Articles | Volume 21, issue 7
https://doi.org/10.5194/bg-21-1785-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-1785-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hypoxia also occurs in small highly turbid estuaries: the example of the Charente (Bay of Biscay)
Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France
Ibrahima Iris Diallo
Rectorat de Bordeaux, 33000 Bordeaux, France
Related authors
Anna Bang Kvorning, Marie-Alexandrine Sicre, Gregor Luetzenburg, Sabine Schmidt, Thorbjørn Joest Andersen, Vincent Klein, Eleanor Georgiadis, Audrey Limoges, Jacques Giraudeau, Anders Anker Bjørk, Nicolaj Krog Larsen, and Sofia Ribeiro
EGUsphere, https://doi.org/10.5194/egusphere-2025-2641, https://doi.org/10.5194/egusphere-2025-2641, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We compare two marine sediment cores collected from contrasting locations in Kane Basin, northwest Greenland. The two sites differ in terms of sedimentation rates, primary production, and organic matter composition and source. Despite these spatial differences, both records reveal a similar long-term trend, a shift from cold, heavy sea ice influenced conditions between ca. 1750–1900 CE, towards more open, fresher, and biologically productive waters beginning around 1950 CE.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Anna Bang Kvorning, Marie-Alexandrine Sicre, Gregor Luetzenburg, Sabine Schmidt, Thorbjørn Joest Andersen, Vincent Klein, Eleanor Georgiadis, Audrey Limoges, Jacques Giraudeau, Anders Anker Bjørk, Nicolaj Krog Larsen, and Sofia Ribeiro
EGUsphere, https://doi.org/10.5194/egusphere-2025-2641, https://doi.org/10.5194/egusphere-2025-2641, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We compare two marine sediment cores collected from contrasting locations in Kane Basin, northwest Greenland. The two sites differ in terms of sedimentation rates, primary production, and organic matter composition and source. Despite these spatial differences, both records reveal a similar long-term trend, a shift from cold, heavy sea ice influenced conditions between ca. 1750–1900 CE, towards more open, fresher, and biologically productive waters beginning around 1950 CE.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Cited articles
Abril, G., Commarieu, M.-V., Sottolichio, A., Bretel, P., and Guérin, F.: Turbidity limits gas exchange in a large macrotidal estuary, Estuar. Coast. Shelf S., 83, 342–348, https://doi.org/10.1016/j.ecss.2009.03.006, 2009.
Alabaster, J. S. and Gough, P. J.: The dissolved oxygen and temperature requirements of Atlantic salmon, Salmo salar L., in the Thames Estuary, J. Fish Biol., 29, 613–621, https://doi.org/10.1111/j.1095-8649.1986.tb04977.x, 1986.
Allen, G. P., Salomon, J. C., Bassoullet, P., Du Penhoat, Y., and De Grandpré, C.: Effects of tides on mixing and suspended sediment transport in macrotidal estuaries, Sediment. Geol., 26, 69–90, https://doi.org/10.1016/0037-0738(80)90006-8, 1980.
Andrews, M. J. and Rickard, D. G.: Rehabilitation of the inner Thames estuary, Mar. Pollut. Bull., 11, 327–332, https://doi.org/10.1016/0025-326X(80)90051-X, 1980.
Arevalo, E., Cabral, H. N., Villeneuve, B., Possémé, C., and Lepage, M.: Fish larvae dynamics in temperate estuaries: A review on processes, patterns and factors that determine recruitment, Fish Fish., 27, 3200–3217, https://doi.org/10.1111/faf.12740, 2023.
Auguet, J. C., Montanié, H., Delmas, D., Hartmann, H. J., and Huet, V.: Dynamic of virioplankton abundance and its environmental control in the Charente estuary (France), Microb. Ecol., 50, 337–349, https://doi.org/10.1007/s00248-005-0183-2, 2005.
Benson, B. B. and Krause, D.: The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnol. Oceanogr., 29, 620–632, https://doi.org/10.4319/lo.1984.29.3.0620, 1984.
Best, M. A., Wither, A. W., and Coastes, S.: Dissolved oxygen as a physico-chemical supporting element in the water framework directive, Mar. Pollut. Bull., 55, 53–64, https://doi.org/10.1016/j.marpolbul.2006.08.037, 2007.
Billen, G., Garnier, J., and Rousseau, V.: Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50 years, Hydrobiologia, 540, 47–67, https://doi.org/10.1007/s10750-004-7103-1, 2005.
Breitburg, D.: Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries, Estuaries, 25, 767–781, https://doi.org/10.1007/BF02804904, 2002.
Brosnan, T. M. and O'Shea, M. L.: Long-term improvements in water quality due to sewage abatement in the lower Hudson river, Estuaries, 19, 890–990, https://doi.org/10.2307/1352305, 1996.
Chust, G., Caballero, A., Marcos, M., Liria, P., Hernández, C., and Borja, A.: Regional scenarios of sea level rise and impacts on Basque (Bay of Biscay) coastal habitats, throughout the 21st century, Estuar. Coast. Shelf S., 87, 113–124, https://doi.org/10.1016/j.ecss.2009.12.021, 2010.
Conley, D. J., Carstensen, J., Vaquer-Sunyer, R., and Duarte, C. M.: Ecosystem thresholds with hypoxia, Hydrobiologia, 629, 21–29, https://doi.org/10.1007/s10750-009-9764-2, 2009.
Curran, J. C. and Henderson, A. R.: The oxygen requirements of a polluted estuary for the establishment of a migratory salmon, Salmo salar L., population, J. Fish Biol., 33, 63–69, https://doi.org/10.1111/j.1095-8649.1988.tb05559.x, 1988.
Delage, N., Couturier, B., Jatteau, P., Larcher, T., Ledevin, M., Goubin, H., Cachot, J., and Rochard, E.: Oxythermal window drastically constraints the survival and development of European sturgeon early life phases, Environ. Sci. Pollut. R., 27, 3651–3660, https://doi.org/10.1007/s11356-018-4021-8, 2019.
Diaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401, 2008.
Etcheber, H., Schmidt, S., Sottolichio, A., Maneux, E., Chabaux, G., Escalier, J.-M., Wennekes, H., Derriennic, H., Schmeltz, M., Quéméner, L., Repecaud, M., Woerther, P., and Castaing, P.: Monitoring water quality in estuarine environments: lessons from the MAGEST monitoring program in the Gironde fluvial-estuarine system, Hydrol. Earth Syst. Sci., 15, 831–840, https://doi.org/10.5194/hess-15-831-2011, 2011.
EPTB Charente: La préservation des poissons migrateurs, Protecting migratory fish, http://www.fleuve-charente.net/domaines/la-preservation-des-poissons-migrateurs (last access: 2 August 2023), 2023.
García-Barcina, J. M., González-Oreja, J. A., and De la Sota, A.: Assessing the improvement of the Bilbao estuary water quality in response to pollution abatement measures, Water Res., 40, 951–960, https://doi.org/10.1016/j.watres.2006.01.004, 2006.
Gilbert, D., Rabalais, N. N., Díaz, R. J., and Zhang, J.: Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean, Biogeosciences, 7, 2283–2296, https://doi.org/10.5194/bg-7-2283-2010, 2010.
Goosen, N. K., Kromkamp, J., Peene, J., van Rijswijk, P., and van Breugel, P.: Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: the Elbe, Westerschelde and Gironde, J. Marine Syst., 22, 151–171, 1999.
Goulletquer, P. and Heral, M.: Marine molluscan production trends in France: from fisheries to aquaculture, NOAA Technical Report NMFS, 129, 137–164, https://archimer.ifremer.fr/doc/00000/2391/ (last access: 23 December 2023), 1997.
Hugman, S. J., O'Donnell, A. R., and Mance, G.: A survey of estuarine oxygen concentrations in relation to the passage of migratory salmonids, Wat. Res. Centre Rep. 745-M, 1984.
Jalón-Rojas, I., Schmidt, S., and Sottolichio, A.: Comparison of physical forcings affecting suspended sediments dynamics in two macrotidal, highly-turbid estuaries, Estuar. Coast. Shelf S., 198, 529–541, https://doi.org/10.1016/j.ecss.2017.02.017, 2017.
Kemp, W. M., Testa, J. M., Conley, D. J., Gilbert, D., and Hagy, J. D.: Temporal responses of coastal hypoxia to nutrient loading and physical controls, Biogeosciences, 6, 2985–3008, https://doi.org/10.5194/bg-6-2985-2009, 2009.
Lajaunie-Salla, K., Sottolichio, A., Schmidt, S., Litrico, X., Binet, G., and Abril, G.: Comparing the efficiency of hypoxia mitigation strategies in an urban, turbid tidal river via a coupled hydro-sedimentary–biogeochemical model, Nat. Hazards Earth Syst. Sci., 19, 2551–2564, https://doi.org/10.5194/nhess-19-2551-2019, 2019.
Lanoux, A., Etcheber, H., Schmidt, S., Sottolichio, A., Chabaud, G., Richard, M., and Abril, G.: Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France), Environ. Sci.-Proc. Imp., 15, 585–595, https://doi.org/10.1039/c2em30874f, 2013.
Lassalle, G., Crouzet, P., Gessner, J., and Rochard, E.: Global warming impacts and conservation responses for the critically endangered European Atlantic sturgeon, Biol. Conserv., 143, 2441–2452, https://doi.org/10.1016/j.biocon.2010.06.008, 2010.
Le Pape, O., Chauvet, F., Mahévas, S., Lazure, P., Guérault, D., and Désaunay, Y.: Quantitative description of habitat suitability for the juvenile common sole (Solea solea, L.) in the Bay of Biscay (France) and the contribution of different habitats to the adult population, J. Sea Res., 50, 139–149, https://doi.org/10.1016/S1385-1101(03)00059-5, 2003.
Modéran, J., David, V., Bouvais, P., Richard, P., and Fichet, D.: Organic matter exploitation in a highly turbid environment: Planktonic food web in the Charente estuary, France, Estuar. Coast. Shelf S., 98, 126–137, https://doi.org/10.1016/j.ecss.2011.12.018, 2012.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future coastal population growth and exposure to sea-level rise and coastal flooding – a global assessment, Plos One, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571, 2015.
Ringle, C. M., Wende, S., and Becker, J.-M.: SmartPLS 4, SmartPLS GmbH, Oststeinbek, http://www.smartpls.com (last access: 3 June 2023), 2022.
Ringle, C. M., Sarstedt, M., Sinkovics, N., and Sinkovics, R. R.: A perspective on using partial least squares structural equation modelling in data articles, Data in Brief, 48, 109074, https://doi.org/10.1016/j.dib.2023.109074, 2023.
Sampaio, E., Santos, C., Rosa, I. C., Ferreira, V., Pörtner, H.-O., Duarte, C. M., Levin, L. A., and Rosa, R.: Impacts of hypoxic events surpass those of future ocean warming and acidification, Nat. Ecol. Evol., 5, 311–321, https://doi.org/10.1038/s41559-020-01370-3, 2021.
Schmidt, S. and Diallo, I. I.: Temperature, salinity, dissolved oxygen, suspended particulate matter and fluorescence in surface waters of the Charente estuary (North East Atlantic, France), SEANOE [data set], https://doi.org/10.17882/95886, 2023.
Schmidt, S., Bernard, C., Escalier, J.-M., Etcheber, H., and Lamouroux, M.: Assessing and managing the risks of hypoxia in transitional waters: a case study in the tidal Garonne River (South-West France), Environ. Sci. Pollut. R., 24, 3251–3259, https://doi.org/10.1007/s11356-016-7654-5, 2017.
Schmidt, S., Diallo, I. I., Derriennic, H., Fallou, H., and Lepage, M.: Exploring the susceptibility of turbid estuaries to hypoxia as a prerequisite to designing a pertinent monitoring strategy of dissolved oxygen, Front. Mar. Sci., 6, 352, https://doi.org/10.3389/fmars.2019.00352, 2019.
SIE Adour Garonne: Adour Garonne Basin Water Information System, SIE Adour Garonne [data set], https://adour-garonne.eaufrance.fr/ (last access: 3 June 2023), 2023.
Simon, A., Poppeschi, C., Plecha, S., Charria, G., and Russo, A.: Coastal and regional marine heatwaves and cold spells in the northeastern Atlantic, Ocean Sci., 19, 1339–1355, https://doi.org/10.5194/os-19-1339-2023, 2023.
Sperna Weiland, F. C., Visser, R. D., Greve, P., Bisselink, B., Brunner, L., and Weerts, A. H.: Estimating Regionalized Hydrological Impacts of Climate Change Over Europe by Performance-Based Weighting of CORDEX Projections, Front. Water, 3, 713537, https://doi.org/10.3389/frwa.2021.713537, 2021.
Stramma, L., Prince, E. D., Schmidko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, D. W. R., Brandt, P., and Körtzinger, A.: Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes, Nat. Clim. Change, 2, 33–37, https://doi.org/10.1038/nclimate1304, 2011.
Talke, S. A., Swart, H. E., and de Jonge, V. N.: An Idealized Model and Systematic Process Study of Oxygen Depletion in Highly Turbid Estuaries, Estuar. Coast., 32, 602–620, https://doi.org/10.1007/s12237-009-9171-y, 2009.
Toublanc, F., Brenon, I., and Coulombier, T., Formation and structure of the turbidity maximum in the macrotidal Charente estuary (France): Influence of fluvial and tidal forcing, Estuar. Coast. Shelf S., 169, 1–14, https://doi.org/10.1016/j.ecss.2015.11.019, 2016.
Uncles, R. J., Stephens, J. A., and Smith, R. E.: The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time, Cont. Shelf Res., 22, 1835–1856, https://doi.org/10.1016/S0278-4343(02)00041-9, 2002.
Vaquer-Sunyer, R. and Duarte, C. M.: Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms, Glob. Change Biol., 17, 1788–1797, https://doi.org/10.1111/j.1365-2486.2010.02343.x, 2011.
Verberk, W. C. E. P., Sandker, J. F., van de Pol, I. L. E., Urbina, M. A., Wilson, R. W., McKenzie, D. J., and Leiva, F. P.: Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature-dependent manner, Glob. Change Biol., 28, 5695–5707, https://doi.org/10.1111/gcb.16319, 2022.
Villate, F., Iriarte, A., Uriarte, I., Intxausti, L., and de la Sota, A.: Dissolved oxygen in the rehabilitation phase of an estuary: Influence of sewage pollution abatement and hydro-climatic factors, Mar. Pollut. Bull., 70, 234–246, https://doi.org/10.1016/j.marpolbul.2013.03.010, 2013.
Wang, W., Zhang, F., Zhao, Q., Liu, C., Jim, C. Y., Johnson, V. C., and Tan, M. L.: Determining the main contributing factors to nutrient concentration in rivers in arid northwest China using partial least squares structural equation modelling, J. Environ. Manage., 343, 118249, https://doi.org/10.1016/j.jenvman.2023.118249, 2023.
Woodland, R. J., Secor, D. H., and Niklitschek, E. J.: Past and future habitat suitability for the Hudson river population of shortnose sturgeon: a bioenergetic approach to modeling habitat suitability for an endangered species, Am. Fish. S. S., 69, 589–604, 2009.
Zhang, H. and Li, S.: Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer, J. Marine Syst., 79, 65–88, 2010.
Short summary
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer from hypoxia. This prompted a study of the small Charente estuary located between them. This work reveals a minimum oxygen zone in the Charente estuary, which extends for about 25 km. Temperature is the main factor controlling the hypoxia. This calls for the monitoring of small turbid macrotidal estuaries that are vulnerable to hypoxia, a risk expected to increase with global warming.
Along the French coast facing the Bay of Biscay, the large Gironde and Loire estuaries suffer...
Altmetrics
Final-revised paper
Preprint