Articles | Volume 18, issue 17
Biogeosciences, 18, 4855–4872, 2021
https://doi.org/10.5194/bg-18-4855-2021
Biogeosciences, 18, 4855–4872, 2021
https://doi.org/10.5194/bg-18-4855-2021

Research article 01 Sep 2021

Research article | 01 Sep 2021

Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China

Xinyu Liu et al.

Related authors

Drastic decline of floodpulse in the Cambodian floodplains (the Mekong River and the Tonle Sap system)
Samuel De Xun Chua, Xi Xi Lu, Chantha Oeurng, Ty Sok, and Carl Grundy-Warr
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-378,https://doi.org/10.5194/hess-2021-378, 2021
Revised manuscript under review for HESS
Short summary
Physically controlled CO2 effluxes from a reservoir surface in the upper Mekong River Basin: a case study in the Gongguoqiao Reservoir
Lin Lin, Xixi Lu, Shaoda Liu, Shie-Yui Liong, and Kaidao Fu
Biogeosciences, 16, 2205–2219, https://doi.org/10.5194/bg-16-2205-2019,https://doi.org/10.5194/bg-16-2205-2019, 2019
Short summary
High Riverine CO2 Outgassing affected by Land Cover Types in the Yellow River Source Region
Mingyang Tian, Xiankun Yang, Lishan Ran, Yuanrong Su, Lingyu Li, Ruihong Yu, Haizhu Hu, and Xi Xi Lu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-292,https://doi.org/10.5194/bg-2018-292, 2018
Preprint withdrawn
Short summary
CO2 partial pressure and CO2 emission along the lower Red River (Vietnam)
Thi Phuong Quynh Le, Cyril Marchand, Cuong Tu Ho, Nhu Da Le, Thi Thuy Duong, XiXi Lu, Phuong Kieu Doan, Trung Kien Nguyen, Thi Mai Huong Nguyen, and Duy An Vu
Biogeosciences, 15, 4799–4814, https://doi.org/10.5194/bg-15-4799-2018,https://doi.org/10.5194/bg-15-4799-2018, 2018
Short summary
Riverine carbon export in the arid to semiarid Wuding River catchment on the Chinese Loess Plateau
Lishan Ran, Mingyang Tian, Nufang Fang, Suiji Wang, Xixi Lu, Xiankun Yang, and Frankie Cho
Biogeosciences, 15, 3857–3871, https://doi.org/10.5194/bg-15-3857-2018,https://doi.org/10.5194/bg-15-3857-2018, 2018
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst
Sarah Waldo, Jake J. Beaulieu, William Barnett, D. Adam Balz, Michael J. Vanni, Tanner Williamson, and John T. Walker
Biogeosciences, 18, 5291–5311, https://doi.org/10.5194/bg-18-5291-2021,https://doi.org/10.5194/bg-18-5291-2021, 2021
Short summary
Variability of North Atlantic CO2 fluxes for the 2000–2017 period estimated from atmospheric inverse analyses
Zhaohui Chen, Parvadha Suntharalingam, Andrew J. Watson, Ute Schuster, Jiang Zhu, and Ning Zeng
Biogeosciences, 18, 4549–4570, https://doi.org/10.5194/bg-18-4549-2021,https://doi.org/10.5194/bg-18-4549-2021, 2021
Short summary
Effects of clear-fell harvesting on soil CO2, CH4, and N2O fluxes in an upland Sitka spruce stand in England
Sirwan Yamulki, Jack Forster, Georgios Xenakis, Adam Ash, Jacqui Brunt, Mike Perks, and James I. L. Morison
Biogeosciences, 18, 4227–4241, https://doi.org/10.5194/bg-18-4227-2021,https://doi.org/10.5194/bg-18-4227-2021, 2021
Short summary
Conventional subsoil irrigation techniques do not lower carbon emissions from drained peat meadows
Stefan Theodorus Johannes Weideveld, Weier Liu, Merit van den Berg, Leon Peter Maria Lamers, and Christian Fritz
Biogeosciences, 18, 3881–3902, https://doi.org/10.5194/bg-18-3881-2021,https://doi.org/10.5194/bg-18-3881-2021, 2021
Short summary
Different responses of ecosystem CO2 and N2O emissions and CH4 uptake to seasonally asymmetric warming in an alpine grassland of the Tianshan
Yanming Gong, Ping Yue, Kaihui Li, Anwar Mohammat, and Yanyan Liu
Biogeosciences, 18, 3529–3537, https://doi.org/10.5194/bg-18-3529-2021,https://doi.org/10.5194/bg-18-3529-2021, 2021
Short summary

Cited articles

Azam, F., Gill, S., and Farooq, S.: Availability of CO2 as a factor affecting the rate of nitrification in soil, Soil Biol. Biochem., 37, 2141–2144, https://doi.org/10.1016/j.soilbio.2005.02.036, 2005. 
Baggs, E. M., Richter, M., Cadisch, G., and Hartwig, U. A.: Denitrification in grass swards is increased under elevated atmospheric CO2, Soil Biol. Biochem., 35, 729–732, https://doi.org/10.1016/S0038-0717(03)00083-X, 2003. 
Beger, M., Grantham, H. S., Pressey, R. L., Wilson, K. A., Peterson, E. L., Dorfman, D., Lourival, R., Brumbaugh, D. R., and Possingham, H. P.: Conservation planning for connectivity across marine, freshwater, and terrestrial realms, Biol. Conserv., 143, 565–575, https://doi.org/10.1016/j.biocon.2009.11.006, 2010. 
Brady, N. C.: Nature and properties of soils, Prenflee-Hall, Inc., Wichita, USA, https://doi.org/10.2307/3894608, 1999. 
Cao, M., Yu, G., Liu, J., and Li, K.: Multi-scale observation and cross-scale mechanistic modelling on terrestrial ecosystem carbon cycle, Sci. China Ser. D, 48, 17–32, 2005. 
Download
Short summary
Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. We analyzed the emissions of CO2, CH4, and N2O from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas emissions. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect greenhouse gas emissions.
Altmetrics
Final-revised paper
Preprint