Articles | Volume 20, issue 4
https://doi.org/10.5194/bg-20-839-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-839-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temporal and spatial evolution of bottom-water hypoxia in the St Lawrence estuarine system
Mathilde Jutras
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, McGill University, 3450
University Street, Montreal, QC, H3A OE8, Canada
Université Laval, 1045 av. de la Médecine, Québec, QC, G1V 0A6, Canada
Alfonso Mucci
Department of Earth and Planetary Sciences, McGill University, 3450
University Street, Montreal, QC, H3A OE8, Canada
Université du Québec à Montréal, 201 av. du Président-Kennedy, Montréal, QC, H2X 3Y7, Canada
Gwenaëlle Chaillou
Institut des Sciences de la Mer de Rimouski (ISMER) – Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
Université Laval, 1045 av. de la Médecine, Québec, QC, G1V 0A6, Canada
William A. Nesbitt
Department of Oceanography, Dalhousie University, Steele Ocean
Sciences Building, 1355 Oxford St., P.O. Box 15000, Halifax, NS, B3H
4R2, Canada
Douglas W. R. Wallace
Department of Oceanography, Dalhousie University, Steele Ocean
Sciences Building, 1355 Oxford St., P.O. Box 15000, Halifax, NS, B3H
4R2, Canada
Related authors
No articles found.
Lennart Gerke, Toste Tanhua, William A. Nesbitt, Samuel W. Stevens, and Douglas W. R. Wallace
EGUsphere, https://doi.org/10.5194/egusphere-2025-3999, https://doi.org/10.5194/egusphere-2025-3999, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Transient tracer data, measured for the first time in 2022 in the Gulf of St. Lawrence, reveal older deep waters in the east than the west, contrary to expected estuarine circulation, indicating increased influence of older, warmer, less oxygenated North Atlantic Central Water over younger, oxygen-rich Labrador Current Water. While consistent with previous reports of increasing NACW contribution, our results contradict claims of a complete shift to NACW by 2021, showing that LCW still persists.
William A. Nesbitt, Samuel W. Stevens, Alfonso O. Mucci, Lennart Gerke, Toste Tanhua, Gwénaëlle Chaillou, and Douglas W. R. Wallace
EGUsphere, https://doi.org/10.5194/egusphere-2025-2400, https://doi.org/10.5194/egusphere-2025-2400, 2025
Short summary
Short summary
We use 20 years of oxygen measurements and recent carbon data with a tracer-calibrated 1D model to quantify oxygen loss and inorganic carbon accumulation in the deep waters of the Gulf and St. Lawrence Estuary. We further utilize the model to give a first estimate of the impact of adding pure oxygen, a by-product from green hydrogen production to these deep waters. Results show this could restore oxygen to year-2000 levels, but full recovery would require a larger input.
Aude Flamand, Jean-François Lapierre, and Gwénaëlle Chaillou
EGUsphere, https://doi.org/10.5194/egusphere-2024-2945, https://doi.org/10.5194/egusphere-2024-2945, 2024
Short summary
Short summary
In the context of climate change, increasing rates of coastal erosion and thawing of permafrost increase the fluxes of solutes to the Arctic Ocean. However, the fate of this newly mobilized material is still unclear and may alter ocean chemistry. We have explored the lateral inputs of carbon from coastal permafrost bluffs to the ocean via beaches in Kugmallit Bay. Our findings highlight that beaches may act as a permanent or transient terrestrial carbon sink, limiting its lateral export.
Alizée Dale, Marion Gehlen, Douglas W. R. Wallace, Germain Bénard, Christian Éthé, and Elena Alekseenko
EGUsphere, https://doi.org/10.5194/egusphere-2023-2538, https://doi.org/10.5194/egusphere-2023-2538, 2023
Preprint archived
Short summary
Short summary
Diatom, which is at the base of a productive food chain that supports valuable fisheries, dominates the total primary production of the Labrador Sea (LS). The synthesis of biogenic silica frustules makes them peculiar among phytoplankton but also dependent on dissolved silicate (DSi). Regular oceanographic surveys show declining DSi concentrations since the mid-1990s. With a model-based approach, we show that weakening deep winter convection was the proximate cause of DSi decline in the LS.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Bjorn Sundby, Pierre Anschutz, Pascal Lecroart, and Alfonso Mucci
Biogeosciences, 19, 1421–1434, https://doi.org/10.5194/bg-19-1421-2022, https://doi.org/10.5194/bg-19-1421-2022, 2022
Short summary
Short summary
A glacial–interglacial methane-fuelled redistribution of reactive phosphorus between the oceanic and sedimentary phosphorus reservoirs can occur in the ocean when falling sea level lowers the pressure on the seafloor, destabilizes methane hydrates, and triggers the dissolution of P-bearing iron oxides. The mass of phosphate potentially mobilizable from the sediment is similar to the size of the current oceanic reservoir. Hence, this process may play a major role in the marine phosphorus cycle.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Nicolai von Oppeln-Bronikowski, Brad de Young, Dariia Atamanchuk, and Douglas Wallace
Ocean Sci., 17, 1–16, https://doi.org/10.5194/os-17-1-2021, https://doi.org/10.5194/os-17-1-2021, 2021
Short summary
Short summary
This paper describes challenges around the direct measurement of CO2 in the ocean using ocean gliders. We discuss our method of using multiple sensor platforms as test beds to carry out observing experiments and highlight the implications of our study for future glider missions. We also show high-resolution measurements and discuss challenges and lessons learned in the context of future ocean gas measurements.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Cited articles
Audet, T., de Vernal, A., Mucci, A., Seidenkrantz, M.-S., Hillaire-Marcel,
C., Carnero-Bravo, V., and Gélinas, Y.: Benthic foraminifer assemblages
from the Laurentian Channel in the Lower Estuary and Gulf of St. Lawrence,
eastern Canada: tracers of bottom water hypoxia, J. Foramin. Res., 53,
57–77, https://doi.org/10.2113/gsjfr.53.1.57, 2023.
Bailey, J. E. and Ollis, D. F.: Applied enzyme catalysis, Biochem. Eng.
Fundamentals, 2, 157–227, 1986.
Belley, R., Archambault, P., Sundby, B., Gilbert, F., and Gagnon, J.-M.: Effects
of hypoxia on benthic macrofauna and bioturbation in the Estuary and Gulf of
St. Lawrence, Canada, Cont. Shelf Res., 30, 1302–1313, https://doi.org/10.1016/j.csr.2010.04.010, 2010.
Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V.
A., Hallberg, R., Hilmi, N. J. M., Jiao, N., Karim, M. S., Levin, L.,
O'Donoghue, S., Purca Cuicapusa, S. R., Rinkevich, B., Suga, T., Tagliabue,
A., and Williamson, P.: Changing ocean, marine ecosystems, and dependent
communities, IPCC special report on the ocean and cryosphere in a changing climate, 477–587, https://eprints.qut.edu.au/206805/ (last access: 14 February 2023), 2019.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, 6371, https://doi.org/10.1126/science.aam7240, 2018.
Brown-Vuillemin, S., Chabot, D., Nozères, C., Tremblay, R., Sirois, P.,
and Robert, D.: Diet composition of redfish (Sebastes sp.) during periods of
population collapse and massive resurgence in the Gulf of St. Lawrence,
Front. Mar. Sci., 9, 963039, https://doi.org/10.3389/fmars.2022.963039, 2022.
Bugden, G. L.: Changes in the temperature-salinity characteristics of the
deeper waters of the Gulf of St. Lawrence over the past several decades, The
Gulf of St. Lawrence: Small Ocean or Big Estuary, Can. Sp. Pub. Fish. Aquat. Sci., 113, 139–147, 1991.
Chabot, D. and Claireaux, G.: Environmental hypoxia as a metabolic
constraint on fish: the case of Atlantic cod, Gadus morhua, Mar. Pollut. Bull.,
57, 287–294, https://doi.org/10.1016/j.marpolbul.2008.04.001,
2008.
Chabot, D. and Dutil, J. D.: Reduced growth of Atlantic cod in non-lethal
hypoxic conditions, J. Fish Biol., 55, 472–491,
https://doi.org/10.1006/jfbi.1999.1005, 1999.
Cyr, F., Bourgault, D., Galbraith, P. S., and and Gosselin, M.: Turbulent
nitrate fluxes in the Lower St. Lawrence Estuary, Canada, J. Geophys.
Res.-Oceans, 120, 2308–2330, https://doi.org/10.1002/2014JC010272,
2015.
D'Amours, D.: The distribution of cod (Qadus morhua) in relation to temperature and
oxygen level in the Gulf of St. Lawrence, Fish Oceanogr., 2, 24–29,
https://doi.org/10.1111/j.1365-2419.1993.tb00009.x, 1993.
Department of Fisheries and Oceans Canada: BioChem, Department of Fisheries and Oceans Canada [data set], dataset, https://www.dfo-mpo.gc.ca/science/data-donnees/biochem/index-eng.html last access: September 2020.
Devine, L., Kennedy, M. K., St Pierre, I., Lafleur, C., Ouellet, M., and
Bond, S.: BioChem: The Fisheries and oceans Canada Database for Biological
and chemical data, Can. Tech. Rep. Fish Aquat. Sci., 3073, 40, https://publications.gc.ca/collections/collection_2014/mpo-dfo/Fs97-6-3073-eng.pdf (last access: 15 February 2023), 2014.
DFO.: BioChem: Database of biological and chemical oceanographic data,
http://www.dfo-mpo.gc.ca/science/data-donnees/biochem/index-eng.html (last access: September 2020),
2019.
Dickie, L. and Trites, R.: The Gulf of St. Lawrence, in:
Ecosystems of the World: Estuaries and enclosed seas, edited by: Ketchum, B., New
York, NY, Elsevier, 403–425, ISBN 9780444419217, 1983.
Dupont-Prinet, A., Pillet, M., Chabot, D., Hansen, T., Tremblay, R., and
Audet, C.: Northern shrimp (Pandalus borealis) oxygen consumption and metabolic enzyme
activities are severely constrained by hypoxia in the Estuary and Gulf of
St. Lawrence, J. Exp. Mar. Biol. Ecol., 448, 298–307,
https://doi.org/10.1016/j.jembe.2013.07.019, 2013.
Environment and Climate Change Canada: Canadian environmental sustainability
indicators: Nutrients in the St. Lawrence River, https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/nutrients-st-lawrence-river.html (last access: September 2020), 2018.
Galbraith, P. S.: Winter water masses in the Gulf of St. Lawrence, J. Geophys.
Res., 111, C06022, https://doi.org/10.1029/2005JC003159, 2006.
Genovesi, L., de Vernal, A., Thibodeau, B., Hillaire-Marcel, C., Mucci, A.,
and Gilbert, D.: Recent changes in bottom water oxygenation and temperature
in the Gulf of St. Lawrence: Micropaleontological and geochemical evidence,
Limnol. Oceanogr., 56, 1319–1329, https://doi.org/10.4319/lo.2011.56.4.1319, 2011.
Gilbert, D.: Propagation of temperature signals along the northwest Atlantic
continental shelf edge and into the Laurentian Channel. Abstract, ICES CM
Annual Science Conference, Vigo, Spain, September 2004, 22–25, 2004.
Gilbert, D., Sundby, B., Gobeil, C., Mucci, A., and Tremblay, G.-H.: A
seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence
Estuary: The Northwest Atlantic connection, Limnol. Oceanogr., 50, 1654–1666,
https://doi.org/10.4319/lo.2005.50.5.1654, 2005.
Gilbert, D., Rabalais, N. N., Díaz, R. J., and Zhang, J.: Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean, Biogeosciences, 7, 2283–2296, https://doi.org/10.5194/bg-7-2283-2010, 2010.
Goyette, J.-O., Bennett, E. M., Howarth, R. W., and Maranger, R.: Changes in
anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin
over 110 years and impacts on riverine export, Global Biogeochem. Cy., 30,
1000–1014, https://doi.org/10.1002/2016GB005384, 2016.
Grasshoff, K., Kremling, K., and Ehrhardt, M. (Eds.): Methods of Seawater
Analysis 3rd Edn., Wiley-VCH, Weinheim, Germany, ISBN 3-527-29589-5, 1999.
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S.,
Florindo-López, C., Hátún, H., Johns, W., Josey, S. A.,
Margretha, K., Larsen, H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby,
T., Thierry, V., Valdimarsson, H., and Yashayaev, I.: Ocean circulation
causes the largest freshening event for 120 years in eastern subpolar North
Atlantic, Nat. Commun., 11, 1–15, https://doi.org/10.1038/s41467-020-14474-y, 2020.
Hudon, C., Gagnon, P., Rondeau, M., Hebert, S., Gilbert, D., Hill, B., Patoine, M.,
and Starr, M.: Hydrological and biological processes modulate carbon,
nitrogen and phosphorus flux from the St. Lawrence River to its estuary
(Quebec, Canada), Biogeochemistry, 135, 251–276,
https://doi.org/10.1007/s10533-017-0371-4, 2017.
Ingram, R.: Vertical mixing at the head of the Laurentian Channel, Estuar.
Coast. Shelf. S., 16, 333–338,
https://doi.org/10.1016/0272-7714(83)90150-6, 1983.
Jutras, M., Mucci, A., Sundby, B., Gratton, Y., and Katsev, S.: Nutrient
cycling in the Lower St. Lawrence Estuary: Response to environmental
perturbations, Estuar Coast. Shelf. S., 239, 106715, https://doi.org/10.1016/j.ecss.2020.106715, 2020a.
Jutras, M., Dufour, C. O., Mucci, A., Cyr, F., and Gilbert, D.: Temporal
changes in the causes of the observed oxygen decline in the St. Lawrence
Estuary, J Geophys. Res.-Oceans, 125, e2020JC016577,
https://doi.org/10.1029/2020JC016577, 2020b.
Jutras, M., Dufour, C., Mucci, A., and Talbot, L.: Remote control of the retroflection of the Labrador Current, PREPRINT (Version 1), Research Square, https://doi.org/10.21203/rs.3.rs-2045201/v1, 2023.
Karstensen, J. and Tomczak, M.: Age determination of mixed water masses
using CFC and oxygen data, J. Geophys. Res.-Oceans, 103, 18599–18609,
https://doi.org/10.1029/98JC00889, 1998.
Katsev, S., Chaillou, G., Sundby, B., and Mucci, A.: Impact of progressive
oxygen depletion on sediment diagenesis and fluxes: A model for the Lower
St. Lawrence Estuary, Limnol. Oceanogr., 52, 2555–2568, https://doi.org/10.4319/lo.2007.52.6.2555, 2007.
Lefort, S., Mucci, A., and Sundby, B.: Sediment response to 25 years of
persistent hypoxia, Aquat. Geochem., 18, 461–474,
https://doi.org/10.1007/s10498-012-9173-4, 2012.
Levin, L. A.: Oxygen minimum zone benthos: adaptation and community response
to hypoxia, in: Oceanography and Marine Biology: an Annual Review, edited by:
Gibson, R. N. and Atkinson, R. J. A., Taylor & Francis, 41, 1–45, https://doi.org/10.1201/9781420050943, 2003.
Li, D. J., Zhang, J., Huang, D. J., Wu, Y., and Liang, J.: Oxygen depletion off
the Changjiang (Yangtze River) Estuary, Sci. China Ser. D, 45, 1137–1146, 2002.
Mitchell, M. R., Harrison, G., Paule, K., Gagne, A., Maillet, G., and
Strain, P.: Atlantic zonal Monitoring Program sampling protocol, Canadian
Technical Report of Hydrography and Ocean Sciences, 223,
ISSN0711-6764, https://publications.gc.ca/collections/collection_2007/dfo-mpo/Fs97-18-223-2002E.pdf (last access: February 2023), 2002.
Mucci, A. and Jutras, M.: Coriolis Hydrographic Dataset, OSF [data set], https://doi.org/10.17605/OSF.IO/576TJ, 2020.
New, A. L., Smeed, D. A., Czaja, A., Blaker, A. T., Mecking, J. V., Mathews,
J. P., and Sanchez-Franks, A.: Labrador Slope Water connects the subarctic
with the Gulf Stream, Environ. Res. Lett., 16, 084019,
https://doi.org/10.1088/1748-9326/ac1293, 2021.
Petersen, L. H. and Gamperl, A. K.: Effect of acute and chronic hypoxia on
the swimming performance, metabolic capacity and cardiac function of
Atlantic cod (Gadus morhua), J. Exp. Biol., 213, 808–819,
https://doi.org/10.1242/jeb.033746, 2010.
Rabalais, N. N., Díaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., and Zhang, J.: Dynamics and distribution of natural and human-caused hypoxia, Biogeosciences, 7, 585–619, https://doi.org/10.5194/bg-7-585-2010, 2010.
Riedel, G. F., Sanders, J. G., and Osman, R. W.: Biogeochemical control on the
flux of trace elements from estuarine sediments: water column oxygen
concentrations and benthic infauna, Estuar Coast. Shelf. S., 44, 23–38,
https://doi.org/10.1006/ecss.1996.0114, 1997.
Riedel, G. F., Sanders, J. G., and Osman, R. W.: Biogeochemical control on the
flux of elements from estuarine sediments: effects of seasonal and
short-term hypoxia, Mar. Environ. Res., 47, 349–372,
https://doi.org/10.1016/S0141-1136(98)00125-1, 1999.
Saucier, F. J. and Chassé, J.: Tidal circulation and buoyancy effects
in the St. Lawrence Estuary, Atmos. Ocean, 38, 505–556, https://doi.org/10.1080/07055900.2000.9649658, 2000.
Statistics Canada: Use of fertilizer and pesticides, Table 38-10-0052-01, https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3810005201 (last access: 15 February 2023), 2021.
Thibodeau, B., de Vernal, A., and Mucci, A.: Recent eutrophication and
consequent hypoxia in the bottom waters of the Lower St. Lawrence Estuary:
Micropaleontological and geochemical evidence, Mar. Geol., 231, 37–50,
https://doi.org/10.1016/j.margeo.2006.05.010, 2006.
Tomczak, M. and Large, D. G.: Optimum multiparameter analysis of mixing in
the thermocline of the eastern Indian Ocean, J. Geophys. Res.-Oceans, 94,
16141–16149, https://doi.org/10.1029/JC094iC11p16141, 1989.
Tomczak Jr., M.: A multi-parameter extension of temperature/salinity diagram
techniques for the analysis of non-isopycnal mixing, Prog. Oceanogr., 10,
147–171, https://doi.org/10.1016/0079-6611(81)90010-0, 1981.
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced...
Altmetrics
Final-revised paper
Preprint