Articles | Volume 19, issue 13
https://doi.org/10.5194/bg-19-3285-2022
https://doi.org/10.5194/bg-19-3285-2022
Research article
 | 
15 Jul 2022
Research article |  | 15 Jul 2022

Controls on autotrophic and heterotrophic respiration in an ombrotrophic bog

Tracy E. Rankin, Nigel T. Roulet, and Tim R. Moore

Related authors

Patterns and drivers of organic matter decomposition in peatland open-water pools
Julien Arsenault, Julie Talbot, Tim R. Moore, Klaus-Holger Knorr, Henning Teickner, and Jean-François Lapierre
EGUsphere, https://doi.org/10.5194/egusphere-2024-271,https://doi.org/10.5194/egusphere-2024-271, 2024
Short summary
Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023,https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Water level variation at a beaver pond significantly impacts net CO2 uptake of a continental bog
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023,https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Modelling the habitat preference of two key Sphagnum species in a poor fen as controlled by capitulum water content
Jinnan Gong, Nigel Roulet, Steve Frolking, Heli Peltola, Anna M. Laine, Nicola Kokkonen, and Eeva-Stiina Tuittila
Biogeosciences, 17, 5693–5719, https://doi.org/10.5194/bg-17-5693-2020,https://doi.org/10.5194/bg-17-5693-2020, 2020
Short summary
Integrating aquatic and terrestrial biogeochemical model to predict effects of reservoir creation on CO2 emissions
Weifeng Wang, Nigel T. Roulet, Youngil Kim, Ian B. Strachan, Paul del Giorgio, Yves T. Prairie, and Alain Tremblay
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-100,https://doi.org/10.5194/bg-2016-100, 2016
Revised manuscript not accepted
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024,https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024,https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024,https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024,https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024,https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary

Cited articles

Abdi, H.: Coefficient of Variation, in: Encyclopeadia of Research Design, edited by: Salkind, N., Thousand Oaks, CA, Sage, 2010169–171, https://personal.utdallas.edu/~herve/abdi-cv2010-pretty.pdf (last access: 13 July 2022), 2010. 
Arain, M. A., Xu, B., Brodeur, J. J., Khomik, M., Peichl, M., Beamesderfer, E., restrepo-Couple, N., and Thorne, R.: Heat and Drought Impact on Carbon Exchange in an Age-Sequence of temperate pine forests, Ecol. Process., 11, 7, https://doi.org/10.1186/s13717-021-00349-7, 2022. 
Basiliko, N., Stewart, H., Roulet, N. T., and Moore, T. R.: Do Root Exudates Enhance Peat Decomposition?, Geomicrobiol. J., 29, 374–378, https://doi.org/10.1080/01490451.2011.568272, 2012. 
Belyea, L. R. and Malmer, N.: Carbon sequestration in peatland: patterns and mechanisms of response to climate change, Glob. Change Biol., 10, 1043–1052, https://doi.org/10.1111/j.1529-8817.2003.00783.x, 2004. 
Download
Short summary
Peatland respiration is made up of plant and peat sources. How to separate these sources is not well known as peat respiration is not straightforward and is more influenced by vegetation dynamics than previously thought. Results of plot level measurements from shrubs and sparse grasses in a woody bog show that plants' respiration response to changes in climate is related to their different root structures, implying a difference in the mechanisms by which they obtain water resources.
Altmetrics
Final-revised paper
Preprint