Articles | Volume 21, issue 2
https://doi.org/10.5194/bg-21-473-2024
https://doi.org/10.5194/bg-21-473-2024
Reviews and syntheses
 | 
25 Jan 2024
Reviews and syntheses |  | 25 Jan 2024

Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity

Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst

Related authors

Combining soft robotics and active-laser induced fluorescence for environmental monitoring: Evaluating the drone-scenario of the I-Seed project
Lammert Kooistra, Hasib Mustafa, Domantas Girzidas, Chenglong Zhang, Berry Onderstal, and Harm Bartholomeus
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W11-2025, 177–182, https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-177-2025,https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-177-2025, 2025
UAV-assisted Multi-Object Tracking and Segmentation of Apples under Occlusions in Orchard Settings
Kaiwen Wang, Lammert Kooistra, Wensheng Wang, and João Valente
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W11-2025, 293–298, https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-293-2025,https://doi.org/10.5194/isprs-archives-XLVIII-2-W11-2025-293-2025, 2025

Cited articles

Aasen, H., Honkavaara, E., Lucieer, A., and Zarco-Tejada, P.: Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows, Remote Sens., 10, 1091, https://doi.org/10.3390/rs10071091, 2018. a, b
Abbas, S., Nichol, J. E., and Wong, M. S.: Trends in vegetation productivity related to climate change in China's Pearl River Delta, PLOS ONE, 16, e0245467, https://doi.org/10.1371/journal.pone.0245467, 2021. a
Abdi, A. M., Carrié, R., Sidemo-Holm, W., Cai, Z., Boke-Olén, N., Smith, H. G., Eklundh, L., and Ekroos, J.: Biodiversity decline with increasing crop productivity in agricultural fields revealed by satellite remote sensing, Ecol. Indic., 130, 108098, https://doi.org/10.1016/j.ecolind.2021.108098, 2021. a
Aleissaee, A. A., Kumar, A., Anwer, R. M., Khan, S., Cholakkal, H., Xia, G.-S., and Khan, F. S.: Transformers in Remote Sensing: A Survey, Remote Sens., 15, 1860, https://doi.org/10.3390/rs15071860, 2023. a
Alexandrov, G. A. and Matsunaga, T.: Normative productivity of the global vegetation, Carbon Balance Manage., 3, 1–13, https://doi.org/10.1186/1750-0680-3-8, 2008. a
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
Share
Altmetrics
Final-revised paper
Preprint