. L., and Wang, D. X.: Phytoplankton blooms near the Pearl
River Estuary induced by Typhoon Nuri, J. Geophys. Res.-Ocean., 114, C12027, https://doi.org/10.1029/2009jc005384, 2009.
Zhao, Y., Liu, J., Uthaipan, K., Song, X., Xu, Y., He, B., Liu, H., Gan, J.,
and Dai, M.: Dynamics of inorganic carbon and pH in a large subtropical
continental shelf system: Interaction between eutrophication, hypoxia, and
ocean acidification, Limnol. Oceanogr., 65, 1359–1379, https://doi.org/10.1002/lno.11393, 2020.
Zhao, Y., Uthaipan, K., Lu, Z., Li, Y., Liu, J., Liu, H., Gan, J., Meng, F., and Dai, M.: The data set of dissolved oxygen concentrations in the South China Sea off the Pearl River Estuary in July 2018, GEODATA [Dataset], https://doi.org/10.12041/geodata.30199559780656.ver1.db, 2021.
Zhou, W., Yin, K., Harrison, P. J., and Lee, J. H. W.: The influence of late
summer typhoons and high river discharge on water quality in Hong Kong
waters, Estuar. Coast. Shelf Sci., 111, 35–47, https://doi.org/10.1016/j.ecss.2012.06.004, 2012.
Short summary
In situ oxygen consumption rates were estimated for the first time during destruction of coastal hypoxia as disturbed by a typhoon and its reinstatement in the South China Sea off the Pearl River estuary. The reinstatement of summer hypoxia was rapid with a comparable timescale with that of its initial disturbance from frequent tropical cyclones, which has important implications for better understanding the intermittent nature of coastal hypoxia and its prediction in a changing climate.
In situ oxygen consumption rates were estimated for the first time during destruction of coastal...
Altmetrics
Final-revised paper
Preprint