Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3285-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3285-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on autotrophic and heterotrophic respiration in an ombrotrophic bog
Tracy E. Rankin
CORRESPONDING AUTHOR
Department of Geography, McGill University, Montréal, H3A 0B9, Canada
Nigel T. Roulet
Department of Geography, McGill University, Montréal, H3A 0B9, Canada
Tim R. Moore
Department of Geography, McGill University, Montréal, H3A 0B9, Canada
Related authors
No articles found.
Alexandre Lhosmot, Gabriel Hould Gosselin, Manuel Helbig, Julien Fouché, Youngryel Ryu, Matteo Detto, Ryan Connon, William Quinton, Tim Moore, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 29, 4871–4892, https://doi.org/10.5194/hess-29-4871-2025, https://doi.org/10.5194/hess-29-4871-2025, 2025
Short summary
Short summary
Thawing permafrost changes how water is stored and moves across landscapes. We measured water inputs and outputs in a basin with thawing peatland complexes and three sub-basins. In addition to yearly changes in precipitation and evapotranspiration, we found that hydrological responses are shaped by thaw-driven landscape connectivity. These findings highlight the need for long-term monitoring of ecosystem service shifts.
Hongxing He, Ian B. Strachan, and Nigel T. Roulet
Biogeosciences, 22, 1355–1368, https://doi.org/10.5194/bg-22-1355-2025, https://doi.org/10.5194/bg-22-1355-2025, 2025
Short summary
Short summary
This study applied the CoupModel to simulate carbon dynamics and ecohydrology for a restored peatland and evaluated the responses of the simulated carbon fluxes to varying acrotelm thickness and climate. The results show that the CoupModel can simulate the coupled carbon and ecohydrology dynamics for the restored peatland system, and the restored peatland has less resilience in its C-uptake functions than pristine peatlands under a changing climate.
Amey Tilak, Alina Premrov, Ruchita Ingle, Nigel Roulet, Benjamin R. K. Runkle, Matthew Saunders, Avni Malhotra, and Kenneth Byrne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3852, https://doi.org/10.5194/egusphere-2024-3852, 2024
Preprint archived
Short summary
Short summary
For the future model users, 16 peatland and wetland models reviewed to identify individual model operational scale (spatial and temporal), stabilization timeframes of different carbon pools, model specific advantages and limitations, common and specific model driving inputs, critical inputs of individual models impacting CH4 plant mediated, CH4 diffusion and CH4 ebullition. Finally, we qualitatively ranked the process representations in each model for CH4 production, oxidation and transport.
Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre
Biogeosciences, 21, 3491–3507, https://doi.org/10.5194/bg-21-3491-2024, https://doi.org/10.5194/bg-21-3491-2024, 2024
Short summary
Short summary
Peatlands are among the largest carbon (C) sinks on the planet. However, peatland features such as open-water pools emit more C than they accumulate because of higher decomposition than production. With this study, we show that the rates of decomposition vary among pools and are mostly driven by the environmental conditions in pools rather than by the nature of the material being decomposed. This means that changes in pool number or size may modify the capacity of peatlands to accumulate C.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Short summary
We applied CoupModel to quantify the impacts of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake of northern peatlands. We found that 1 m drops of the water level at the beaver pond lower the peatland water table depth 250 m away by 0.15 m and reduce the peatland net CO2 uptake by 120 g C m-2 yr-1. Therefore, although bogs are ombrotrophic rainfed systems, the boundary hydrological conditions play an important role in regulating water storage and CO2 uptake.
Jinnan Gong, Nigel Roulet, Steve Frolking, Heli Peltola, Anna M. Laine, Nicola Kokkonen, and Eeva-Stiina Tuittila
Biogeosciences, 17, 5693–5719, https://doi.org/10.5194/bg-17-5693-2020, https://doi.org/10.5194/bg-17-5693-2020, 2020
Short summary
Short summary
In this study, which combined a field and lab experiment with modelling, we developed a process-based model for simulating dynamics within peatland moss communities. The model is useful because Sphagnum mosses are key engineers in peatlands; their response to changes in climate via altered hydrology controls the feedback of peatland biogeochemistry to climate. Our work showed that moss capitulum traits related to water retention are the mechanism controlling moss layer dynamics in peatlands.
Cited articles
Abdalla, M., Hastings, A., Bell, M. J., Smith, J. U., Richards, M., Nilsson,
M. B., Peichl, M., Löfvenius, M. O., Lund, M., Helfter, C., Nemitz, E.,
Sutton, M. A., Aurela, M., Lohila, A., Laurila, T., Dolman, A. J.,
Belelli-Marchesini, L., Pogson, M., Jones, E., Drewer, J., Drosler, M., and
Smith, P.: Simulation of CO2 and attribution analysis at six european
peatland sites using the ECOSSE model, Water. Air. Soil Pollut., 225, 2182,
https://doi.org/10.1007/s11270-014-2182-8, 2014.
Abdi, H.: Coefficient of Variation, in: Encyclopeadia of Research Design, edited by: Salkind, N., Thousand Oaks, CA, Sage, 2010169–171, https://personal.utdallas.edu/~herve/abdi-cv2010-pretty.pdf (last access: 13 July 2022), 2010.
Arain, M. A., Xu, B., Brodeur, J. J., Khomik, M., Peichl, M., Beamesderfer, E., restrepo-Couple, N., and Thorne, R.: Heat and Drought Impact on Carbon Exchange in an Age-Sequence of temperate pine forests, Ecol. Process., 11, 7, https://doi.org/10.1186/s13717-021-00349-7, 2022.
Basiliko, N., Stewart, H., Roulet, N. T., and Moore, T. R.: Do Root Exudates
Enhance Peat Decomposition?, Geomicrobiol. J., 29, 374–378,
https://doi.org/10.1080/01490451.2011.568272, 2012.
Belyea, L. R. and Malmer, N.: Carbon sequestration in peatland: patterns and
mechanisms of response to climate change, Glob. Change Biol., 10,
1043–1052, https://doi.org/10.1111/j.1529-8817.2003.00783.x, 2004.
Blodau, C.: Carbon cycling in peatlands – A review of processes and
controls, Environ. Rev., 10, 111–134, https://doi.org/10.1139/a02-004, 2002.
Bonan, G.: Ecological Climatology: Concepts and Applications, 2nd edn., Cambridge University Press, ISBN 978-0521872218, 2008.
Brieman, L., Friedman, J., Olshen, R., and Stone, C.: Classification and regression trees, Wadsworth & Brooks, Cole Statistics/Probability series, https://doi.org/10.1201/9781315139470, 1984.
Bubier, J. L., Moore, T. R., and Bledzki, L. A.: Effects of nutrient addition
on vegetation and carbon cycling in an ombrotrophic bog, Glob. Change Biol.,
13, 1168–1186, https://doi.org/10.1111/j.1365-2486.2007.01346.x, 2007.
Bunsen, M. S. and Loisel, J.: Carbon storage dynamics in peatlands:
Comparing recent- and long-term accumulation histories in southern
Patagonia, Glob. Change Biol., 26, 5778–5795, https://doi.org/10.1111/gcb.15262,
2020.
Buttler, A., Robroek, B. J. M., Laggoun-Défarge, F., Jassey, V. E. J.,
Pochelon, C., Bernard, G., Delarue, F., Gogo, S., Mariotte, P., Mitchell, E.
A. D., and Bragazza, L.: Experimental warming interacts with soil moisture to
discriminate plant responses in an ombrotrophic peatland, J. Veg. Sci.,
26, 964–974, https://doi.org/10.1111/jvs.12296, 2015.
Cai, T., Flanagan, L. B., and Syed, K. H.: Warmer and drier conditions
stimulate respiration more than photosynthesis in a boreal peatland
ecosystem: Analysis of automatic chambers and eddy covariance measurements,
Plant Cell Environ., 33, 394–407, https://doi.org/10.1111/j.1365-3040.2009.02089.x,
2010.
Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., van der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer, I. E., Corish, Y. M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M., MacDonald, G. M., Phadtare, N. R., Rausch, N., Sillasoo, Ü., Swindles, G. T., Tuittila, E.-S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van Geel, B., Vitt, D. H., and Zhao, Y.: Climate-related changes in peatland carbon accumulation during the last millennium, Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, 2013.
Chiapusio, G., Jassey, V. E. J., Bellvert, F., Comte, G., Weston, L. A.,
Delarue, F., Buttler, A., Toussaint, M. L., and Binet, P.: Sphagnum Species
Modulate their Phenolic Profiles and Mycorrhizal Colonization of Surrounding
Andromeda polifolia along Peatland Microhabitats, J. Chem. Ecol., 44,
1146–1157, https://doi.org/10.1007/s10886-018-1023-4, 2018.
Crow, S. E. and Wieder, R. K.: Sources of CO2 emission from a northern
peatland: Root respiration, exudation, and decomposition, Ecology, 86,
1825–1834, https://doi.org/10.1890/04-1575, 2005.
Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., Swart, E., van de Weg, M.
J., Callaghan, T. V., Aerts, R., Logtestijn, V., Richard, S. P., Swart, E.,
Weg, V. De, Martine, J., Callaghan, T. V., Aerts, R., van Logtestijn, R. S.
P., Swart, E., van de Weg, M. J., Callaghan, T. V., and Aerts, R.: Carbon
respiration from subsurface peat accelerated by climate warming in the
subarctic, Nature, 460, 616–619, https://doi.org/10.1038/nature08216, 2009.
Environment Canada: Historical Weather Data, Gov. Canada [data set], https://climate.weather.gc.ca/historical_data/search_historic_data_e.html (last access: 16 April 2022), 2021.
Fan, Z., Mcguire, A. D., Turetsky, M. R., Harden, J. W., Waddington, J. M., and Kane, E. S.: The response of soil organic carbon of a
rich fen peatland in interior Alaska to projected climate change, Glob. Change Biol., 19, 604–620, https://doi.org/10.1111/gcb.12041, 2013.
Fenner, N. and Freeman, C.: Drought induced carbon loss in peatlands., Nat. Geosci., 4., 895–900., https://doi.org/10.1038/ngeo1323, 2011.
Flanagan, L. B. and Syed, K. H.: Stimulation of both photosynthesis and
respiration in response to warmer and drier conditions in a boreal peatland
ecosystem, Glob. Change Biol., 17, 2271–2287,
https://doi.org/10.1111/j.1365-2486.2010.02378.x, 2011.
Frolking, S. E., Bubier, J., Moore, T. R., Ball, T., Bellisario, L. M.,
Bhardwaj, A., Carroll, P., Crill, P. M., Lafleur, P. M., McCaughey, J. H.,
Roulet, N. T., Suyker, A. E., Verma, S. B., Waddington, J. M., and Whiting,
G. J.: Relationship between ecosystem productivity and photosynthetically
active radiation for northern peatlands, Global Biogeochem. Cy., 12,
115–126, 1998.
Frolking, S., Roulet, N. T., Moore, T. R., Lafleur, P. M., Bubier, J. L., and
Crill, P. M.: Modeling seasonal to annual carbon balance of Mer Bleue Bog,
Ontario, Canada, Global Biogeochem. Cy., 16, 3, https://doi.org/10.1029/2001GB001457,
2002.
Gavazov, K., Albrecht, R., Buttler, A., Dorrepaal, E., Garnett, M. H., Gogo,
S., Hagedorn, F., Mills, R. T. E., Robroek, B. J. M., and Bragazza, L.:
Vascular plant-mediated controls on atmospheric carbon assimilation and peat
carbon decomposition under climate change, Glob. Change Biol., 24,
3911–3921, https://doi.org/10.1111/gcb.14140, 2018.
Griffis, T. J., Rouse, W. R., and Waddington, J. M.: Interannual variability
of net ecosystem CO2 exchange at a subarctic fen, Geography, 14,
1109–1121, 2000.
Grogan, P. and Jonasson, S.: Temperature and substrate controls on
intra-annual variation in ecosystem respiration in two subarctic vegetation
types, Glob. Change Biol., 11, 465–475,
https://doi.org/10.1111/j.1365-2486.2005.00912.x, 2005.
Hahn, V., Högberg, P., and Buchmann, N.: 14C – A tool for separation of
autotrophic and heterotrophic soil respiration, Glob. Change Biol., 12,
972–982, https://doi.org/10.1111/j.1365-2486.2006.001143.x, 2006.
Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Ostle, N. J., and Rowland,
A. P.: Bomb-14C analysis of ecosystem respiration reveals that peatland
vegetation facilitates release of old carbon, Geoderma, 153, 393–401,
2009.
He, H., Meyer, A., Jansson, P.-E., Svensson, M., Rütting, T., and Klemedtsson, L.: Simulating ectomycorrhiza in boreal forests: implementing ectomycorrhizal fungi model MYCOFON in CoupModel (v5), Geosci. Model Dev., 11, 725–751, https://doi.org/10.5194/gmd-11-725-2018, 2018.
Heimann, M. and Reichstein, M.: Terrestrial ecosystem carbon dynamics and
climate feedbacks, Nature, 451, 289–292, https://doi.org/10.1038/nature06591,
2008.
Heinemeyer, A., Croft, S., Garnett, M. H., Gloor, E., Holden, J., Lomas, M.
R., and Ineson, P.: The MILLENNIA peat cohort model: Predicting past, present
and future soil carbon budgets and fluxes under changing climates in
peatlands, Clim. Res., 45, 207–226, https://doi.org/10.3354/cr00928, 2010.
Helbig, M., Humphreys, E. R., and Todd, A.: Contrasting Temperature
Sensitivity of CO2 Exchange in Peatlands of the Hudson Bay Lowlands,
Canada, J. Geophys. Res. Biogeo., 124, 2126–2143,
https://doi.org/10.1029/2019JG005090, 2019.
Hicks Pries, C. E., Schuur, E. A. G., and Crummer, K. G.: Thawing permafrost
increases old soil and autotrophic respiration in tundra: Partitioning
ecosystem respiration using δ13C and 14C, Glob. Change Biol., 19, 649–661, https://doi.org/10.1111/gcb.12058, 2013.
Hicks Pries, C. E., Van Logtestijn, R. S. P., Schuur, E. A. G., Natali, S.
M., Cornelissen, J. H. C., Aerts, R., and Dorrepaal, E.: Decadal warming
causes a consistent and persistent shift from heterotrophic to autotrophic
respiration in contrasting permafrost ecosystems, Glob. Change Biol.,
21, 4508–4519, https://doi.org/10.1111/gcb.13032, 2015.
Humphreys, E. R., Charron, C., Brown, M., and Jones, R.: Two Bogs in the
Canadian Hudson Bay Lowlands and a Temperate Bog Reveal Similar Annual Net
Ecosystem Exchange of CO2, Arctic, Antarct. Alp. Res., 46, 103–113,
https://doi.org/10.1657/1938-4246.46.1.103, 2014.
Hungate, B. A., Holland, E. A., Jackson, R. B., Chapin III, F. S, Mooney, H. A, and, Field, C. B.:
The fate of carbon in grasslands under carbon dioxide enrichment, Nature,
388, 576–579, https://doi.org/10.1038/41550, 1997.
Iversen, C. M., Childs, J., Norby, R. J., Ontl, T. A., Kolka, R. K., Brice,
D. J., McFarlane, K. J., and Hanson, P. J.: Fine-root growth in a forested
bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat,
Plant Soil, 424, 123–143, https://doi.org/10.1007/s11104-017-3231-z, 2018.
Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M., and
Peichl, M.: Partitioning of the net CO2 exchange using an automated
chamber system reveals plant phenology as key control of production and
respiration fluxes in a boreal peatland, Glob. Change Biol., 24,
3436–3451, https://doi.org/10.1111/gcb.14292, 2018.
Jassey, V. E. J. and Signarbieux, C.: Effects of climate warming on Sphagnum
photosynthesis in peatlands depend on peat moisture and species-specific
anatomical traits, Glob. Change Biol., 25, 3859–3870,
https://doi.org/10.1111/gcb.14788, 2019.
Kalacska, M., Arroyo-Mora, J. P., de Gea, J., Snirer, E., Herzog, C., and
Moore, T. R.: Videographic analysis of Eriophorum vaginatum spatial coverage
in an Ombotrophic bog, Remote Sens., 5, 6501–6512,
https://doi.org/10.3390/rs5126501, 2013.
Kuiper, J. J., Mooij, W. M., Bragazza, L., and Robroek, B. J. M.: Plant
functional types define magnitude of drought response in peatland CO2
exchange, Ecology, 95, 123–131, https://doi.org/10.1890/13-0270.1, 2014.
Kurbatova, J., Tatarinov, F., Molchanov, A., Varlagin, A., Avilov, V.,
Kozlov, D., Ivanov, D., and Valentini, R.: Partitioning of ecosystem
respiration in a paludified shallow-peat spruce forest in the southern taiga
of European Russia, Environ. Res. Lett., 8, 4, https://doi.org/10.1088/1748-9326/8/4/045028, 2013.
Lafleur, P. M., Moore, T. R., Roulet, N. T., and Frolking, S.: Ecosystem
Respiration in a Cool Temperate Bog Depends on Peat Temperature But Not
Water Table, Ecosystems, 8, 619–629, https://doi.org/10.1007/s10021-003-0131-2,
2005.
Lai, Y. F.: Spatial and Temporal Variations of Carbon Dioxide and Methane
Fluxes Measured by Autochambers at the Mer Bleue Bog, PhD thesis, McGill University, https://escholarship.mcgill.ca/concern/theses/pz50h109d (last access: 16 April 2022),
2012.
Lai, D. Y. F., Roulet, N. T., and Moore, T. R.: The spatial and temporal
relationships between CO2 and CH4 exchange in a temperate
ombrotrophic bog, Atmos. Environ., 89, 249–259,
https://doi.org/10.1016/j.atmosenv.2014.02.034, 2014.
Lavoie, C., Grosvernier, P., Girard, M., and Marcoux, K.: Spontaneous
revegetation of mined peatlands: An useful restoration tool?, Wetl. Ecol.
Manag., 11, 97–107, 2003.
Lees, K. J., Artz, R. R. E., Chandler, D., Aspinall, T., Boulton, C. A., Buxton, J., Cowie, N. R., and Lenton, T. M.: Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery, Sci. Total Environ., 761, 143312, https://doi.org/10.1016/j.scitotenv.2020.143312, 2021.
Lin, X., Tfaily, M. M., Steinweg, J. M., Chanton, P., Esson, K., Yang, Z.
K., Chanton, J. P., Cooper, W., Schadt, C. W., and Kostka, J. E.: Microbial
community stratification linked to utilization of carbohydrates and
phosphorus limitation in a Boreal Peatland at Marcell Experimental Forest,
Minnesota, USA, Appl. Environ. Microbiol., 80, 3518–3530,
https://doi.org/10.1128/AEM.00205-14, 2014.
Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J.,
Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R.,
Bunbury, J., Chambers, F. M., Charman, D. J., Vleeschouwer, F. De, Fiałkiewicz-kozieł, B., Finkelstein, S. A., Gałka, M., Garneau, M.,
Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M. C.,
Klein, E. S., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz,
M., Large, D., Lavoie, M., Macdonald, G., Mäkilä, M., Mallon, G.,
Mathijssen, P., Mauquoy, D., Moore, T. R., Nichols, J., Reilly, B. O.,
Oksanen, P., Packalen, M., Peteet, D., Richard, P. J. H., Robinson, S.,
Ronkainen, T., Rundgren, M., Sannel, A. B. K., Tarnocai, C., Thom, T.,
Tuittila, E. S., Turetsky, M. R., Valiranta, M., van der Linden, M., van
Geel, B., van Bellen, S., Vitt, D. H., Zhao, Y., and Zhou, W.: A database and
synthesis of northern peatland soil properties and Holocene carbon and
nitrogen accumulation, Holocene Spec. Issue, 24, 1028–1042,
https://doi.org/10.1177/0959683614538073, 2014.
Maier, C. A. and Kress, L. W.: Soil CO2 evolution and root respiration
in 11 year-old loblolly pine (Pinus taeda) plantations as affected by
moisture and nutrient availability, Can. J. For. Res., 30, 347–359,
https://doi.org/10.1139/cjfr-30-3-347, 2000.
Mäkiranta, P., Riutta, T., Penttilä, T., and Minkkinen, K.: Dynamics
of net ecosystem CO2 exchange and heterotrophic soil respiration
following clearfelling in a drained peatland forest, Agric. For. Meteorol.,
150, 1585–1596, https://doi.org/10.1016/j.agrformet.2010.08.010, 2010.
Malhotra, A., Brice, D. J., Childs, J., Graham, J. D., Hobbie, E. A., Vander
Stel, H., Feron, S. C., Hanson, P. J., and Iversen, C. M.: Peatland warming
strongly increases fine-root growth, P. Natl. Acad. Sci. USA, 117,
17627–17634, https://doi.org/10.1073/pnas.2003361117, 2020.
Marinier, M., Glatzel, S., and Moore, T.: The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two
restored peatlands, eastern Canada, Ecoscience, 11, 141–149, 2004.
Mccarter, C. P. R. and Price, J. S.: Ecohydrology of Sphagnum moss hummocks:
Mechanisms of capitula water supply and simulated effects of evaporation,
Ecohydrology, 7, 33–44, https://doi.org/10.1002/eco.1313, 2014.
Melling, L., Hatano, R., and Goh, K. J.: Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia, Tellus B, 57, 1–11, https://doi.org/10.3402/tellusb.v57i1.16772, 2005.
Metcalfe, D. B., Fisher, R. A., and Wardle, D. A.: Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change, Biogeosciences, 8, 2047–2061, https://doi.org/10.5194/bg-8-2047-2011, 2011.
Minkkinen, K., Laine, J., Shurpali, N. J., Makiranta, P., Alm, J., and
Penttilä, T.: Heterotrophic soil respiration in forestry-drained
peatlands, Boreal Environ. Res., 12, 115–126, 2007.
Murphy, M., Laiho, R., and Moore, T. R.: Effects of water table drawdown on
root production and aboveground biomass in a boreal Bog, Ecosystems, 12,
1268–1282, https://doi.org/10.1007/s10021-009-9283-z, 2009.
Murphy, M. T. and Moore, T. R.: Linking root production to aboveground plant
characteristics and water table in a temperate bog, Plant Soil, 336,
219–231, https://doi.org/10.1007/s11104-010-0468-1, 2010.
Murphy, M. T., McKinley, A., and Moore, T. R.: Variations in above-and
below-ground vascular plant biomass and water table on a temperate
ombrotrophic peatland, Botany, 87, 845–853, https://doi.org/10.1139/B09-052, 2009.
Nijp, J. J., Metselaar, K., Limpens, J., Teutschbein, C., Peichl, M.,
Nilsson, M. B., Berendse, F., and van der Zee, S. E. A. T. M.: Including
hydrological self-regulating processes in peatland models: Effects on
peatmoss drought projections, Sci. Total Environ., 580, 1389–1400,
https://doi.org/10.1016/j.scitotenv.2016.12.104, 2017.
Ojanen, P., Minkkinen, K., Lohila, A., Badorek, T., and Penttilä, T.:
Chamber measured soil respiration: A useful tool for estimating the carbon
balance of peatland forest soils?, For. Ecol. Manage., 277, 132–140,
https://doi.org/10.1016/j.foreco.2012.04.027, 2012.
Oke, T. A. and Hager, H. A.: Plant community dynamics and carbon
sequestration in Sphagnum-dominated peatlands in the era of global change,
Glob. Ecol. Biogeogr., 29, 1610–1620, https://doi.org/10.1111/geb.13152, 2020.
Peichl, M., Öquist, M., Ottosson Löfvenius, M., Ilstedt, U.,
Sagerfors, J., Grelle, A., Lindroth, A., and Nilsson, M. B.: A 12-year record
reveals pre-growing season temperature and water table level threshold
effects on the net carbon dioxide exchange in a boreal fen, Environ. Res.
Lett., 9, 5, https://doi.org/10.1088/1748-9326/9/5/055006, 2014.
Pelletier, L., Garneau, M., and Moore, T. R.: Variation in CO2 exchange over three summers at microform scale in a boreal bog, Eastmain region, Quebec, Canada, J. Geophys. Res., 116, 3, https://doi.org/10.1029/2011JG001657, 2011.
Phillips, C. L., Bond-Lamberty, B., Desai, A. R., Lavoie, M., Risk, D.,
Tang, J., Todd-Brown, K., and Vargas, R.: The value of soil respiration
measurements for interpreting and modeling terrestrial carbon cycling, Plant
Soil, 413, 1–25, https://doi.org/10.1007/s11104-016-3084-x, 2017.
Porporato, A., Daly, E., and Rodriguez-Iturbe, I.: Soil water balance and
ecosystem response to climate change, Am. Nat., 164, 625–632,
https://doi.org/10.1086/424970, 2004.
Pouliot, R., Rochefort, L., and Karofeld, E.: Initiation of microtopography
in re-vegetated cutover peatlands: Evolution of plant species composition,
Appl. Veg. Sci., 15, 369–382, https://doi.org/10.1111/j.1654-109X.2011.01164.x,
2012.
Rewcastle, K. E., Moore, J. A. M., Henning, J. A., Mayes, M. A., Patterson, C. M., Wang, G., Metcalfe, D. B., and Classen, A. T.: Investigating drivers of microbial activity and respiration in a forested bog, Pedosphere, 30, 135–145, https://doi.org/10.1016/S1002-0160(19)60841-6, 2020.
Robroek, B. J. M., Albrecht, R. J. H., Hamard, S., Pulgarin, A., Bragazza,
L., Buttler, A., and Jassey, V. E. J.: Peatland vascular plant functional
types affect dissolved organic matter chemistry, Plant Soil, 407, 135–143,
https://doi.org/10.1007/s11104-015-2710-3, 2016.
Roulet, N. T., Lafleur, P. M., Richard, P. J. H., Moore, T. R., Humphreys,
E. R., and Bubier, J.: Contemporary carbon balance and late Holocene carbon
accumulation in a northern peatland, Glob. Change Biol., 13, 397–411,
https://doi.org/10.1111/j.1365-2486.2006.01292.x, 2007.
Ryan, M. G. and Law, B. E.: Interpreting, measuring, and modeling soil
respiration, Biogeochemistry, 73, 3–27, https://doi.org/10.1007/s10533-004-5167-7,
2005.
Schuur, E. A. G. and Trumbore, S. E.: Partitioning sources of soil
respiration in boreal black spruce forest using radiocarbon, Glob. Change Biol., 12, 165–176, https://doi.org/10.1111/j.1365-2486.2005.01066.x, 2006.
Shao, S.: Modeling microbial dynamics and nutrient cycles in ombrotrophic
peatlands, PhD thesis, McGill University, https://escholarship.mcgill.ca/concern/theses/3r075097j (last access: 16 April 2022), 2022.
Shao, S., Wu, J., He, H., and Roulet, N.: Integrating McGill Wetland Model
(MWM) with peat cohort tracking and microbial controls, Sci. Total Environ.,
806, 151223, https://doi.org/10.1016/j.scitotenv.2021.151223, 2022.
Stewart, H.: Partitioning belowground respiration in a northern peatland, PhD thesis, McGill University, https://escholarship.mcgill.ca/concern/theses/m613mx86t (last access: 16 April 2022), 2006.
St-Hilaire, F., Wu, J., Roulet, N. T., Frolking, S., Lafleur, P. M., Humphreys, E. R., and Arora, V.: McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments, Biogeosciences, 7, 3517–3530, https://doi.org/10.5194/bg-7-3517-2010, 2010.
Sulman, B. N., Desai, A. R., Saliendra, N. Z., Lafleur, P. M., Flanagan, L.
B., Sonnentag, O., MacKay, D. S., Barr, A. G., and Van Der Kamp, G.: CO2
fluxes at northern fens and bogs have opposite responses to inter-annual
fluctuations in water table, Geophys. Res. Lett., 37, 3–7,
https://doi.org/10.1029/2010GL044018, 2010.
Tarnocai, C.: The effect of climate change on carbon in Canadian peatlands,
Glob. Planet. Change, 53, 222–232, https://doi.org/10.1016/j.gloplacha.2006.03.012,
2006.
Tarnocai, C., Kettles, I., and Ballard, M.: Peatlands of Canada, Geol. Surv.
Canada open file 6561 [data set], https://doi.org/10.4095/288786, 2011.
Teklemariam, T. A., Lafleur, P. M., Moore, T. R., Roulet, N. T., and
Humphreys, E. R.: The direct and indirect effects of inter-annual
meteorological variability on ecosystem carbon dioxide exchange at a
temperate ombrotrophic bog, Agric. For. Meteorol., 150, 1402–1411,
https://doi.org/10.1016/j.agrformet.2010.07.002, 2010.
Turetsky, M. R. and Wieder, R. K.: Boreal bog Sphagnum refixes soil-produced
and respired 14CO2, Ecoscience, 6, 587–591,
https://doi.org/10.1080/11956860.1999.11682559, 1999.
Van Hees, P. A. W., Jones, D. L., Finlay, R., Godbold, D. L., and
Lundström, U. S.: The carbon we do not see – The impact of low molecular
weight compounds on carbon dynamics and respiration in forest soils: A
review, Soil Biol. Biochem., 37, 1–13,
https://doi.org/10.1016/j.soilbio.2004.06.010, 2005.
von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., Buchmann, N., Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., Migliavacca, M., Montagnani, L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones, Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, 2018.
Waddington, J. M., Strack, M., and Greenwood, M. J.: Toward restoring the net
carbon sink function of degraded peatlands: Short-term response in CO2
exchange to ecosystem-scale restoration, J. Geophys. Res., 115, G01008,
https://doi.org/10.1029/2009JG001090, 2010.
Wang, X., Liu, L., Piao, S., Janssens, I. A., Tang, J., Liu, W., Chi, Y.,
Wang, J., and Xu, S.: Soil respiration under climate warming: Differential
response of heterotrophic and autotrophic respiration, Glob. Change Biol.,
20, 3229–3237, https://doi.org/10.1111/gcb.12620, 2014.
Warren, J. M., Jensen, A. M., Ward, E. J., Guha, A., Childs, J.,
Wullschleger, S. D., and Hanson, P. J.: Divergent species-specific impacts of
whole ecosystem warming and elevated CO2 on vegetation water relations
in an ombrotrophic peatland, Glob. Change Biol., 27, 1820–1835,
https://doi.org/10.1111/gcb.15543, 2021.
Zeh, L., Igel, M. T., Schellekens, J., Limpens, J., Bragazza, L., and Kalbitz, K.: Vascular plants affect properties and decomposition of moss-dominated peat, particularly at elevated temperatures, Biogeosciences, 17, 4797–4813, https://doi.org/10.5194/bg-17-4797-2020, 2020.
Short summary
Peatland respiration is made up of plant and peat sources. How to separate these sources is not well known as peat respiration is not straightforward and is more influenced by vegetation dynamics than previously thought. Results of plot level measurements from shrubs and sparse grasses in a woody bog show that plants' respiration response to changes in climate is related to their different root structures, implying a difference in the mechanisms by which they obtain water resources.
Peatland respiration is made up of plant and peat sources. How to separate these sources is not...
Altmetrics
Final-revised paper
Preprint