Research article
14 Jun 2022
Research article
| 14 Jun 2022
Causes of the extensive hypoxia in the Gulf of Riga in 2018
Stella-Theresa Stoicescu et al.
Related authors
No articles found.
Taavi Liblik, Germo Väli, Kai Salm, Jaan Laanemets, Madis-Jaak Lilover, and Urmas Lips
Ocean Sci., 18, 857–879, https://doi.org/10.5194/os-18-857-2022, https://doi.org/10.5194/os-18-857-2022, 2022
Short summary
Short summary
An extensive measurement campaign and numerical simulations were conducted in the central Baltic Sea. The persistent circulation patterns were detected in steady weather conditions. The patterns included various circulation features. A coastal boundary current was observed along the eastern coast. The deep layer current towards the north was detected as well. This current is an important deeper limb of the overturning circulation of the Baltic Sea. The circulation regime has an annual cycle.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
Taavi Liblik, Germo Väli, Inga Lips, Madis-Jaak Lilover, Villu Kikas, and Jaan Laanemets
Ocean Sci., 16, 1475–1490, https://doi.org/10.5194/os-16-1475-2020, https://doi.org/10.5194/os-16-1475-2020, 2020
Short summary
Short summary
The upper mixed layer, shallower than the depth of the euphotic zone, is one of the preconditions for enhanced primary production in the ocean. In the Baltic Sea, the general understanding is that the upper mixed layer is much deeper in winter. In this study, we demonstrate that wintertime shallow stratification and an elevated phytoplankton biomass proxy, chlorophyll, are common in the Gulf of Finland. Stratification is invoked by the westward flow of riverine water forced by an easterly wind.
Taavi Liblik, Yijing Wu, Daidu Fan, and Dinghui Shang
Biogeosciences, 17, 2875–2895, https://doi.org/10.5194/bg-17-2875-2020, https://doi.org/10.5194/bg-17-2875-2020, 2020
Short summary
Short summary
Multiple factors have been accused of triggering coastal hypoxia off the Changjiang Estuary. In situ observations, remote sensing and numerical simulation data were used to study dissolved oxygen depletion in the area. Oxygen distributions can be explained by wind forcing and river discharge, as well as concurrent features in surface and deep layer circulation. If summer monsoon prevails, hypoxia more likely occurs in the north while hypoxia in the south appears if the summer monsoon is weaker.
Jun She, Icarus Allen, Erik Buch, Alessandro Crise, Johnny A. Johannessen, Pierre-Yves Le Traon, Urmas Lips, Glenn Nolan, Nadia Pinardi, Jan H. Reißmann, John Siddorn, Emil Stanev, and Henning Wehde
Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, https://doi.org/10.5194/os-12-953-2016, 2016
Short summary
Short summary
This white paper addresses key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5–10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European ocean observations, modelling and forecasting technology, coastal operational oceanography, and operational ecology.
Villu Kikas and Urmas Lips
Ocean Sci., 12, 843–859, https://doi.org/10.5194/os-12-843-2016, https://doi.org/10.5194/os-12-843-2016, 2016
Urmas Lips, Villu Kikas, Taavi Liblik, and Inga Lips
Ocean Sci., 12, 715–732, https://doi.org/10.5194/os-12-715-2016, https://doi.org/10.5194/os-12-715-2016, 2016
Short summary
Short summary
Multi-platform high-resolution observations in the Gulf of Finland in the summers of 2009–2012 revealed pronounced variability at the sub-mesoscale in the presence of mesoscale features, such as upwelling/downwelling events, fronts, and eddies. The analysis suggests that the sub-mesoscale processes could contribute considerably to the downscale energy cascade and play a major role in phytoplankton growth enhancement via vertical transport and re-stratification of the surface layer.
Related subject area
Biogeochemistry: Coastal Ocean
Trawling effects on biogeochemical processes are mediated by fauna in high-energy biogenic-reef-inhabited coastal sediments
Drought recorded by Ba∕Ca in coastal benthic foraminifera
A nitrate budget of the Bohai Sea based on an isotope mass balance model
Suspended particulate matter drives the spatial segregation of nitrogen turnover along the hyper-turbid Ems estuary
Marine CO2 system variability along the northeast Pacific Inside Passage determined from an Alaskan ferry
Unprecedented Summer Hypoxia in Southern Cape Cod Bay: An Ecological Response to Regional Climate Change?
Reviews and syntheses: Spatial and temporal patterns in seagrass metabolic fluxes
Mixed layer depth dominates over upwelling in regulating the seasonality of ecosystem functioning in the Peruvian upwelling system
Temporal dynamics of surface ocean carbonate chemistry in response to natural and simulated upwelling events during the 2017 coastal El Niño near Callao, Peru
Pelagic primary production in the coastal Mediterranean Sea: variability, trends, and contribution to basin-scale budgets
Contrasting patterns of carbon cycling and dissolved organic matter processing in two phytoplankton–bacteria communities
Biophysical controls on seasonal changes in the structure, growth, and grazing of the size-fractionated phytoplankton community in the northern South China Sea
Seasonal dispersal of fjord meltwaters as an important source of iron and manganese to coastal Antarctic phytoplankton
Modeling cyanobacteria life cycle dynamics and historical nitrogen fixation in the Baltic Proper
Simultaneous assessment of oxygen- and nitrate-based net community production in a temperate shelf sea from a single ocean glider
Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean
Particulate organic carbon dynamics in the Gulf of Lion shelf (NW Mediterranean) using a coupled hydrodynamic–biogeochemical model
Technical note: Novel triple O2 sensor aquatic eddy covariance instrument with improved time shift correction reveals central role of microphytobenthos for carbon cycling in coral reef sands
Long-term spatiotemporal variations in and expansion of low-oxygen conditions in the Pearl River estuary: a study synthesizing observations during 1976–2017
Fe-binding organic ligands in coastal and frontal regions of the western Antarctic Peninsula
Temporal variability and driving factors of the carbonate system in the Aransas Ship Channel, TX, USA: a time series study
Nitrogen loss processes in response to upwelling in a Peruvian coastal setting dominated by denitrification – a mesocosm approach
Retracing hypoxia in Eckernförde Bight (Baltic Sea)
The impact of the freeze–melt cycle of land-fast ice on the distribution of dissolved organic matter in the Laptev and East Siberian seas (Siberian Arctic)
The fate of upwelled nitrate off Peru shaped by submesoscale filaments and fronts
Coastal processes modify projections of some climate-driven stressors in the California Current System
Upwelling-induced trace gas dynamics in the Baltic Sea inferred from 8 years of autonomous measurements on a ship of opportunity
Destruction and reinstatement of coastal hypoxia in the South China Sea off the Pearl River estuary
Hypersaline tidal flats as important “blue carbon” systems: a case study from three ecosystems
Drivers and impact of the seasonal variability of the organic carbon offshore transport in the Canary upwelling system
Organic carbon densities and accumulation rates in surface sediments of the North Sea and Skagerrak
An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean
Characterizing the origins of dissolved organic carbon in coastal seawater using stable carbon isotope and light absorption characteristics
Warming and ocean acidification may decrease estuarine dissolved organic carbon export to the ocean
Chemical characterization of the Punta de Fuencaliente CO2-enriched system (La Palma, NE Atlantic Ocean): a new natural laboratory for ocean acidification studies
The seasonal phases of an Arctic lagoon reveal the discontinuities of pH variability and CO2 flux at the air–sea interface
The northern European shelf as an increasing net sink for CO2
Impacts of biogenic polyunsaturated aldehydes on metabolism and community composition of particle-attached bacteria in coastal hypoxia
A Lagrangian study of the contribution of the Canary coastal upwelling to the nitrogen budget of the open North Atlantic
Denitrification by benthic foraminifera and their contribution to N-loss from a fjord environment
A numerical model study of the main factors contributing to hypoxia and its interannual and short-term variability in the East China Sea
The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultra-oligotrophic sea
Using 226Ra and 228Ra isotopes to distinguish water mass distribution in the Canadian Arctic Archipelago
Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru
Reconstructing extreme climatic and geochemical conditions during the largest natural mangrove dieback on record
Technical note: Measurements and data analysis of sediment–water oxygen flux using a new dual-optode eddy covariance instrument
The impact of intertidal areas on the carbonate system of the southern North Sea
The recent state and variability of the carbonate system of the Canadian Arctic Archipelago and adjacent basins in the context of ocean acidification
A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska
Relative impacts of global changes and regional watershed changes on the inorganic carbon balance of the Chesapeake Bay
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Inda Brinkmann, Christine Barras, Tom Jilbert, Tomas Næraa, K. Mareike Paul, Magali Schweizer, and Helena L. Filipsson
Biogeosciences, 19, 2523–2535, https://doi.org/10.5194/bg-19-2523-2022, https://doi.org/10.5194/bg-19-2523-2022, 2022
Short summary
Short summary
The concentration of the trace metal barium (Ba) in coastal seawater is a function of continental input, such as riverine discharge. Our geochemical records of the severely hot and dry year 2018, and following wet year 2019, reveal that prolonged drought imprints with exceptionally low Ba concentrations in benthic foraminiferal calcium carbonates of coastal sediments. This highlights the potential of benthic Ba / Ca to trace past climate extremes and variability in coastal marine records.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Gesa Schulz, Tina Sanders, Justus E. E. van Beusekom, Yoana G. Voynova, Andreas Schöl, and Kirstin Dähnke
Biogeosciences, 19, 2007–2024, https://doi.org/10.5194/bg-19-2007-2022, https://doi.org/10.5194/bg-19-2007-2022, 2022
Short summary
Short summary
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of the heavily managed Ems estuary (Northern Germany) reveals three zones of nitrogen turnover along the estuary with water-column denitrification in the most upstream hyper-turbid part, nitrate production in the middle reaches and mixing/nitrate uptake in the North Sea. Suspended particulate matter was the overarching control on nitrogen cycling in the hyper-turbid estuary.
Wiley Evans, Geoffrey T. Lebon, Christen D. Harrington, Yuichiro Takeshita, and Allison Bidlack
Biogeosciences, 19, 1277–1301, https://doi.org/10.5194/bg-19-1277-2022, https://doi.org/10.5194/bg-19-1277-2022, 2022
Short summary
Short summary
Information on the marine carbon dioxide system along the northeast Pacific Inside Passage has been limited. To address this gap, we instrumented an Alaskan ferry in order to characterize the marine carbon dioxide system in this region. Data over a 2-year period were used to assess drivers of the observed variability, identify the timing of severe conditions, and assess the extent of contemporary ocean acidification as well as future levels consistent with a 1.5 °C warmer climate.
Malcolm E. Scully, W. Rockwell Geyer, David Borkman, Tracy L. Pugh, Amy Costa, and Owen C. Nichols
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-48, https://doi.org/10.5194/bg-2022-48, 2022
Preprint under review for BG
Short summary
Short summary
For two consecutive summers, the bottom waters in southern Cape Cod Bay became severely depleted of dissolved oxygen. Low oxygen levels in bottom waters have never been reported in this area before, and this unprecedented occurrence is likely the result of a new algae species that recently began blooming during the late summer months. We present data suggesting that blooms of this new species are the result of regional climate change including warmer waters and changes in summer winds.
Melissa Ward, Tye L. Kindinger, Heidi K. Hirsh, Tessa M. Hill, Brittany M. Jellison, Sarah Lummis, Emily B. Rivest, George G. Waldbusser, Brian Gaylord, and Kristy J. Kroeker
Biogeosciences, 19, 689–699, https://doi.org/10.5194/bg-19-689-2022, https://doi.org/10.5194/bg-19-689-2022, 2022
Short summary
Short summary
Here, we synthesize the results from 62 studies reporting in situ rates of seagrass metabolism to highlight spatial and temporal variability in oxygen fluxes and inform efforts to use seagrass to mitigate ocean acidification. Our analyses suggest seagrass meadows are generally autotrophic and variable in space and time, and the effects on seawater oxygen are relatively small in magnitude.
Tianfei Xue, Ivy Frenger, A. E. Friederike Prowe, Yonss Saranga José, and Andreas Oschlies
Biogeosciences, 19, 455–475, https://doi.org/10.5194/bg-19-455-2022, https://doi.org/10.5194/bg-19-455-2022, 2022
Short summary
Short summary
The Peruvian system supports 10 % of the world's fishing yield. In the Peruvian system, wind and earth’s rotation bring cold, nutrient-rich water to the surface and allow phytoplankton to grow. But observations show that it grows worse at high upwelling. Using a model, we find that high upwelling happens when air mixes the water the most. Then phytoplankton is diluted and grows slowly due to low light and cool upwelled water. This study helps to estimate how it might change in a warming climate.
Shao-Min Chen, Ulf Riebesell, Kai G. Schulz, Elisabeth von der Esch, Eric P. Achterberg, and Lennart T. Bach
Biogeosciences, 19, 295–312, https://doi.org/10.5194/bg-19-295-2022, https://doi.org/10.5194/bg-19-295-2022, 2022
Short summary
Short summary
Oxygen minimum zones in the ocean are characterized by enhanced carbon dioxide (CO2) levels and are being further acidified by increasing anthropogenic atmospheric CO2. Here we report CO2 system measurements in a mesocosm study offshore Peru during a rare coastal El Niño event to investigate how CO2 dynamics may respond to ongoing ocean deoxygenation. Our observations show that nitrogen limitation, productivity, and plankton community shift play an important role in driving the CO2 dynamics.
Paula Maria Salgado-Hernanz, Aurore Regaudie-de-Gioux, David Antoine, and Gotzon Basterretxea
Biogeosciences, 19, 47–69, https://doi.org/10.5194/bg-19-47-2022, https://doi.org/10.5194/bg-19-47-2022, 2022
Short summary
Short summary
For the first time, this study presents the characteristics of primary production in coastal regions of the Mediterranean Sea based on satellite-borne observations for the period 2002–2016. The study concludes that there are significant spatial and temporal variations among different regions. Quantifying primary production is of special importance in the marine food web and in the sequestration of carbon dioxide from the atmosphere to the deep waters.
Samu Elovaara, Eeva Eronen-Rasimus, Eero Asmala, Tobias Tamelander, and Hermanni Kaartokallio
Biogeosciences, 18, 6589–6616, https://doi.org/10.5194/bg-18-6589-2021, https://doi.org/10.5194/bg-18-6589-2021, 2021
Short summary
Short summary
Dissolved organic matter (DOM) is a significant carbon pool in the marine environment. The composition of the DOM pool, as well as its interaction with microbes, is complex, yet understanding it is important for understanding global carbon cycling. This study shows that two phytoplankton species have different effects on the composition of the DOM pool and, through the DOM they produce, on the ensuing microbial community. These communities in turn have different effects on DOM composition.
Yuan Dong, Qian P. Li, Zhengchao Wu, Yiping Shuai, Zijia Liu, Zaiming Ge, Weiwen Zhou, and Yinchao Chen
Biogeosciences, 18, 6423–6434, https://doi.org/10.5194/bg-18-6423-2021, https://doi.org/10.5194/bg-18-6423-2021, 2021
Short summary
Short summary
Temporal change of plankton growth and grazing are less known in the coastal ocean, not to mention the relevant controlling mechanisms. Here, we performed monthly size-specific dilution experiments outside a eutrophic estuary over a 1-year cycle. Phytoplankton growth was correlated to nutrients and grazing mortality to total chlorophyll a. A selective grazing on small cells may be important for maintaining high abundance of large-chain-forming diatoms in this eutrophic system.
Kiefer O. Forsch, Lisa Hahn-Woernle, Robert M. Sherrell, Vincent J. Roccanova, Kaixuan Bu, David Burdige, Maria Vernet, and Katherine A. Barbeau
Biogeosciences, 18, 6349–6375, https://doi.org/10.5194/bg-18-6349-2021, https://doi.org/10.5194/bg-18-6349-2021, 2021
Short summary
Short summary
We show that for an unperturbed cold western Antarctic Peninsula fjord, the seasonality of iron and manganese is linked to the dispersal of metal-rich meltwater sources. Geochemical measurements of trace metals in meltwaters, porewaters, and seawater, collected during two expeditions, showed a seasonal cycle of distinct sources. Finally, model results revealed that the dispersal of surface meltwater and meltwater plumes originating from under the glacier is sensitive to katabatic wind events.
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021, https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
Short summary
Dense blooms of cyanobacteria occur every summer in the Baltic Proper and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important role in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
Tom Hull, Naomi Greenwood, Antony Birchill, Alexander Beaton, Matthew Palmer, and Jan Kaiser
Biogeosciences, 18, 6167–6180, https://doi.org/10.5194/bg-18-6167-2021, https://doi.org/10.5194/bg-18-6167-2021, 2021
Short summary
Short summary
The shallow shelf seas play a large role in the global cycling of CO2 and also support large fisheries. We use an autonomous underwater vehicle in the central North Sea to measure the rates of change in oxygen and nutrients.
Using these data we determine the amount of carbon dioxide taken out of the atmosphere by the sea and measure how productive the region is.
These observations will be useful for improving our predictive models and help us predict and adapt to a changing ocean.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Gaël Many, Caroline Ulses, Claude Estournel, and Patrick Marsaleix
Biogeosciences, 18, 5513–5538, https://doi.org/10.5194/bg-18-5513-2021, https://doi.org/10.5194/bg-18-5513-2021, 2021
Short summary
Short summary
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used to study the mechanisms that drive the particulate organic carbon (POC). The model reproduces the annual cycle of primary production well. The shelf appears as an autotrophic ecosystem with a high production and as a source of POC for the adjacent basin. The increase in temperature induced by climate change could impact the trophic status of the shelf.
Alireza Merikhi, Peter Berg, and Markus Huettel
Biogeosciences, 18, 5381–5395, https://doi.org/10.5194/bg-18-5381-2021, https://doi.org/10.5194/bg-18-5381-2021, 2021
Short summary
Short summary
The aquatic eddy covariance technique is a powerful method for measurements of solute fluxes across the sediment–water interface. Data measured by conventional eddy covariance instruments require a time shift correction that can result in substantial flux errors. We introduce a triple O2 sensor eddy covariance instrument that by design eliminates these errors. Deployments next to a conventional instrument in the Florida Keys demonstrate the improvements achieved through the new design.
Jiatang Hu, Zhongren Zhang, Bin Wang, and Jia Huang
Biogeosciences, 18, 5247–5264, https://doi.org/10.5194/bg-18-5247-2021, https://doi.org/10.5194/bg-18-5247-2021, 2021
Short summary
Short summary
In situ observations over 42 years were used to explore the long-term changes to low-oxygen conditions in the Pearl River estuary. Apparent expansion of the low-oxygen conditions in summer was identified, primarily due to the combined effects of increased anthropogenic inputs and decreased sediment load. Large areas of severe low-oxygen events were also observed in early autumn and were formed by distinct mechanisms. The estuary seems to be growing into a seasonal, estuary-wide hypoxic zone.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Melissa R. McCutcheon, Hongming Yao, Cory J. Staryk, and Xinping Hu
Biogeosciences, 18, 4571–4586, https://doi.org/10.5194/bg-18-4571-2021, https://doi.org/10.5194/bg-18-4571-2021, 2021
Short summary
Short summary
We used 5+ years of discrete samples and 10 months of hourly sensor measurements to explore temporal variability and environmental controls on pH and pCO2 at the Aransas Ship Channel. Seasonal and diel variability were both present but small compared to other regions in the literature. Despite the small tidal range, tidal control often surpassed biological control. In comparison with sensor data, discrete samples were generally representative of mean annual and seasonal carbonate chemistry.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Heiner Dietze and Ulrike Löptien
Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, https://doi.org/10.5194/bg-18-4243-2021, 2021
Short summary
Short summary
In recent years fish-kill events caused by oxygen deficit have been reported in Eckernförde Bight (Baltic Sea). This study sets out to understand the processes causing respective oxygen deficits by combining high-resolution coupled ocean circulation biogeochemical modeling, monitoring data, and artificial intelligence.
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
Jaard Hauschildt, Soeren Thomsen, Vincent Echevin, Andreas Oschlies, Yonss Saranga José, Gerd Krahmann, Laura A. Bristow, and Gaute Lavik
Biogeosciences, 18, 3605–3629, https://doi.org/10.5194/bg-18-3605-2021, https://doi.org/10.5194/bg-18-3605-2021, 2021
Short summary
Short summary
In this paper we quantify the subduction of upwelled nitrate due to physical processes on the order of several kilometers in the coastal upwelling off Peru and its effect on primary production. We also compare the prepresentation of these processes in a high-resolution simulation (~2.5 km) with a more coarsely resolved simulation (~12 km). To do this, we combine high-resolution shipboard observations of physical and biogeochemical parameters with a complex biogeochemical model configuration.
Samantha A. Siedlecki, Darren Pilcher, Evan M. Howard, Curtis Deutsch, Parker MacCready, Emily L. Norton, Hartmut Frenzel, Jan Newton, Richard A. Feely, Simone R. Alin, and Terrie Klinger
Biogeosciences, 18, 2871–2890, https://doi.org/10.5194/bg-18-2871-2021, https://doi.org/10.5194/bg-18-2871-2021, 2021
Short summary
Short summary
Future ocean conditions can be simulated using projected trends in fossil fuel use paired with Earth system models. Global models generally do not include local processes important to coastal ecosystems. These coastal processes can alter the degree of change projected. Higher-resolution models that include local processes predict modified changes in carbon stressors when compared to changes projected by global models in the California Current System.
Erik Jacobs, Henry C. Bittig, Ulf Gräwe, Carolyn A. Graves, Michael Glockzin, Jens D. Müller, Bernd Schneider, and Gregor Rehder
Biogeosciences, 18, 2679–2709, https://doi.org/10.5194/bg-18-2679-2021, https://doi.org/10.5194/bg-18-2679-2021, 2021
Short summary
Short summary
We use a unique data set of 8 years of continuous carbon dioxide (CO2) and methane (CH4) surface water measurements from a commercial ferry to study upwelling in the Baltic Sea. Its seasonality and regional and interannual variability are examined. Strong upwelling events drastically increase local surface CO2 and CH4 levels and are mostly detected in late summer after long periods of impaired mixing. We introduce an extrapolation method to estimate regional upwelling-induced trace gas fluxes.
Yangyang Zhao, Khanittha Uthaipan, Zhongming Lu, Yan Li, Jing Liu, Hongbin Liu, Jianping Gan, Feifei Meng, and Minhan Dai
Biogeosciences, 18, 2755–2775, https://doi.org/10.5194/bg-18-2755-2021, https://doi.org/10.5194/bg-18-2755-2021, 2021
Short summary
Short summary
In situ oxygen consumption rates were estimated for the first time during destruction of coastal hypoxia as disturbed by a typhoon and its reinstatement in the South China Sea off the Pearl River estuary. The reinstatement of summer hypoxia was rapid with a comparable timescale with that of its initial disturbance from frequent tropical cyclones, which has important implications for better understanding the intermittent nature of coastal hypoxia and its prediction in a changing climate.
Dylan R. Brown, Humberto Marotta, Roberta B. Peixoto, Alex Enrich-Prast, Glenda C. Barroso, Mario L. G. Soares, Wilson Machado, Alexander Pérez, Joseph M. Smoak, Luciana M. Sanders, Stephen Conrad, James Z. Sippo, Isaac R. Santos, Damien T. Maher, and Christian J. Sanders
Biogeosciences, 18, 2527–2538, https://doi.org/10.5194/bg-18-2527-2021, https://doi.org/10.5194/bg-18-2527-2021, 2021
Short summary
Short summary
Hypersaline tidal flats (HTFs) are coastal ecosystems with freshwater deficits often occurring in arid or semi-arid regions near mangrove supratidal zones with no major fluvial contributions. This study shows that HTFs are important carbon and nutrient sinks which may be significant given their extensive coverage. Our findings highlight a previously unquantified carbon as well as a nutrient sink and suggest that coastal HTF ecosystems could be included in the emerging blue carbon framework.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Markus Diesing, Terje Thorsnes, and Lilja Rún Bjarnadóttir
Biogeosciences, 18, 2139–2160, https://doi.org/10.5194/bg-18-2139-2021, https://doi.org/10.5194/bg-18-2139-2021, 2021
Short summary
Short summary
The upper 10 cm of the seafloor of the North Sea and Skagerrak contain 231×106 t of carbon in organic form. The Norwegian Trough, the deepest sedimentary basin in the studied area, stands out as a zone of strong organic carbon accumulation with rates on par with neighbouring fjords. Conversely, large parts of the North Sea are characterised by rapid organic carbon degradation and negligible accumulation. This dual character is likely typical for continental shelf sediments worldwide.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but there is an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Heejun Han, Jeomshik Hwang, and Guebuem Kim
Biogeosciences, 18, 1793–1801, https://doi.org/10.5194/bg-18-1793-2021, https://doi.org/10.5194/bg-18-1793-2021, 2021
Short summary
Short summary
The main source of excess DOC occurring in coastal seawater off an artificial lake, which is enclosed by a dike along the western coast of South Korea, was determined using a combination of various biogeochemical tools including DOC and nutrient concentrations, stable carbon isotope, and optical properties (absorbance and fluorescence) of dissolved organic matter in two different seasons (March 2017 and September 2018).
Michelle N. Simone, Kai G. Schulz, Joanne M. Oakes, and Bradley D. Eyre
Biogeosciences, 18, 1823–1838, https://doi.org/10.5194/bg-18-1823-2021, https://doi.org/10.5194/bg-18-1823-2021, 2021
Short summary
Short summary
Estuaries are responsible for a large contribution of dissolved organic carbon (DOC) to the global C cycle, but it is unknown how this will change in the future. DOC fluxes from unvegetated sediments were investigated ex situ subject to conditions of warming and ocean acidification. The future climate shifted sediment fluxes from a slight DOC source to a significant sink, with global coastal DOC export decreasing by 80 %. This has global implications for C cycling and long-term C storage.
Sara González-Delgado, David González-Santana, Magdalena Santana-Casiano, Melchor González-Dávila, Celso A. Hernández, Carlos Sangil, and José Carlos Hernández
Biogeosciences, 18, 1673–1687, https://doi.org/10.5194/bg-18-1673-2021, https://doi.org/10.5194/bg-18-1673-2021, 2021
Short summary
Short summary
We describe the carbon system dynamics of a new CO2 seep system located off the coast of La Palma. We explored for over a year, finding points with lower levels of pH and alkalinity; high levels of carbon; and poorer levels of aragonite and calcite, both essential for calcifying species. The seeps are a key feature for robust experimental designs, aimed at comprehending how life has persisted through past eras or at predicting the consequences of ocean acidification in the marine realm.
Cale A. Miller, Christina Bonsell, Nathan D. McTigue, and Amanda L. Kelley
Biogeosciences, 18, 1203–1221, https://doi.org/10.5194/bg-18-1203-2021, https://doi.org/10.5194/bg-18-1203-2021, 2021
Short summary
Short summary
We report here the first year-long high-frequency pH data set for an Arctic lagoon that captures ice-free and ice-covered seasons. pH and salinity correlation varies by year as we observed positive correlation and independence. Photosynthesis is found to drive high pH values, and small changes in underwater solar radiation can result in rapid decreases in pH. We estimate that arctic lagoons may act as sources of CO2 to the atmosphere, potentially offsetting the Arctic Ocean's CO2 sink capacity.
Meike Becker, Are Olsen, Peter Landschützer, Abdirhaman Omar, Gregor Rehder, Christian Rödenbeck, and Ingunn Skjelvan
Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, https://doi.org/10.5194/bg-18-1127-2021, 2021
Short summary
Short summary
We developed a simple method to refine existing open-ocean maps towards different coastal seas. Using a multi-linear regression, we produced monthly maps of surface ocean fCO2 in the northern European coastal seas (the North Sea, the Baltic Sea, the Norwegian Coast and the Barents Sea) covering a time period from 1998 to 2016. Based on this fCO2 map, we calculate trends in surface ocean fCO2, pH and the air–sea gas exchange.
Zhengchao Wu, Qian P. Li, Zaiming Ge, Bangqin Huang, and Chunming Dong
Biogeosciences, 18, 1049–1065, https://doi.org/10.5194/bg-18-1049-2021, https://doi.org/10.5194/bg-18-1049-2021, 2021
Short summary
Short summary
Seasonal hypoxia in the nearshore bottom waters frequently occurs in the Pearl River estuary. Aerobic respiration is the ultimate cause of local hypoxia. We found an elevated level of polyunsaturated aldehydes in the bottom water outside the estuary, which promoted the growth and metabolism of special groups of particle-attached bacteria and thus contributed to oxygen depletion in hypoxic waters. Our results may be important for understanding coastal hypoxia and its linkages to eutrophication.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020, https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Short summary
The availability of nutrients in oligotrophic marine ecosystems is limited. Following jellyfish blooms, large die-off events result in the release of high amounts of nutrients to the water column and sediment. Our study assessed the decomposition effects of an infamous invasive jellyfish in the ultra-oligotrophic Eastern Mediterranean Sea. We found that jellyfish decomposition favored heterotrophic bacteria and altered biogeochemical fluxes, further impoverishing this nutrient-poor ecosystem.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
James Z. Sippo, Isaac R. Santos, Christian J. Sanders, Patricia Gadd, Quan Hua, Catherine E. Lovelock, Nadia S. Santini, Scott G. Johnston, Yota Harada, Gloria Reithmeir, and Damien T. Maher
Biogeosciences, 17, 4707–4726, https://doi.org/10.5194/bg-17-4707-2020, https://doi.org/10.5194/bg-17-4707-2020, 2020
Short summary
Short summary
In 2015–2016, a massive mangrove dieback event occurred along ~1000 km of coastline in Australia. Multiple lines of evidence from climate data, wood and sediment samples suggest low water availability within the dead mangrove forest. Wood and sediments also reveal a large increase in iron concentrations in mangrove sediments during the dieback. This study supports the hypothesis that the forest dieback was associated with low water availability driven by a climate-change-related ENSO event.
Markus Huettel, Peter Berg, and Alireza Merikhi
Biogeosciences, 17, 4459–4476, https://doi.org/10.5194/bg-17-4459-2020, https://doi.org/10.5194/bg-17-4459-2020, 2020
Short summary
Short summary
Oxygen fluxes are a valued proxy for organic carbon production and mineralization at the seafloor. These fluxes can be measured non-invasively with the aquatic eddy covariance instrument, but the fast, fragile oxygen sensor it uses often causes questionable flux data. We developed a dual-O2-optode instrument and data evaluation method that allow improved flux measurements. Deployments over carbonate sands in the shallow shelf demonstrate that the instrument can produce reliable oxygen flux data.
Fabian Schwichtenberg, Johannes Pätsch, Michael Ernst Böttcher, Helmuth Thomas, Vera Winde, and Kay-Christian Emeis
Biogeosciences, 17, 4223–4245, https://doi.org/10.5194/bg-17-4223-2020, https://doi.org/10.5194/bg-17-4223-2020, 2020
Short summary
Short summary
Ocean acidification has a range of potentially harmful consequences for marine organisms. It is related to total alkalinity (TA) mainly produced in oxygen-poor situations like sediments in tidal flats. TA reduces the sensitivity of a water body to acidification. The decomposition of organic material and subsequent TA release in the tidal areas of the North Sea (Wadden Sea) is responsible for reduced acidification in the southern North Sea. This is shown with the results of an ecosystem model.
Alexis Beaupré-Laperrière, Alfonso Mucci, and Helmuth Thomas
Biogeosciences, 17, 3923–3942, https://doi.org/10.5194/bg-17-3923-2020, https://doi.org/10.5194/bg-17-3923-2020, 2020
Short summary
Short summary
Ocean acidification is the process by which the oceans are changing due to carbon dioxide emissions from human activities. Studying this process in the Arctic Ocean is essential as this ocean and its ecosystems are more vulnerable to the effects of acidification. Water chemistry measurements made in recent years show that waters in and around the Canadian Arctic Archipelago are considerably affected by this process and show dynamic conditions that might have an impact on local marine organisms.
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020, https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
Short summary
The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. To improve our conceptual understanding of the system, we developed a new regional biogeochemical model setup for the GOA. Model output suggests that bottom water is seasonally high in CO2 between June and January. Such extensive periods of reoccurring high CO2 may be harmful to ocean acidification-sensitive organisms.
Pierre St-Laurent, Marjorie A. M. Friedrichs, Raymond G. Najjar, Elizabeth H. Shadwick, Hanqin Tian, and Yuanzhi Yao
Biogeosciences, 17, 3779–3796, https://doi.org/10.5194/bg-17-3779-2020, https://doi.org/10.5194/bg-17-3779-2020, 2020
Short summary
Short summary
Over the past century, estuaries have experienced global (atmospheric CO2 concentrations and temperature) and regional changes (river inputs, land use), but their relative impact remains poorly known. In the Chesapeake Bay, we find that global and regional changes have worked together to enhance how much atmospheric CO2 is taken up by the estuary. The increased uptake is roughly equally due to the global and regional changes, providing crucial perspective for managers of the bay's watershed.
Cited articles
Aigars, J. and Carman, R.:
Seasonal and spatial variations of carbon and nitrogen distribution in the surface sediments of the Gulf of Riga, Baltic Sea, Chemosphere, 43, 313–320, 2001.
Aigars, J., Poikāne, R., Dalsgaard, T., Eglīte, E., and Jansons, M.:
Biogeochemistry of N, P and SI in the Gulf of Riga surface sediments: Implications of seasonally changing factors, Cont. Shelf Res., 105, 112–120, 2015.
Astok, V., Otsmann, M., and Suursaar, Ü.:
Water exchange as the main physical process in semi-enclosed marine systems: the Gulf of Riga case, Hydrobiologia, 393, 11–18, https://doi.org/10.1023/A:1003517110726, 1999.
Berzinsh, V.:
Hydrology, in: Ecosystem of the Gulf of Riga between 1920–1990, edited by: Ojaveer, E., Estonian Academy Publishers, Tallinn, 7–31, ISBN 9985-50-065-2, 1995.
Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M. S., Levin, L., O'Donoghue, S., Cuicapusa, S. R. P., Rinkevich, B., Suga, T., Tagliabue, A., and Williamson, P.:
Changing Ocean, Marine Ecosystems, and Dependent Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 447–587, https://doi.org/10.1017/9781009157964.007, 2019.
Bonsdorff, E., Diaz, R. J., Rosenberg, R., Norkko, A., and Cutter Jr, G. R.:
Characterization of soft-bottom benthic habitats of the Åland Islands, norther Baltic Sea, Mar. Ecol.-Prog. Ser., 142, 235–245, 1996.
Boynton, W. R., Ceballos, M. A. C., Bailey, E. M., Hodgkins, C. L. S., Humphrey, J. L., and Testa, J. M.:
Oxygen and Nutrient Exchanges at the Sediment-Water Interface: a Global Synthesis and Critique of Estuarine and Coastal Data, Estuar. Coast., 41, 301–333, https://doi.org/10.1007/s12237-017-0275-5, 2018.
Caballero-Alfonso, A. M., Carstensen, J., and Conley, D. J.:
Biogeochemical and environmental drivers of coastal hypoxia, J. Marine Syst., 141, 190–199, 2015.
Carstensen, J. and Conley, D. J.:
Baltic Sea Hypoxia Takes Many Shapes and Sizes, Limnol. Oceanogr. Bull., 28, 125–129, https://doi.org/10.1002/lob.10350, 2019.
Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.:
Deoxygenation of the Baltic Sea during the last century, P. Natl. Acad. Sci. USA, 111, 5628–5633, 2014.
Christensen, O. B., Kjellström, E., and Zorita, E.:
in Second Assessment of Climate Change for the Baltic Sea Basin, in: Second Assessment of Climate Change for the Baltic Sea Basin, edited by: BACC II Author Team, Springer International Publishing, 217–233, https://doi.org/10.1007/978-3-319-16006-1_11, 2015.
Codiga, D. L., Stoffel, H. E., Decautis, C. F., Kiernan, S., and Oviatt, C. A.:
Narragansett Bay Hypoxic Event Characteristics Based on Fixed-Site Monitoring Network Time Series: Intermittency, Geographic Distribution, Spatial Synchronicity, and Interannual Variability, Estuar. Coast., 32, 621–641, https://doi.org/10.1007/s12237-009-9165-9, 2009.
Conley, D. J., Stockenberg, A., Carman, R., Johnstone, R. W., Rahm, L., and Wulff, F.:
Sediment-water Nutrient Fluxes in the Gulf of Finland, Baltic Sea, Estuar. Coast. Shelf S., 45, 591–598, 1997.
Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P., and Wulff, F.:
Hypoxia in the Baltic Sea and Basin-Scale Changes in Phosphorus Biogeochemistry, Envrion. Sci. Technol., 36, 5315–5320, https://doi.org/10.1021/es025763w, 2002.
Conley, D. J., Carstensen, J., Ærtebjerg, G., Christensen, P. B., Dalsgaard, T., Hansen, J. L. S., and Josefson, A. B.:
LONG-TERM CHANGES AND IMPACTS OF HYPOXIA IN DANISH COASTAL WATERS, Ecol. Appl., 17, S165–S184, https://doi.org/10.1890/05-0766.1, 2007.
Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., Hietanen, S., Kortekaas, M., Kuosa, H., Meier, H. E. M., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. P., Slomp, C. P., Voss, M., Wulff, F., and Zillén, L.:
Hypoxia-Related Processes in the Baltic Sea, Environ. Sci. Technol., 43, 3412–3420, https://doi.org/10.1021/es802762a, 2009.
Conley, D. J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, E., Eremina, T., Haahti, B.-M., Humborg, C., Jonsson, P., Kotta, J., Lännegren, C., Larsson, U., Maximov, A., Medina, M. R., Lysiak-Pastuszak, E., Remeikaitė-Nikienė, N., Walve, J., Wilhelms, S., and Zillén, L.:
Hypoxia Is Increasing in the Coastal Zone of the Baltic Sea, Environ. Sci. Technol., 45, 6777–6783, https://doi.org/10.1021/es201212r, 2011.
Diaz, R. J. and Rosenberg, R.:
Spreading Dead Zones and Consequences for Marine Ecosystems, Science (80-.), 321, 926–929, https://doi.org/10.1126/science.1156401, 2008.
Eglīte, E., Lavrinovičs, A., Müller-Karulis, B., Aigars, J., and Poikāne, R.:
Nutrient turnover at the hypoxic boundary: flux measurements and model representation for the bottom water environment of the Gulf of Riga, Baltic Sea, Oceanologia, 56, 711–735, 2014.
EMODnet Bathymetry Consortium: EMODnet Digital Bathymetry (DTM), https://sextant.ifremer.fr/record/bb6a87dd-e579-4036-abe1-e649cea9881a/ (last access: 28 April 2021), 2020.
Estonian Environment Agency: KESE [data set], https://kese.envir.ee/kese/, last access: 4 April 2019.
Estonian Weather Service: Hydrological data [data set], https://www.ilmateenistus.ee/siseveed/ajaloolised-vaatlusandmed/vooluhulgad/, last access: 23 March 2022.
Fennel, K. and Testa, J. M.:
Biogeochemical Controls on Coastal Hypoxia, Annu. Rev. Mar. Sci., 11, 105–130, https://doi.org/10.1146/annurev-marine-010318-095138, 2019.
Groeskamp, S. and Iudicone, D.:
The Effect of Air-Sea Flux Products, Shortwave Radiation Depth Penetration, and Albedo on the Upper Ocean Overturning Circulation, Geophys. Res. Lett., 45, 9087–9097, https://doi.org/10.1029/2018GL078442, 2018.
Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., and Meier, H. E. M.:
Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble of climate scenarios downscaled with a coupled regional ocean–sea ice–atmosphere model, Clim. Dynam., 53, 5945–5966, https://doi.org/10.1007/s00382-019-04908-9, 2019.
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M., Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and Zorita, E.:
Reconstructing the Development of Baltic Sea Eutrophication 1850–2006, Ambio, 41, 534–548, 2012.
Hansson, M. and Viktorsson, L.:
REPORT OCEANOGRAPHY No. 70, 2020. Oxygen Survey in the Baltic Sea 2020 – Extent of Anoxia and Hypoxia, SMHI, ISSN 0283-1112,
1960–2020, 2020.
HELCOM:
Environment of the Baltic Sea area 1994–1998, Balt. Sea Environ. Proc. No. 82B, Helsinki Commission, ISSN 0357-2994, 215, 2002.
HELCOM:
Eutrophication in the Baltic Sea – An Integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region, Balt. Sea Environ. Proc. No. 115B, Helsinki Commission, ISSN 0357-2994,
148, 2009.
HELCOM:
Manual for the Marine Monitoring in the COMBINE Programme of HELCOM, https://helcom.fi/action-areas/monitoring-and-assessment/monitoring-guidelines/combine-manual/ (last access: 21 June 2021), 2017.
HELCOM: HELCOM Thematic assessment of eutrophication 2011-2016. Baltic Sea Environment Proceedings No. 156, Baltic Marine Environment Protection Commission, ISSN 0357-2994, 2018a.
HELCOM: Sources and pathways of nutrients to the Baltic Sea. Baltic Sea Environment Proceedings No. 153, Baltic Marine Environment Protection Commission, ISSN 0357-2994, 2018b.
HELCOM: State of the Baltic Sea – Second HELCOM holistic assessment 2011–2016. Baltic Sea Environment Proceedings 155, Baltic Marine Environment Protection Commission, ISSN 0357-2994, 2018c.
HELCOM:
Inputs of nutrients to the sub-basins (2019), HELCOM core indicator report, https://helcom.fi/wp-content/uploads/2017/06/HELCOM-core-indicator-on-inputs-of-nutrients-for-period-1995-2019.pdf (last access: 10 January 2022), 2022.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.:
ERA5 hourly data on single levels from 1979 to present, Copernicus Clim. Chang. Serv. Clim. Data Store [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hoy, A., Hänsel, S., and Maugeri, M.:
An endless summer: 2018 heat episodes in Europe in the context of secular temperature variability and change, Int. J. Climatol., 40, 6315–6336, https://doi.org/10.1002/joc.6582, 2020.
ICES: Oceanographic database [data set], https://www.ices.dk/data/dataset-collections/pages/default.aspx, last access: 16 April 2019.
IOC, SCOR and IAPSO: The International Thermodynamic Equation of Seawater – 2010: Calculation and Use of Thermodynamic Properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp., 2010.
Jansson, A., Klais-Peets, R., Grinienė, E., Rubene, G., Semenova, A., Lewandowska, A., and Engström-Öst, J.:
Functional shifts in estuarine zooplankton in response to climate variability, Ecol. Evol., 10, 11591–11606, https://doi.org/10.1002/ece3.6793, 2020.
Johansson, J.:
Total and regional runoff to the Baltic Sea, HELCOM Balt. Sea Environ. Fact Sheets, Online, Helsinki Commission, https://helcom.fi/media/documents/BSEFS_Total-and-regional-runoff-to-the-Baltic-Sea-in-2015.pdf
(last access: 9 June 2022),
2016.
Jokinen, S. A., Virtasalo, J. J., Jilbert, T., Kaiser, J., Dellwig, O., Arz, H. W., Hänninen, J., Arppe, L., Collander, M., and Saarinen, T.:
A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century, Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, 2018.
Kabel, K., Moros, M., Porsche, C., Neumann, T., Adolphi, F., Andersen, T. J., Siegel, H., Gerth, M., Leipe, T., Jansen, E., and Damsté, J. S. S.:
Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years, Nat. Clim. Change, 2, 871–874, 2012.
Karlson, K., Rosenberg, R., and Bonsdorff, E.:
Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters: a review, edited by: Gibson, R. N. et al. Oceanogr. Mar. Biol. Ann. Rev., 40, 427–489, 2002.
Kniebusch, M., Meier, H. E. M., Neumann, T., and Börgel, F.:
Temperature Variability of the Baltic Sea Since 1850 and Attribution to Atmospheric Forcing Variables, J. Geophys. Res.-Oceans, 124, 4168–4187, https://doi.org/10.1029/2018JC013948, 2019.
Koop, K., Boynton, W. R., Wulff, F., and Carman, R.:
Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea, Mar. Ecol. Prog. Ser., 63, 65–77, 1990.
Kralj, M., Lipizer, M., Čermelj, B., Celio, M., Fabbro, C., Brunetti, F., Francé, J., Mozetič, P., and Giani, M.:
Hypoxia and dissolved oxygen trends in the northeastern Adriatic Sea (Gulf of Trieste), Deep-Sea Res. Pt. II, 164, 74–88, https://doi.org/10.1016/j.dsr2.2019.06.002, 2019.
Latvian Environment: Geology and Meteorology Center [data set], https://videscentrs.lvgmc.lv/, 2019.
Lehtoranta, J., Savchuk, O. P., Elken, J., Kim, D., Kuosa, H., Raateoja, M., Kauppila, P., Räike, A., and Pitkänen, H.:
Atmospheric forcing controlling inter-annual nutrient dynamics in the open Gulf of Finland, J. Marine Syst., 171, 4–20, 2017.
Liblik, T. and Lips, U.:
Variability of synoptic-scale quasi-stationary thermohaline stratification patterns in the Gulf of Finland in summer 2009, Ocean Sci., 8, 603–614, https://doi.org/10.5194/os-8-603-2012, 2012.
Liblik, T. and Lips, U.:
Stratification Has Strengthened in the Baltic Sea – An Analysis of 35 Years of Observational Data, Front. Earth. Sci., 7, 174, https://doi.org/10.3389/feart.2019.00174, 2019.
Liblik, T., Skudra, M., and Lips, U.:
On the buoyant sub-surface salinity maxima in the Gulf of Riga, Oceanologia, 59, 113–128, 2017.
Liblik, T., Naumann, M., Alenius, P., Hansson, M., Lips, U., Nausch, G., Tuomi, L., Wesslander, K., Laanemets, J., and Viktorsson, L.: Propagation of Impact of the Recent Major Baltic Inflows From the Eastern Gotland Basin to the Gulf of Finland, Front. Mar. Sci., 5, 222, https://doi.org/10.3389/fmars.2018.00222, 2018.
Liblik, T., Wu, Y., Fan, D., and Shang, D.:
Wind-driven stratification patterns and dissolved oxygen depletion off the Changjiang (Yangtze) Estuary, Biogeosciences, 17, 2875–2895, https://doi.org/10.5194/bg-17-2875-2020, 2020.
Lilover, M.-J., Lips, U., Laanearu, J., and Liljebladh, B.:
Flow regime in the Irbe Strait, Aquat. Sci., 60, 253–265, 1998.
Lips, U., Lilover, M.-J., Raudsepp, U., and Talpsepp, L.:
Water renewal processes and related hydrographic structures in the Gulf of Riga, in: Hydrographic studies within the Gulf of Riga Project, 1993–1994, edited by: Toompuu, A. and Elken, J., Estonian Marine Institute Report Series No. 1, 1–34, ISBN 9985-9058-0-6, 1995.
Lips, U., Zhurbas, V., Skudra, M., and Väli, G.:
A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents, Cont. Shelf Res., 112, 1–13, 2016.
Lips, U., Laanemets, J., Lips, I., Liblik, T., Suhhova, I., and Suursaar, Ü.:
Wind-driven residual circulation and related oxygen and nutrient dynamics in the Gulf of Finland (Baltic Sea) in winter, Estuar. Coast. Shelf S., 195, 4–15, 2017.
Lukkari, K., Leivuori, M., Vallius, H., and Kotilainen, A.:
The chemical character and burial of phosphorus in shallow coastal sediments in the northeastern Baltic Sea, Biogeochemistry, 94, 141–162, https://doi.org/10.1007/s10533-009-9315-y, 2009.
Matthäus, W. and Franck, H.:
Characteristics of major Baltic inflows—a statistical analysis, Cont. Shelf Res., 12, 1375–1400, https://doi.org/doi:10.1016/0278-4343(92)90060-W, 1992.
Meier, H. E. M. and Saraiva, S.: Projected Oceanographical Changes in the Baltic Sea until 2100, Oxford Research Encyclopedia of Climate Science, https://doi.org/10.1093/acrefore/9780190228620.013.699, 2020.
Meier, H. E. M., Andersson, H. C., Eilola, K., Gustafsson, B. G., Kuznetsov, I., Müller-Karulis, B., Neumann, T., and Savchuk, O. P.:
Hypoxia in future climates: A model ensemble study for the Baltic Sea, Geophys. Res. Lett., 38, L24608, https://doi.org/10.1029/2011GL049929, 2011.
Meier, H. E. M., Väli, G., Naumann, M., Eilola, K., and Frauen, C.:
Recently Accelerated Oxygen Consumption Rates Amplify Deoxygenation in the Baltic Sea, J. Geophys. Res.-Oceans, 123, 3227–3240, https://doi.org/10.1029/2017JC013686, 2018.
Murphy, R. R., Kemp, W. M., and Ball, W. P.:
Long-Term Trends in Chesapeake Bay Seasonal Hypoxia, Stratification, and Nutrient Loading, Estuar. Coast., 34, 1293–1309, https://doi.org/10.1007/s12237-011-9413-7, 2011.
Ojaveer, E. (Ed.): Ecosystem of the Gulf of Riga between 1920 and 1990, Estonian Academy Publishers, Tallinn, 1995.
Olli, K. and Heiskanen, A.-S.:
Seasonal stages of phytoplankton community structure and sinking loss in the Gulf of Riga, J. Marine Syst., 23, 165–184, https://doi.org/10.1016/S0924-7963(99)00056-1, 1999.
Omstedt, A., Meuller, L., and Nyberg, L.:
Interannual, Seasonal and Regional Variations of Precipitation and Evaporation over the Baltic Sea, Ambio, 26, 484–492, 1997.
Petrov, V.:
Water balance and water exchange between the Gulf of Riga and the Baltic Proper, Sb. Rab. Rizhskoj GO, 18, 20–40, 1979.
Pitkänen, H., Lehtoranta, J., and Räike, A.:
Internal Nutrient Fluxes Counteract Decreases in External Load: The Case of the Estuarial Eastern Gulf of Finland, Baltic Sea, Ambio, 30, 195–201, https://doi.org/10.1579/0044-7447-30.4.195, 2001.
Powilleit, M. and Kube, J.:
Effects of severe oxygen depletion on macrobenthos in the Pomeranian Bay (southern Baltic Sea): a case study in a shallow, sublittoral habitat characterised by low species richness, J. Sea Res., 42, 221–234, 1999.
Purina, I., Labucis, A., Barda, I., Jurgensone, I., and Aigars, J.:
Primary productivity in the Gulf of Riga (Baltic Sea) in relation to phytoplankton species and nutrient variability, Oceanologia, 60, 544–552, https://doi.org/10.1016/j.oceano.2018.04.005, 2018.
Puttonen, I., Mattila, J., Jonsson, P., Karlsson, O. M., Kohonen, T., Kotilainen, A., Lukkari, K., Malmaeus, J. M., and Rydin, E.:
Distribution and estimated release of sediment phosphorus in the northern Baltic Sea archipelagos, Estuar. Coast. Shelf S., 145, 9–21, https://doi.org/10.1016/j.ecss.2014.04.010, 2014.
Puttonen, I., Kohonen, T., and Mattila, J.:
Factors controlling phosphorus release from sediments in coastal archipelago areas, Mar. Pollut. Bull., 108, 77–86, https://doi.org/10.1016/j.marpolbul.2016.04.059, 2016.
Raudsepp, U. and Elken, J.:
Application of the GFDL circulation model for the Gulf of Riga, in: Hydrographic studies within the Gulf of Riga Project, 1993–1994, edited by: Toompuu, A. and Elken, J., Estonian Marine Institute Report Series No. 1, 143–176, ISBN 9985-9058-0-6, 1995.
Reusch, T. B. H., Dierking, J., Andersson, H. C., Bonsdorff, E., Carstensen, J., Casini, M., Czajkowski, M., Hasler, B., Hinsby, K., Hyytiäinen, K., Johannesson, K., Jomaa, S., Jormalainen, V., Kuosa, H., Kurland, S., Laikre, L., MacKenzie, B. R., Margonski, P., Melzner, F., Oesterwind, D., Ojaveer, H., Refsgaard, J. C., Sandström, A., Schwarz, G., Tonderski, K., Winder, M., and Zandersen, M.:
The Baltic Sea as a time machine for the future coastal ocean, Sci. Adv., 4, eaar8195, https://doi.org/10.1126/sciadv.aar8195, 2018.
Ruosteenoja, K., Vihma, T., and Venäläinen, A.:
Projected Changes in European and North Atlantic Seasonal Wind Climate Derived from CMIP5 Simulations, J. Climate, 32, 6467–6490, https://doi.org/10.1175/JCLI-D-19-0023.1, 2019.
Saraiva, S., Markus Meier, H. E., Andersson, H., Höglund, A., Dieterich, C., Gröger, M., Hordoir, R., and Eilola, K.:
Baltic Sea ecosystem response to various nutrient load scenarios in present and future climates, Clim. Dynam., 52, 3369–3387, https://doi.org/10.1007/s00382-018-4330-0, 2019a.
Saraiva, S., Meier, H. E. M., Andersson, H., Höglund, A., Dieterich, C., Gröger, M., Hordoir, R., and Eilola, K.:
Uncertainties in Projections of the Baltic Sea Ecosystem Driven by an Ensemble of Global Climate Models, Front. Earth Sci., 6, 244, https://doi.org/10.3389/feart.2018.00244, 2019b.
Savchuk, O. P.:
Large-Scale Nutrient Dynamics in the Baltic Sea, 1970–2016, Front. Mar. Sci., 5, https://doi.org/10.3389/fmars.2018.00095, 2018.
Schinke, H. and Matthäus, W.:
On the causes of major Baltic inflows – an analysis of long time series, Cont. Shelf Res., 18, 67–97, https://doi.org/10.1016/S0278-4343(97)00071-X, 1998.
Schlitzer, R.: Ocean Data View, [code] https://odv.awi.de (last access: 9 January 2020), 2019.
Schmale, O., Krause, S., Holtermann, P., Power Guerra, N. C., and Umlauf, L.:
Dense bottom gravity currents and their impact on pelagic methanotrophy at oxic/anoxic transition zones, Geophys. Res. Lett., 43, 5225–5232, https://doi.org/10.1002/2016GL069032, 2016.
SeaDataNet: SeaDataNet Pan-European infrastructure for ocean and marine data management
[data set], http://www.seadatanet.org, last access: 9 April 2019.
Séférian, R., Baek, S., Boucher, O., Dufresne, J.-L., Decharme, B., Saint-Martin, D., and Roehrig, R.:
An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A), Geosci. Model Dev., 11, 321–338, https://doi.org/10.5194/gmd-11-321-2018, 2018.
Simpson, J. H., Brown, J., Matthews, J., and Allen, G.:
Tidal Straining, Density Currents, and Stirring in the Control of Estuarine Stratification, Estuaries, 13, 125–132, https://doi.org/10.2307/1351581, 1990.
Skudra, M. and Lips, U.:
Characteristics and inter-annual changes in temperature, salinity and density distribution in the Gulf of Riga, Oceanologia, 59, 37–48, 2017.
Soosaar, E., Maljutenko, I., Raudsepp, U., and Elken, J.:
An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period, Cont. Shelf Res., 78, 75–84, https://doi.org/10.1016/j.csr.2014.02.009, 2014.
Spilling, K., Olli, K., Lehtoranta, J., Kremp, A., Tedesco, L., Tamelander, T., Klais, R., Peltonen, H., and Tamminen, T.:
Shifting Diatom—Dinoflagellate Dominance During Spring Bloom in the Baltic Sea and its Potential Effects on Biogeochemical Cycling, Front. Mar. Sci., 5, 92–108, https://doi.org/10.3389/fmars.2018.00327, 2018.
Stiebrins, O. and Väling, P.:
Bottom sediments of the Gulf of Riga, Geol. Surv. Latv. Riga, 4, ISBN 9984-9130-0-7, 1996.
Stipa, T., Tamminen, T., and Seppälä, J.:
On the creation and maintenance of stratification in the Gulf of Riga, J. Marine Syst., 23, 27–49, 1999.
Stoicescu, S.-T., Lips, U., and Liblik, T.:
Assessment of Eutrophication Status Based on Sub-Surface Oxygen Conditions in the Gulf of Finland (Baltic Sea), Front. Mar. Sci., 6, 54, https://doi.org/10.3389/fmars.2019.00054, 2019.
Stonevičius, E., Rimkus, E., Štaras, A., Kažys, J., and Valiuškevičius, G.:
Climate change impact on the Nemunas River basin hydrology in the 21st century, Boreal Environ. Res., 22, 49–65, 2017.
Ukrainskii, V. V. and Popov, Y. I.:
Climatic and hydrophysical conditions of the development of hypoxia in waters of the northwest shelf of the Black Sea, Phys. Oceanogr., 19, 140, https://doi.org/10.1007/s11110-009-9046-6, 2009.
van Helmond, N. A. G. M., Robertson, E. K., Conley, D. J., Hermans, M., Humborg, C., Kubeneck, L. J., Lenstra, W. K., and Slomp, C. P.:
Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic Sea, Biogeosciences, 17, 2745–2766, https://doi.org/10.5194/bg-17-2745-2020, 2020.
Virtanen, E. A., Norkko, A., Nyström Sandman, A., and Viitasalo, M.:
Identifying areas prone to coastal hypoxia – the role of topography, Biogeosciences, 16, 3183–3195, https://doi.org/10.5194/bg-16-3183-2019, 2019.
Walve, J., Sandberg, M., Larsson, U., and Lännergren, C.:
A Baltic Sea estuary as a phosphorus source and sink after drastic load reduction: seasonal and long-term mass balances for the Stockholm inner archipelago for 1968–2015, Biogeosciences, 15, 3003–3025, https://doi.org/10.5194/bg-15-3003-2018, 2018.
Wasmund, N., Nausch, G., Gerth, M., Busch, S., Burmeister, C., Hansen, R., and Sadkowiak, B.:
Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change, Mar. Ecol.-Prog. Ser., 622, 1–16, 2019.
Wu, J.:
Wind-stress coefficients over sea surface from breeze to hurricane, J. Geophys. Res.-Oceans, 87, 9704–9706, https://doi.org/10.1029/JC087iC12p09704, 1982.
Yurkovskis, A.:
Long-term land-based and internal forcing of the nutrient state of the Gulf of Riga (Baltic Sea), J. Marine Syst., 50, 181–197, https://doi.org/10.1016/j.jmarsys.2004.01.004, 2004.
Yurkovskis, A., Wulff, F., Rahm, L., Andruzaitis, A., and Rodriguez-Medina, M.:
A Nutrient Budget of the Gulf of Riga; Baltic Sea, Estuar. Coast. Shelf S., 37, 113–127, https://doi.org/10.1006/ecss.1993.1046, 1993.
Zhang, J., Gilbert, D., Gooday, A. J., Levin, L., Naqvi, S. W. A., Middelburg, J. J., Scranton, M., Ekau, W., Peña, A., Dewitte, B., Oguz, T., Monteiro, P. M. S., Urban, E., Rabalais, N. N., Ittekkot, V., Kemp, W. M., Ulloa, O., Elmgren, R., Escobar-Briones, E., and Van der Plas, A. K.:
Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development, Biogeosciences, 7, 1443–1467, https://doi.org/10.5194/bg-7-1443-2010, 2010.
Short summary
Coastal basins with high input of nutrients often suffer from oxygen deficiency. In summer 2018, the extent of oxygen depletion was exceptional in the Gulf of Riga. We analyzed observational data and found that extensive oxygen deficiency appeared since the water layer close to the seabed, where oxygen is consumed, was separated from the surface layer. The problem worsens if similar conditions restricting vertical transport of oxygen occur more frequently in the future.
Coastal basins with high input of nutrients often suffer from oxygen deficiency. In summer 2018,...
Altmetrics
Final-revised paper
Preprint