Articles | Volume 21, issue 19
https://doi.org/10.5194/bg-21-4239-2024
https://doi.org/10.5194/bg-21-4239-2024
Research article
 | 
30 Sep 2024
Research article |  | 30 Sep 2024

Elemental stoichiometry of particulate organic matter across the Atlantic Ocean

Adam J. Fagan, Tatsuro Tanioka, Alyse A. Larkin, Jenna A. Lee, Nathan S. Garcia, and Adam C. Martiny

Related authors

Phytoplankton community succession and biogeochemistry in a bloom simulation experiment at an estuary-ocean interface
Jenna Alyson Lee, Joseph H. Vineis, Mathieu A. Poupon, Laure Resplandy, and Bess B. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-871,https://doi.org/10.5194/egusphere-2025-871, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2
Allison R. Moreno, George I. Hagstrom, Francois W. Primeau, Simon A. Levin, and Adam C. Martiny
Biogeosciences, 15, 2761–2779, https://doi.org/10.5194/bg-15-2761-2018,https://doi.org/10.5194/bg-15-2761-2018, 2018
Short summary
C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean
A. Singh, S. E. Baer, U. Riebesell, A. C. Martiny, and M. W. Lomas
Biogeosciences, 12, 6389–6403, https://doi.org/10.5194/bg-12-6389-2015,https://doi.org/10.5194/bg-12-6389-2015, 2015
Short summary
Phosphate supply explains variation in nucleic acid allocation but not C : P stoichiometry in the western North Atlantic
A. E. Zimmerman, A. C. Martiny, M. W. Lomas, and S. D. Allison
Biogeosciences, 11, 1599–1611, https://doi.org/10.5194/bg-11-1599-2014,https://doi.org/10.5194/bg-11-1599-2014, 2014

Related subject area

Biogeochemistry: Organic Biogeochemistry
Contrasting seasonal patterns in particle aggregation and dissolved organic matter transformation in a sub-Arctic fjord
Maria G. Digernes, Yasemin V. Bodur, Martí Amargant-Arumí, Oliver Müller, Jeffrey A. Hawkes, Stephen G. Kohler, Ulrike Dietrich, Marit Reigstad, and Maria L. Paulsen
Biogeosciences, 22, 601–623, https://doi.org/10.5194/bg-22-601-2025,https://doi.org/10.5194/bg-22-601-2025, 2025
Short summary
Methods to characterize type, relevance, and interactions of organic matter and microorganisms in fluids along the flow path of a geothermal facility
Alessio Leins, Danaé Bregnard, Andrea Vieth-Hillebrand, Stefanie Poetz, Florian Eichinger, Guillaume Cailleau, Pilar Junier, and Simona Regenspurg
Biogeosciences, 21, 5457–5479, https://doi.org/10.5194/bg-21-5457-2024,https://doi.org/10.5194/bg-21-5457-2024, 2024
Short summary
Microbial strong organic-ligand production is tightly coupled to iron in hydrothermal plumes
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024,https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Ocean liming effects on dissolved organic matter dynamics
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
Biogeosciences, 21, 5131–5141, https://doi.org/10.5194/bg-21-5131-2024,https://doi.org/10.5194/bg-21-5131-2024, 2024
Short summary
Results from a multi-laboratory ocean metaproteomic intercomparison: effects of LC-MS acquisition and data analysis procedures
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024,https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary

Cited articles

Babiker, I. S., Mohamed, M. A. A., Komaki, K., Ohta, K., and Kato, K.: Temporal Variations in the Dissolved Nutrient Stocks in the Surface Water of the Western North Atlantic Ocean, J. Oceanogr., 60, 553–562, https://doi.org/10.1023/B:JOCE.0000038348.66907.db, 2004. 
British Oceanographic Data Centre: Hydrographic Cruise: 74JC20180923, CLIVAR and Carbon Hydrographic Data Office (CCHDO) [data set], https://doi.org/10.7942/C2D08M, 2019. 
British Oceanographic Data Centre: Hydrographic Cruise: 33R020200321, CLIVAR and Carbon Hydrographic Data Office (CCHDO) [data set], https://doi.org/10.7942/C2894Z, 2020. 
Browning, T. J. and Moore, C. M.: Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation, Nat. Commun., 14, 5014, https://doi.org/10.1038/s41467-023-40774-0, 2023. 
Capone, D. G.: An iron curtain in the Atlantic Ocean forms a biogeochemical divide, P. Natl. Acad. Sci. USA, 111, 1231–1232, https://doi.org/10.1073/pnas.1322568111, 2014. 
Download
Short summary
Climate change is anticipated to influence the biological pump by altering phytoplankton nutrient distribution. In our research, we collected measurements of particulate matter concentrations during two oceanographic field studies. We observed systematic variations in organic matter concentrations and ratios across the Atlantic Ocean. From statistical modeling, we determined that these variations are associated with differences in the availability of essential nutrients for phytoplankton growth.
Share
Altmetrics
Final-revised paper
Preprint