Articles | Volume 21, issue 21
https://doi.org/10.5194/bg-21-4723-2024
https://doi.org/10.5194/bg-21-4723-2024
Research article
 | 
01 Nov 2024
Research article |  | 01 Nov 2024

Carbon degradation and mobilisation potentials of thawing permafrost peatlands in northern Norway inferred from laboratory incubations

Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch

Related authors

InSAR sensitivity to active layer ground ice content in Adventdalen, Svalbard
Lotte Wendt, Line Rouyet, Hanne H. Christiansen, Tom Rune Lauknes, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2972,https://doi.org/10.5194/egusphere-2024-2972, 2024
Short summary
Impact of livestock activity on near-surface ground temperatures in central Mongolian grasslands
Robin Benjamin Zweigel, Avirmed Dashtseren, Khurelbaatar Temuujin, Anarmaa Sharkhuu, Clare Webster, Hanna Lee, and Sebastian Westermann
Biogeosciences, 21, 5059–5077, https://doi.org/10.5194/bg-21-5059-2024,https://doi.org/10.5194/bg-21-5059-2024, 2024
Short summary
Acceleration of coastal-retreat rates for high-Arctic rock cliffs on Brøggerhalvøya, Svalbard, over the past decade
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024,https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404,https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024,https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Nitrous oxide (N2O) in Macquarie Harbour, Tasmania
Johnathan Daniel Maxey, Neil D. Hartstein, Hermann W. Bange, and Moritz Müller
Biogeosciences, 21, 5613–5637, https://doi.org/10.5194/bg-21-5613-2024,https://doi.org/10.5194/bg-21-5613-2024, 2024
Short summary
Technical note: A low-cost, automatic soil–plant–atmosphere enclosure system to investigate CO2 and evapotranspiration flux dynamics
Wael Al Hamwi, Maren Dubbert, Jörg Schaller, Matthias Lück, Marten Schmidt, and Mathias Hoffmann
Biogeosciences, 21, 5639–5651, https://doi.org/10.5194/bg-21-5639-2024,https://doi.org/10.5194/bg-21-5639-2024, 2024
Short summary
Tidal influence on carbon dioxide and methane fluxes from tree stems and soils in mangrove forests
Zhao-Jun Yong, Wei-Jen Lin, Chiao-Wen Lin, and Hsing-Juh Lin
Biogeosciences, 21, 5247–5260, https://doi.org/10.5194/bg-21-5247-2024,https://doi.org/10.5194/bg-21-5247-2024, 2024
Short summary
Drought conditions disrupt atmospheric carbon uptake in a Mediterranean saline lake
Ihab Alfadhel, Ignacio Peralta-Maraver, Isabel Reche, Enrique P. Sánchez-Cañete, Sergio Aranda-Barranco, Eva Rodríguez-Velasco, Andrew S. Kowalski, and Penélope Serrano-Ortiz
Biogeosciences, 21, 5117–5129, https://doi.org/10.5194/bg-21-5117-2024,https://doi.org/10.5194/bg-21-5117-2024, 2024
Short summary
Physicochemical perturbation increases nitrous oxide production from denitrification in soils and sediments
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024,https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary

Cited articles

Åkerman, H. J. and Johansson, M.: Thawing permafrost and thicker active layers in sub-arctic Sweden, Permafrost Periglac., 19, 279–292, https://doi.org/10.1002/ppp.626, 2008. 
Alewell, C., Giesler, R., Klaminder, J., Leifeld, J., and Rollog, M.: Stable carbon isotopes as indicators for environmental change in palsa peats, Biogeosciences, 8, 1769–1778, https://doi.org/10.5194/bg-8-1769-2011, 2011. 
Appelo C. A. J. and Postma, D.: Geochemistry, groundwater and pollution, A. A. Balkema/Rotterdam, 536 pp., ISBN 90 5410 105 9, 1993. 
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017. 
Chen, Y., Liu, F., Kang, L., Zhang, D., Kou, D., Mao, C., Qin, S., Zhang, Q., and Yang, Y.: Large-scale evidence for microbial response and associated carbon release after permafrost thaw, Glob. Change Biol., 27, 3218–3229, https://doi.org/10.1111/gcb.15487, 2020. 
Download
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4 or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 d to measure carbon loss. CO2 production was initially the highest, whereas CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Altmetrics
Final-revised paper
Preprint