Articles | Volume 21, issue 2
https://doi.org/10.5194/bg-21-473-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-473-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
Lammert Kooistra
Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
Katja Berger
CORRESPONDING AUTHOR
Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
Benjamin Brede
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Lukas Valentin Graf
Earth Observation of Agroecosystems Team, Division Agroecology and Environment, Agroscope, Zurich, Switzerland
Department of Environmental Systems Sciences, Institute of Agricultural Science, Crop Science, ETH Zürich, Zurich, Switzerland
Helge Aasen
Earth Observation of Agroecosystems Team, Division Agroecology and Environment, Agroscope, Zurich, Switzerland
Department of Environmental Systems Sciences, Institute of Agricultural Science, Crop Science, ETH Zürich, Zurich, Switzerland
Jean-Louis Roujean
CESBIO, CNES, CNRS, INRAE, IRD, UT3, 18 avenue Edouard Belin, BPI 2801, TOULOUSE Cedex 9, 31401, France
Miriam Machwitz
Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, 4422 Belvaux, Luxembourg
Martin Schlerf
Remote Sensing and Natural Resources Modelling Group, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, 4422 Belvaux, Luxembourg
Clement Atzberger
Mantle Labs Ltd 29 Farm Street, London W1J 5RL, UK
Egor Prikaziuk
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE, Enschede, the Netherlands
Dessislava Ganeva
Space Research and Technology Institute – Bulgarian Academy of Sciences, Georgi Bonchev bl. 1, 1113 Sofia, Bulgaria
Enrico Tomelleri
Faculty of Agricultural, Environmental and Food Sciences; Free University of Bozen/Bolzano, Bolzano, Italy
Holly Croft
School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
Institute for Sustainable Food, University of Sheffield, Sheffield, S10 2TN, UK
Pablo Reyes Muñoz
Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
Virginia Garcia Millan
European Topic Centre, University of Malaga, Arquitecto Francisco Peñalosa, 18, 29010 Málaga, Spain
Roshanak Darvishzadeh
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE, Enschede, the Netherlands
Gerbrand Koren
Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB Utrecht, the Netherlands
Ittai Herrmann
The Plant Sensing Laboratory, The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
Offer Rozenstein
Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization – Volcani Institute, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel
Santiago Belda
UAVAC, Applied Mathematics Department, University of Alicante, 03080 Alicante, Spain
Miina Rautiainen
School of Engineering, Department of Built Environment, Aalto University, 02150 Espoo, Finland
Stein Rune Karlsen
NORCE Norwegian Research Centre AS, P.O. Box 6434, 9294 Tromsø, Norway
Cláudio Figueira Silva
Forest Research Centre (CEF) and Associated Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
Sofia Cerasoli
Forest Research Centre (CEF) and Associated Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
Jon Pierre
Mantle Labs Ltd 29 Farm Street, London W1J 5RL, UK
Emine Tanır Kayıkçı
Karadeniz Technical University, Engineering Faculty, Department of Geomatics Engineering, Trabzon, Turkey
Andrej Halabuk
Institute of Landscape Ecology, Slovak Academy of Sciences, 814 99 Bratislava, Slovakia
Esra Tunc Gormus
Karadeniz Technical University, Engineering Faculty, Department of Geomatics Engineering, Trabzon, Turkey
Frank Fluit
Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
Zhanzhang Cai
Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
Marlena Kycko
Department of Geoinformatics, Cartography and Remote Sensing, Chair of Geomatics and Information Systems, Faculty of Geography and Regional Studies, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927, Warsaw, Poland
Thomas Udelhoven
EOCP – Earth Observation and Climate Processes, Environmental Remote Sensing & Geoinformatics, Trier University, 54296 Trier, Germany
Jochem Verrelst
Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
Related authors
G. T. Alckmin, L. Kooistra, A. Lucieer, and R. Rawnsley
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1827–1831, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1827-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1827-2019, 2019
A. Tubau Comas, J. Valente, and L. Kooistra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 631–635, https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019, 2019
C. Zhang, J. Valente, L. Kooistra, L. Guo, and W. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 673–680, https://doi.org/10.5194/isprs-archives-XLII-2-W13-673-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-673-2019, 2019
J. Valente, M. Doldersum, C. Roers, and L. Kooistra
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 179–185, https://doi.org/10.5194/isprs-annals-IV-2-W5-179-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-179-2019, 2019
M. H. D. Franceschini, H. Bartholomeus, D. van Apeldoorn, J. Suomalainen, and L. Kooistra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 109–112, https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017, 2017
Bob van der Meij, Lammert Kooistra, Juha Suomalainen, Janna M. Barel, and Gerlinde B. De Deyn
Biogeosciences, 14, 733–749, https://doi.org/10.5194/bg-14-733-2017, https://doi.org/10.5194/bg-14-733-2017, 2017
Short summary
Short summary
Plant–soil feedback (PSF) is an important mechanism to explain plant performance in natural and agricultural systems but is hard to quantify in field experiments. We used unmanned aerial vehicle (UAV)-based optical sensors to test whether PSF effects on plant traits can be quantified remotely. We show that PSF effects in the field occur and alter several important plant traits that can be sensed remotely and quantified in a non-destructive way at high resolution using UAV-based optical sensors.
This article is included in the Encyclopedia of Geosciences
S. Carter, M. Herold, M. C. Rufino, K. Neumann, L. Kooistra, and L. Verchot
Biogeosciences, 12, 4809–4825, https://doi.org/10.5194/bg-12-4809-2015, https://doi.org/10.5194/bg-12-4809-2015, 2015
Short summary
Short summary
Emission from agriculture-driven deforestation can be mitigated by reducing the expansion of agriculture into forests through intensification and utilizing non-forested land for agriculture. Climate-smart agriculture can reduce emissions from existing agricultural land. Tropical countries which are priorities for action can be identified by assessing the mitigation potential of these interventions, by assessing capacity for implementation and the risks associated with these approaches.
This article is included in the Encyclopedia of Geosciences
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
This article is included in the Encyclopedia of Geosciences
Getachew Agmuas Adnew, Gerbrand Koren, Neha Mehendale, Sergey Gromov, Maarten Krol, and Thomas Röckmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3231, https://doi.org/10.5194/egusphere-2024-3231, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study presents high-precision measurements of ∆′17O(CO2). Key findings include the extension of the N2O-∆′17O correlation to the upper troposphere and the identification of significant differences in the N2O-∆′17O slope in StratoClim samples. Additionally, the ∆′17O measurements are used to estimate global stratospheric production and surface removal of ∆′17O, providing an independent estimate of global vegetation CO2 exchange.
This article is included in the Encyclopedia of Geosciences
Miina Rautiainen, Aarne Hovi, Daniel Schraik, Jan Hanuš, Petr Lukeš, Zuzana Lhotáková, and Lucie Homolová
Earth Syst. Sci. Data, 16, 5069–5087, https://doi.org/10.5194/essd-16-5069-2024, https://doi.org/10.5194/essd-16-5069-2024, 2024
Short summary
Short summary
Radiative transfer models play a key role in monitoring vegetation using remote sensing data such as satellite or airborne images. The development of these models has been hindered by a lack of comprehensive ground reference data on structural and spectral characteristics of forests. Here, we reported datasets on the structural and spectral properties of temperate, hemiboreal, and boreal European forest stands. We anticipate that these data will have wide use in remote sensing applications.
This article is included in the Encyclopedia of Geosciences
Chandrika Pinnepalli, Jean-Louis Roujean, and Mark Irvine
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 325–330, https://doi.org/10.5194/isprs-annals-X-3-2024-325-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-325-2024, 2024
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
This article is included in the Encyclopedia of Geosciences
Yong Yang, Huaiwei Sun, Jingfeng Wang, Wenxin Zhang, Gang Zhao, Weiguang Wang, Lei Cheng, Lu Chen, Hui Qin, and Zhanzhang Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-420, https://doi.org/10.5194/essd-2024-420, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Traditional methods for estimating ocean heat flux often introduce large uncertainties due to complex parameterizations and reliance on wind speed. To tackle this issue, we developed a novel framework based on MEP theory. By incorporating heat storage effects and refining the Bowen ratio, we enhanced the MEP method’s accuracy. This research derives a new long-term global ocean latent heat flux dataset that offers high accuracy, enhancing our understanding of ocean energy dynamics.
This article is included in the Encyclopedia of Geosciences
Pharahilda M. Steur, Hubertus A. Scheeren, Gerbrand Koren, Getachew A. Adnew, Wouter Peters, and Harro A. J. Meijer
Atmos. Chem. Phys., 24, 11005–11027, https://doi.org/10.5194/acp-24-11005-2024, https://doi.org/10.5194/acp-24-11005-2024, 2024
Short summary
Short summary
We present records of the triple oxygen isotope signature (Δ(17O)) of atmospheric CO2 obtained with laser absorption spectroscopy from two mid-latitude stations. Significant interannual variability is observed in both records. A model sensitivity study suggests that stratosphere–troposphere exchange, which carries high-Δ(17O) CO2 from the stratosphere into the troposphere, causes most of the variability. This makes Δ(17O) a potential tracer for stratospheric intrusions into the troposphere.
This article is included in the Encyclopedia of Geosciences
Tea Thum, Tuuli Miinalainen, Outi Seppälä, Holly Croft, Cheryl Rogers, Ralf Staebler, Silvia Caldararu, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2802, https://doi.org/10.5194/egusphere-2024-2802, 2024
Short summary
Short summary
Climate change has potential to influence the carbon sequestration potential of terrestrial ecosystems and here also nitrogen cycle is important. We used a terrestrial biosphere model QUINCY at mixed deciduous forest in Canada. We investigated the usefulness of using leaf area index and leaf chlorophyll content to improve the parameterization of the model. This work paves way for using spaceborn observations in the model parameterization, also including information on the nitrogen cycle.
This article is included in the Encyclopedia of Geosciences
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
This article is included in the Encyclopedia of Geosciences
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
This article is included in the Encyclopedia of Geosciences
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2426, https://doi.org/10.5194/egusphere-2024-2426, 2024
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursors measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows for evaluating dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying the magnitudes among the systems.
This article is included in the Encyclopedia of Geosciences
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, Luke Smallmann, Susan Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zähle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek El-Madany, Mirco Migliavacca, Marika Honkanen, Yann Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaetan Pique, Amanda Ojasalo, Shaun Quegan, Peter Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
EGUsphere, https://doi.org/10.5194/egusphere-2024-1534, https://doi.org/10.5194/egusphere-2024-1534, 2024
Short summary
Short summary
When it comes to climate change, the land surfaces are where the vast majority of impacts happen. The task of monitoring those across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us see what changes on our lands.
This article is included in the Encyclopedia of Geosciences
Santiago Botía, Saqr Munassar, Thomas Koch, Danilo Custodio, Luana S. Basso, Shujiro Komiya, Jost V. Lavric, David Walter, Manuel Gloor, Giordane Martins, Stijn Naus, Gerbrand Koren, Ingrid Luijkx, Stijn Hantson, John B. Miller, Wouter Peters, Christian Rödenbeck, and Christoph Gerbig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1735, https://doi.org/10.5194/egusphere-2024-1735, 2024
Short summary
Short summary
This study uses CO2 data from the Amazon Tall Tower Observatory and airborne profiles to estimate net carbon exchange. We found that the biogeographic Amazon is a net carbon sink, while the Cerrado and Caatinga biomes are net carbon sources, resulting in an overall neutral balance. To further reduce the uncertainty in our estimates we call for an expansion of the monitoring capacity, especially in the Amazon-Andes foothills.
This article is included in the Encyclopedia of Geosciences
Hanna Sjulgård, Lukas Valentin Graf, Tino Colombi, Juliane Hirte, Thomas Keller, and Helge Aasen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1872, https://doi.org/10.5194/egusphere-2024-1872, 2024
Short summary
Short summary
Our results showed that crop development derived from satellite images was lower in a dry year compared to a normal year, and faster growth was found more important for higher biomass during drought. The magnitude of the drought impact differed between fields, where higher crop performance was related to more plant available water, suggesting that soil properties play a role in crop response to drought. Our results shows that satellite images can be used to assess plant-soil-weather interactions
This article is included in the Encyclopedia of Geosciences
Chaim I. Garfinkel, Zachary D. Lawrence, Amy H. Butler, Etienne Dunn-Sigouin, Irene Erner, Alexey Yu. Karpechko, Gerbrand Koren, Marta Abalos, Blanca Ayarzaguena, David Barriopedro, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Judah Cohen, Daniela I. V. Domeisen, Javier García-Serrano, Neil P. Hindley, Martin Jucker, Hera Kim, Robert W. Lee, Simon H. Lee, Marisol Osman, Froila M. Palmeiro, Inna Polichtchouk, Jian Rao, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1762, https://doi.org/10.5194/egusphere-2024-1762, 2024
Short summary
Short summary
Variability in the extratropical stratosphere and troposphere are coupled, and because of the longer timescales characteristic of the stratosphere, this allows for a window of opportunity for surface prediction. This paper assesses whether models used for operational prediction capture these coupling processes accurately. We find that most processes are too-weak, however downward coupling from the lower stratosphere to the near surface is too strong.
This article is included in the Encyclopedia of Geosciences
Juliëtte C. S. Anema, Klaas Folkert Boersma, Piet Stammes, Gerbrand Koren, William Woodgate, Philipp Köhler, Christian Frankenberg, and Jacqui Stol
Biogeosciences, 21, 2297–2311, https://doi.org/10.5194/bg-21-2297-2024, https://doi.org/10.5194/bg-21-2297-2024, 2024
Short summary
Short summary
To keep the Paris agreement goals within reach, negative emissions are necessary. They can be achieved with mitigation techniques, such as reforestation, which remove CO2 from the atmosphere. While governments have pinned their hopes on them, there is not yet a good set of tools to objectively determine whether negative emissions do what they promise. Here we show how satellite measurements of plant fluorescence are useful in detecting carbon uptake due to reforestation and vegetation regrowth.
This article is included in the Encyclopedia of Geosciences
Jiabin Pu, Kai Yan, Samapriya Roy, Zaichun Zhu, Miina Rautiainen, Yuri Knyazikhin, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 15–34, https://doi.org/10.5194/essd-16-15-2024, https://doi.org/10.5194/essd-16-15-2024, 2024
Short summary
Short summary
Long-term global LAI/FPAR products provide the fundamental dataset for accessing vegetation dynamics and studying climate change. This study develops a sensor-independent LAI/FPAR climate data record based on the integration of Terra-MODIS/Aqua-MODIS/VIIRS LAI/FPAR standard products and applies advanced gap-filling techniques. The SI LAI/FPAR CDR provides a valuable resource for researchers studying vegetation dynamics and their relationship to climate change in the 21st century.
This article is included in the Encyclopedia of Geosciences
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
This article is included in the Encyclopedia of Geosciences
Raphael Zürcher, Jiayan Zhao, Alvaro Lau Sarmiento, Benjamin Brede, and Alexander Klippel
AGILE GIScience Ser., 4, 15, https://doi.org/10.5194/agile-giss-4-15-2023, https://doi.org/10.5194/agile-giss-4-15-2023, 2023
Auke M. van der Woude, Remco de Kok, Naomi Smith, Ingrid T. Luijkx, Santiago Botía, Ute Karstens, Linda M. J. Kooijmans, Gerbrand Koren, Harro A. J. Meijer, Gert-Jan Steeneveld, Ida Storm, Ingrid Super, Hubertus A. Scheeren, Alex Vermeulen, and Wouter Peters
Earth Syst. Sci. Data, 15, 579–605, https://doi.org/10.5194/essd-15-579-2023, https://doi.org/10.5194/essd-15-579-2023, 2023
Short summary
Short summary
To monitor the progress towards the CO2 emission goals set out in the Paris Agreement, the European Union requires an independent validation of emitted CO2. For this validation, atmospheric measurements of CO2 can be used, together with first-guess estimates of CO2 emissions and uptake. To quickly inform end users, it is imperative that this happens in near real-time. To aid these efforts, we create estimates of European CO2 exchange at high resolution in near real time.
This article is included in the Encyclopedia of Geosciences
S. Hamzeh, M. Hajeb, S. K. Alavipanah, and J. Verrelst
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W1-2022, 271–277, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-271-2023, https://doi.org/10.5194/isprs-annals-X-4-W1-2022-271-2023, 2023
Stijn Naus, Lucas G. Domingues, Maarten Krol, Ingrid T. Luijkx, Luciana V. Gatti, John B. Miller, Emanuel Gloor, Sourish Basu, Caio Correia, Gerbrand Koren, Helen M. Worden, Johannes Flemming, Gabrielle Pétron, and Wouter Peters
Atmos. Chem. Phys., 22, 14735–14750, https://doi.org/10.5194/acp-22-14735-2022, https://doi.org/10.5194/acp-22-14735-2022, 2022
Short summary
Short summary
We assimilate MOPITT CO satellite data in the TM5-4D-Var inverse modelling framework to estimate Amazon fire CO emissions for 2003–2018. We show that fire emissions have decreased over the analysis period, coincident with a decrease in deforestation rates. However, interannual variations in fire emissions are large, and they correlate strongly with soil moisture. Our results reveal an important role for robust, top-down fire CO emissions in quantifying and attributing Amazon fire intensity.
This article is included in the Encyclopedia of Geosciences
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
This article is included in the Encyclopedia of Geosciences
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
This article is included in the Encyclopedia of Geosciences
Malte Ortner, Michael Seidel, Sebastian Semella, Thomas Udelhoven, Michael Vohland, and Sören Thiele-Bruhn
SOIL, 8, 113–131, https://doi.org/10.5194/soil-8-113-2022, https://doi.org/10.5194/soil-8-113-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) and its labile fractions are influenced by soil use and mineral properties. These parameters interact with each other and affect SOC differently depending on local conditions. To investigate the latter, the dependence of SOC content on parameters that vary on a local scale depending on parent material, soil texture, and land use as well as parameter combinations was statistically assessed. Relevance and superiority of local models compared to total models were shown.
This article is included in the Encyclopedia of Geosciences
Thomas Luke Smallman, David Thomas Milodowski, Eráclito Sousa Neto, Gerbrand Koren, Jean Ometto, and Mathew Williams
Earth Syst. Dynam., 12, 1191–1237, https://doi.org/10.5194/esd-12-1191-2021, https://doi.org/10.5194/esd-12-1191-2021, 2021
Short summary
Short summary
Our study provides a novel assessment of model parameter, structure and climate change scenario uncertainty contribution to future predictions of the Brazilian terrestrial carbon stocks to 2100. We calibrated (2001–2017) five models of the terrestrial C cycle of varied structure. The calibrated models were then projected to 2100 under multiple climate change scenarios. Parameter uncertainty dominates overall uncertainty, being ~ 40 times that of either model structure or climate change scenario.
This article is included in the Encyclopedia of Geosciences
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
Short summary
Since the first publication 12 years ago, the SCOPE model has been applied in remote sensing studies of solar-induced chlorophyll fluorescence (SIF), energy balance fluxes, gross primary productivity (GPP), and directional thermal signals. Here, we present a thoroughly revised version, SCOPE 2.0, which features a number of new elements.
This article is included in the Encyclopedia of Geosciences
Anteneh Getachew Mengistu, Gizaw Mengistu Tsidu, Gerbrand Koren, Maurits L. Kooreman, K. Folkert Boersma, Torbern Tagesson, Jonas Ardö, Yann Nouvellon, and Wouter Peters
Biogeosciences, 18, 2843–2857, https://doi.org/10.5194/bg-18-2843-2021, https://doi.org/10.5194/bg-18-2843-2021, 2021
Short summary
Short summary
In this study, we assess the usefulness of Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval (SIFTER) data from the GOME-2A instrument and near-infrared reflectance of vegetation (NIRv) from MODIS to capture the seasonality and magnitudes of gross primary production (GPP) derived from six eddy-covariance flux towers in Africa in the overlap years between 2007–2014. We also test the robustness of sun-induced fluoresence and NIRv to compare the seasonality of GPP for the major biomes.
This article is included in the Encyclopedia of Geosciences
Joost Buitink, Anne M. Swank, Martine van der Ploeg, Naomi E. Smith, Harm-Jan F. Benninga, Frank van der Bolt, Coleen D. U. Carranza, Gerbrand Koren, Rogier van der Velde, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, https://doi.org/10.5194/hess-24-6021-2020, 2020
Short summary
Short summary
The amount of water stored in the soil is critical for the productivity of plants. Plant productivity is either limited by the available water or by the available energy. In this study, we infer this transition point by comparing local observations of water stored in the soil with satellite observations of vegetation productivity. We show that the transition point is not constant with soil depth, indicating that plants use water from deeper layers when the soil gets drier.
This article is included in the Encyclopedia of Geosciences
Anne J. Hoek van Dijke, Kaniska Mallick, Martin Schlerf, Miriam Machwitz, Martin Herold, and Adriaan J. Teuling
Biogeosciences, 17, 4443–4457, https://doi.org/10.5194/bg-17-4443-2020, https://doi.org/10.5194/bg-17-4443-2020, 2020
Short summary
Short summary
We investigated the link between the vegetation leaf area index (LAI) and the land–atmosphere exchange of water, energy, and carbon fluxes. We show that the correlation between the LAI and water and energy fluxes depends on the vegetation type and aridity. For carbon fluxes, however, the correlation with the LAI was strong and independent of vegetation and aridity. This study provides insight into when the vegetation LAI can be used to model or extrapolate land–atmosphere fluxes.
This article is included in the Encyclopedia of Geosciences
S. Chauhan, R. Darvishzadeh, M. Boschetti, and A. Nelson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 267–274, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-267-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-267-2020, 2020
H. Haggrén, P. Ståhle, M. Vaaja, P. Rönnholm, P. Sarkola, M. Rautiainen, M. Nordman, and J. Nikander
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-5-2020, 17–22, https://doi.org/10.5194/isprs-annals-V-5-2020-17-2020, https://doi.org/10.5194/isprs-annals-V-5-2020-17-2020, 2020
Getachew Agmuas Adnew, Thijs L. Pons, Gerbrand Koren, Wouter Peters, and Thomas Röckmann
Biogeosciences, 17, 3903–3922, https://doi.org/10.5194/bg-17-3903-2020, https://doi.org/10.5194/bg-17-3903-2020, 2020
Short summary
Short summary
We measured the effect of photosynthesis, the largest flux in the carbon cycle, on the triple oxygen isotope composition of atmospheric CO2 at the leaf level during gas exchange using three plant species. The main factors that limit the impact of land vegetation on the triple oxygen isotope composition of atmospheric CO2 are identified, characterized and discussed. The effect of photosynthesis on the isotopic composition of CO2 is commonly quantified as discrimination (ΔA).
This article is included in the Encyclopedia of Geosciences
Jorge Vicent, Jochem Verrelst, Neus Sabater, Luis Alonso, Juan Pablo Rivera-Caicedo, Luca Martino, Jordi Muñoz-Marí, and José Moreno
Geosci. Model Dev., 13, 1945–1957, https://doi.org/10.5194/gmd-13-1945-2020, https://doi.org/10.5194/gmd-13-1945-2020, 2020
Short summary
Short summary
The modeling of light propagation through the atmosphere is key to process satellite images and to understand atmospheric processes. However, existing atmospheric models can be complex to use in practical applications. Here we aim at providing a new software tool to facilitate using advanced models and to generate large databases of simulated data. As a test case, we use this tool to analyze differences between several atmospheric models, showing the capabilities of this open-source tool.
This article is included in the Encyclopedia of Geosciences
Xiaojin Qian, Liangyun Liu, Holly Croft, and Jingming Chen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-228, https://doi.org/10.5194/bg-2019-228, 2019
Preprint withdrawn
Short summary
Short summary
The leaf maximum carboxylation rate (Vcmax) is a key photosynthesis parameter. We attempt to investigate whether a universal and stable relationship exists between leaf Vcmax25 and chlorophyll content across different C3 plant types from a plant physiological perspective and verify it using field experiments. The results confirm that leaf chlorophyll can be a reliable proxy for estimating Vcmax25, providing an operational approach for the global mapping of Vcmax25 across different plant types.
This article is included in the Encyclopedia of Geosciences
G. T. Alckmin, L. Kooistra, A. Lucieer, and R. Rawnsley
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1827–1831, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1827-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1827-2019, 2019
S. Chauhan, R. Darvishzadeh, Y. Lu, D. Stroppiana, M. Boschetti, M. Pepe, and A. Nelson
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 235–240, https://doi.org/10.5194/isprs-archives-XLII-2-W13-235-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-235-2019, 2019
A. Tubau Comas, J. Valente, and L. Kooistra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 631–635, https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019, 2019
C. Zhang, J. Valente, L. Kooistra, L. Guo, and W. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 673–680, https://doi.org/10.5194/isprs-archives-XLII-2-W13-673-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-673-2019, 2019
J. Valente, M. Doldersum, C. Roers, and L. Kooistra
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 179–185, https://doi.org/10.5194/isprs-annals-IV-2-W5-179-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-179-2019, 2019
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
This article is included in the Encyclopedia of Geosciences
Sofia Cerasoli, Manuel Campagnolo, Joana Faria, Carla Nogueira, and Maria da Conceição Caldeira
Biogeosciences, 15, 5455–5471, https://doi.org/10.5194/bg-15-5455-2018, https://doi.org/10.5194/bg-15-5455-2018, 2018
Short summary
Short summary
We compared the ability of in situ spectral and satellite sensors to estimate the productivity of Mediterranean grasslands undergoing different fertilization treatments. The objective of the study was to identify the best set of spectral predictors. In situ CO gas exchange and vegetation reflectance measurements were used for this purpose. Our results show the potential of Sentinel 2 and Landsat 8 satellites to monitor grasslands in support of a sustainable agriculture management.
This article is included in the Encyclopedia of Geosciences
M. H. D. Franceschini, H. Bartholomeus, D. van Apeldoorn, J. Suomalainen, and L. Kooistra
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 109–112, https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-109-2017, 2017
Bob van der Meij, Lammert Kooistra, Juha Suomalainen, Janna M. Barel, and Gerlinde B. De Deyn
Biogeosciences, 14, 733–749, https://doi.org/10.5194/bg-14-733-2017, https://doi.org/10.5194/bg-14-733-2017, 2017
Short summary
Short summary
Plant–soil feedback (PSF) is an important mechanism to explain plant performance in natural and agricultural systems but is hard to quantify in field experiments. We used unmanned aerial vehicle (UAV)-based optical sensors to test whether PSF effects on plant traits can be quantified remotely. We show that PSF effects in the field occur and alter several important plant traits that can be sensed remotely and quantified in a non-destructive way at high resolution using UAV-based optical sensors.
This article is included in the Encyclopedia of Geosciences
Aarne Hovi, Jingjing Liang, Lauri Korhonen, Hideki Kobayashi, and Miina Rautiainen
Biogeosciences, 13, 6015–6030, https://doi.org/10.5194/bg-13-6015-2016, https://doi.org/10.5194/bg-13-6015-2016, 2016
Short summary
Short summary
We investigated forest albedo and FAPAR in Alaska and Finland in the boreal zone, using a radiative transfer model parameterized with forest inventory data. Albedo and canopy FAPAR were tightly connected in coniferous forests, indicating that managing forests to increase albedo may compromise productivity. Alaskan and Finnish forests differed in their albedo and FAPAR values, and solar elevation was an important factor controlling the relationships between forest structure, albedo, and FAPAR.
This article is included in the Encyclopedia of Geosciences
Kaniska Mallick, Ivonne Trebs, Eva Boegh, Laura Giustarini, Martin Schlerf, Darren T. Drewry, Lucien Hoffmann, Celso von Randow, Bart Kruijt, Alessandro Araùjo, Scott Saleska, James R. Ehleringer, Tomas F. Domingues, Jean Pierre H. B. Ometto, Antonio D. Nobre, Osvaldo Luiz Leal de Moraes, Matthew Hayek, J. William Munger, and Steven C. Wofsy
Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, https://doi.org/10.5194/hess-20-4237-2016, 2016
Short summary
Short summary
While quantifying vegetation water use over multiple plant function types in the Amazon Basin, we found substantial biophysical control during drought as well as a water-stress period and dominant climatic control during a water surplus period. This work has direct implication in understanding the resilience of the Amazon forest in the spectre of frequent drought menace as well as the role of drought-induced plant biophysical functioning in modulating the water-carbon coupling in this ecosystem.
This article is included in the Encyclopedia of Geosciences
Elnaz Neinavaz, Andrew K. Skidmore, Roshanak Darvishzadeh, and Thomas A. Groen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 99–105, https://doi.org/10.5194/isprs-archives-XLI-B7-99-2016, https://doi.org/10.5194/isprs-archives-XLI-B7-99-2016, 2016
A. Porcar-Castell, A. Mac Arthur, M. Rossini, L. Eklundh, J. Pacheco-Labrador, K. Anderson, M. Balzarolo, M. P. Martín, H. Jin, E. Tomelleri, S. Cerasoli, K. Sakowska, A. Hueni, T. Julitta, C. J. Nichol, and L. Vescovo
Biogeosciences, 12, 6103–6124, https://doi.org/10.5194/bg-12-6103-2015, https://doi.org/10.5194/bg-12-6103-2015, 2015
S. Carter, M. Herold, M. C. Rufino, K. Neumann, L. Kooistra, and L. Verchot
Biogeosciences, 12, 4809–4825, https://doi.org/10.5194/bg-12-4809-2015, https://doi.org/10.5194/bg-12-4809-2015, 2015
Short summary
Short summary
Emission from agriculture-driven deforestation can be mitigated by reducing the expansion of agriculture into forests through intensification and utilizing non-forested land for agriculture. Climate-smart agriculture can reduce emissions from existing agricultural land. Tropical countries which are priorities for action can be identified by assessing the mitigation potential of these interventions, by assessing capacity for implementation and the risks associated with these approaches.
This article is included in the Encyclopedia of Geosciences
Related subject area
Remote Sensing: Terrestrial
Field heterogeneity of soil texture controls leaf water potential spatial distribution in non-irrigated vineyards
Remote sensing reveals fire-driven enhancement of a C4 invasive alien grass on a small Mediterranean volcanic island
Divergent biophysical responses of western United States forests to wildfire driven by eco-climatic gradients
Synergistic use of Sentinel-2 and UAV-derived data for plant fractional cover distribution mapping of coastal meadows with digital elevation models
Data-based investigation of the effects of canopy structure and shadows on chlorophyll fluorescence in a deciduous oak forest
Evaluation of five models for constructing forest NPP–age relationships in China based on 3121 field survey samples
Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America
Dune belt restoration effectiveness assessed by UAV topographic surveys (northern Adriatic coast, Italy)
High-resolution data reveal a surge of biomass loss from temperate and Atlantic pine forests, contextualizing the 2022 fire season distinctiveness in France
Local environmental context drives heterogeneity of early succession dynamics in alpine glacier forefields
Louis Delval, Jordan Bates, François Jonard, and Mathieu Javaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-2555, https://doi.org/10.5194/egusphere-2024-2555, 2024
Short summary
Short summary
The accurate quantification of grapevine water status is crucial for winemakers as it significantly impacts wine quality. It is acknowledged that within a single vineyard, the variability of grapevine water status can be significant. Within-field spatial distribution of soil hydraulic conductance and weather conditions are the primary factors governing the leaf water potential spatial heterogeneity and extent observed in non-irrigated vineyards, and their effects are concomitants.
This article is included in the Encyclopedia of Geosciences
Riccardo Guarino, Daniele Cerra, Renzo Zaia, Alessandro Chiarucci, Pietro Lo Cascio, Duccio Rocchini, Piero Zannini, and Salvatore Pasta
Biogeosciences, 21, 2717–2730, https://doi.org/10.5194/bg-21-2717-2024, https://doi.org/10.5194/bg-21-2717-2024, 2024
Short summary
Short summary
The severity and the extent of a large fire event that occurred on the small volcanic island of Stromboli (Aeolian archipelago, Italy) on 25–26 May 2022 were evaluated through remotely sensed data to assess the short-term effect of fire on local plant communities. For the first time, we documented the outstanding after-fire resilience of an invasive alien species, Saccharum biflorum, which is a rhizomatous C4 perennial grass introduced on the island in the nineteenth century.
This article is included in the Encyclopedia of Geosciences
Surendra Shrestha, Christopher A. Williams, Brendan M. Rogers, John Rogan, and Dominik Kulakowski
Biogeosciences, 21, 2207–2226, https://doi.org/10.5194/bg-21-2207-2024, https://doi.org/10.5194/bg-21-2207-2024, 2024
Short summary
Short summary
Here, we generated chronosequences of leaf area index (LAI) and surface albedo as a function of time since fire to demonstrate the differences in the characteristic trajectories of post-fire biophysical changes among seven forest types and 21 level III ecoregions of the western United States (US) using satellite data from different sources. We also demonstrated how climate played the dominant role in the recovery of LAI and albedo 10 and 20 years after wildfire events in the western US.
This article is included in the Encyclopedia of Geosciences
Ricardo Martínez Prentice, Miguel Villoslada, Raymond D. Ward, Thaisa F. Bergamo, Chris B. Joyce, and Kalev Sepp
Biogeosciences, 21, 1411–1431, https://doi.org/10.5194/bg-21-1411-2024, https://doi.org/10.5194/bg-21-1411-2024, 2024
Short summary
Short summary
Despite hosting a wide range of ecosystem services, coastal wetlands face threats from global changes. This study models the plant fractional cover of plant communities in Estonian coastal meadows with a synergistic use of drone, satellite imagery and digital elevation models. This approach highlights the significant contribution of digital elevation models to multispectral data, enabling the modelling of heterogeneous plant community distributions in such wetlands.
This article is included in the Encyclopedia of Geosciences
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
This article is included in the Encyclopedia of Geosciences
Peng Li, Rong Shang, Jing M. Chen, Mingzhu Xu, Xudong Lin, Guirui Yu, Nianpeng He, and Li Xu
Biogeosciences, 21, 625–639, https://doi.org/10.5194/bg-21-625-2024, https://doi.org/10.5194/bg-21-625-2024, 2024
Short summary
Short summary
The amount of carbon that forests gain from the atmosphere, called net primary productivity (NPP), changes a lot with age. These forest NPP–age relationships could be modeled from field survey data, but we are not sure which model works best. Here we tested five different models using 3121 field survey samples in China, and the semi-empirical mathematical (SEM) function was determined as the optimal. The relationships built by SEM can improve China's forest carbon modeling and prediction.
This article is included in the Encyclopedia of Geosciences
Thomas D. Hessilt, Brendan M. Rogers, Rebecca C. Scholten, Stefano Potter, Thomas A. J. Janssen, and Sander Veraverbeke
Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, https://doi.org/10.5194/bg-21-109-2024, 2024
Short summary
Short summary
In boreal North America, snow and frozen ground prevail in winter, while fires occur in summer. Over the last 20 years, the northwestern parts have experienced earlier snow disappearance and more ignitions. This is opposite to the southeastern parts. However, earlier ignitions following earlier snow disappearance timing led to larger fires across the region. Snow disappearance timing may be a good proxy for ignition timing and may also influence important atmospheric conditions related to fires.
This article is included in the Encyclopedia of Geosciences
Regine Anne Faelga, Luigi Cantelli, Sonia Silvestri, and Beatrice Maria Sole Giambastiani
Biogeosciences, 20, 4841–4855, https://doi.org/10.5194/bg-20-4841-2023, https://doi.org/10.5194/bg-20-4841-2023, 2023
Short summary
Short summary
A dune restoration project on the northern Adriatic coast (Ravenna, Italy) was assessed using UAV monitoring. Structure-from-motion photogrammetry, elevation differencing, and statistical analysis were used to quantify dune development in terms of sand volume and vegetation cover change. Results show that the installed fence has been effective as there was significant sand accumulation, embryo dune development, and a decrease in blowout features due to increased vegetation colonization.
This article is included in the Encyclopedia of Geosciences
Lilian Vallet, Martin Schwartz, Philippe Ciais, Dave van Wees, Aurelien de Truchis, and Florent Mouillot
Biogeosciences, 20, 3803–3825, https://doi.org/10.5194/bg-20-3803-2023, https://doi.org/10.5194/bg-20-3803-2023, 2023
Short summary
Short summary
This study analyzes the ecological impact of the 2022 summer fire season in France by using high-resolution satellite data. The total biomass loss was 2.553 Mt, equivalent to a 17 % increase of the average natural mortality of all French forests. While Mediterranean forests had a lower biomass loss, there was a drastic increase in burned area and biomass loss over the Atlantic pine forests and temperate forests. This result revisits the distinctiveness of the 2022 fire season.
This article is included in the Encyclopedia of Geosciences
Arthur Bayle, Bradley Z. Carlson, Anaïs Zimmer, Sophie Vallée, Antoine Rabatel, Edoardo Cremonese, Gianluca Filippa, Cédric Dentant, Christophe Randin, Andrea Mainetti, Erwan Roussel, Simon Gascoin, Dov Corenblit, and Philippe Choler
Biogeosciences, 20, 1649–1669, https://doi.org/10.5194/bg-20-1649-2023, https://doi.org/10.5194/bg-20-1649-2023, 2023
Short summary
Short summary
Glacier forefields have long provided ecologists with a model to study patterns of plant succession following glacier retreat. We used remote sensing approaches to study early succession dynamics as it allows to analyze the deglaciation, colonization, and vegetation growth within a single framework. We found that the heterogeneity of early succession dynamics is deterministic and can be explained well by local environmental context. This work has been done by an international consortium.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aasen, H., Honkavaara, E., Lucieer, A., and Zarco-Tejada, P.: Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows, Remote Sens., 10, 1091, https://doi.org/10.3390/rs10071091, 2018. a, b
Abbas, S., Nichol, J. E., and Wong, M. S.: Trends in vegetation productivity related to climate change in China's Pearl River Delta, PLOS ONE, 16, e0245467, https://doi.org/10.1371/journal.pone.0245467, 2021. a
Abdi, A. M., Carrié, R., Sidemo-Holm, W., Cai, Z., Boke-Olén, N., Smith, H. G., Eklundh, L., and Ekroos, J.: Biodiversity decline with increasing crop productivity in agricultural fields revealed by satellite remote sensing, Ecol. Indic., 130, 108098, https://doi.org/10.1016/j.ecolind.2021.108098, 2021. a
Aleissaee, A. A., Kumar, A., Anwer, R. M., Khan, S., Cholakkal, H., Xia, G.-S., and Khan, F. S.: Transformers in Remote Sensing: A Survey, Remote Sens., 15, 1860, https://doi.org/10.3390/rs15071860, 2023. a
Alexandrov, G. A. and Matsunaga, T.: Normative productivity of the global vegetation, Carbon Balance Manage., 3, 1–13, https://doi.org/10.1186/1750-0680-3-8, 2008. a
Ali, A. M., Darvishzadeh, R., Skidmore, A., Gara, T. W., O'Connor, B., Roeoesli, C., Heurich, M., and Paganini, M.: Comparing methods for mapping canopy chlorophyll content in a mixed mountain forest using Sentinel-2 data, Int. J. Appl. Earth Obs., 87, 102037, https://doi.org/10.1016/j.jag.2019.102037, 2020. a
Alvarez-Vanhard, E., Corpetti, T., and Houet, T.: UAV & satellite synergies for optical remote sensing applications: A literature review, Sci. Remote Sens., 3, 100019, https://doi.org/10.1016/j.srs.2021.100019, 2021. a, b
Amin, E., Belda, S., Pipia, L., Szantoi, Z., El Baroudy, A., Moreno, J., and Verrelst, J.: Multi-Season Phenology Mapping of Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI, Remote Sens., 14, 1812, https://doi.org/10.3390/rs14081812, 2022. a
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S., Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.: Spatiotemporal patterns of terrestrial gross primary production: A review, Rev. Geophys., 53, 785–818, 2015. a
Arab, S. T., Noguchi, R., Matsushita, S., and Ahamed, T.: Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach, Remote Sens. Appl. Soc. Environ., 22, 100485, https://doi.org/10.1016/j.rsase.2021.100485, 2021. a
Araya, S., Ostendorf, B., Lyle, G., and Lewis, M.: CropPhenology: An R package for extracting crop phenology from time series remotely sensed vegetation index imagery, Ecol. Inform., 46, 45–56, https://doi.org/10.1016/j.ecoinf.2018.05.006, 2018. a, b
Atkinson, P. M., Jeganathan, C., Dash, J., and Atzberger, C.: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology, Remote Sens. Environ., 123, 400–417, https://doi.org/10.1016/j.rse.2012.04.001, 2012. a
Atzberger, C.: Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs, Remote Sens., 5, 949–981, 2013. a
Atzberger, C. and Eilers, P. H.: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America, Int. J. Digit. Earth, 4, 365–386, 2011a. a
Atzberger, C. and Eilers, P. H.: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America, Int. J. Digit. Earth, 4, 365–386, 2011b. a
Atzberger, C., Richter, K., Vuolo, F., Darvishzadeh, R., and Schlerf, M.: Why confining to vegetation indices? Exploiting the potential of improved spectral observations using radiative transfer models, in: Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, Vol. 8174, 263–278, SPIE, https://doi.org/10.1117/12.898479, 2011. a
Atzberger, C., Klisch, A., Mattiuzzi, M., and Vuolo, F.: Phenological Metrics Derived over the European Continent from NDVI3g Data and MODIS Time Series, Remote Sens., 6, 257–284, https://doi.org/10.3390/rs6010257, 2013. a
Atzberger, C., Darvishzadeh, R., Immitzer, M., Schlerf, M., Skidmore, A., and le Maire, G.: Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy, Int. J. Appl. Earth Obs., 43, 19–31, https://doi.org/10.1016/j.jag.2015.01.009, 2015. a
Azzari, G., Jain, M., and Lobell, D. B.: Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries, Remote Sens. Environ., 202, 129–141, https://doi.org/10.1016/j.rse.2017.04.014, 2017. a
Bach, H. and Mauser, W.: Methods and examples for remote sensing data assimilation in land surface process modeling, IEEE Trans. Geosci. Remote Sens., 41, 1629–1637, https://doi.org/10.1109/TGRS.2003.813270, 2003. a
Badeck, F.-W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., and Schaber, J.: Responses of spring phenology to climate change, New Phytol., 162, 295–309, https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004. a
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, Pilegaard, K.T.K., Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82, 2415–2434, 2001. a, b
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future, Glob. Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003. a
Balzarolo, M., Boussetta, S., Balsamo, G., Beljaars, A., Maignan, F., Calvet, J.-C., Lafont, S., Barbu, A., Poulter, B., Chevallier, F., Szczypta, C., and Papale, D.: Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network, Biogeosciences, 11, 2661–2678, https://doi.org/10.5194/bg-11-2661-2014, 2014. a
Baret, F. and Buis, S.: Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems, 173–201, Springer Netherlands, Dordrecht, ISBN 978-1-4020-6450-0, https://doi.org/10.1007/978-1-4020-6450-0_7, 2008. a, b
Baret, F., Weiss, M., Troufleau, D., Prevot, L., and Combal, B.: Maximum information exploitation for canopy characterization by remote sensing, Aspect. Appl. Biol., 71–82, https://www.cabdirect.org/cabdirect/abstract/20002402580 (last access: 13 January 2024), 2000. a
Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F., Weiss, M., Samain, O., Roujean, J. L., and Leroy, M.: LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm, Remote Sens. Environ., 110, 275–286, 2007. a
Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., and Smets, B.: GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products, Part 1: Principles of development and production, Remote Sens. Environ., 137, 299–309, https://doi.org/10.1016/j.rse.2013.02.030, 2013. a
Battles, J.: Forest Biomass and Primary Productivity – Hubbard Brook Ecosystem Study, https://hubbardbrook.org/online-book-chapter/forest-biomass-and-primary-productivity (last access: 13 January 2024), 2022. a
Beamish, A., Raynolds, M. K., Epstein, H., Frost, G. V., Macander, M. J., Bergstedt, H., Bartsch, A., Kruse, S., Miles, V., Tanis, C. M., Heim, B., Fuchs, M., Chabrillat, S., Shevtsova, I., Verdonen, M., and Wagner, J.: Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook, Remote Sens. Environ., 246, 111872, https://doi.org/10.1016/J.RSE.2020.111872, 2020. a
Beck, P. S., Atzberger, C., Høgda, K. A., Johansen, B., and Skidmore, A. K.: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote Sens. Environ., 100, 321–334, https://doi.org/10.1016/j.rse.2005.10.021, 2006. a, b, c
Beck, P. S., Jönsson, P., Høgda, K. A., Karlsen, S. R., Eklundh, L., and Skidmore, A. K.: A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula, Int. J. Remote Sens., 28, 4311–4330, https://doi.org/10.1080/01431160701241936, 2007. a
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate, Science, 329, 834–838, https://doi.org/10.1126/science.1184984, 2010. a, b
Belda, S., Pipia, L., Morcillo-Pallarés, P., Rivera-Caicedo, J. P., Amin, E., De Grave, C., and Verrelst, J.: DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection, Environ. Model. Softw., 127, 104666, https://doi.org/10.1016/j.envsoft.2020.104666, 2020a. a, b, c
Belda, S., Pipia, L., Morcillo-Pallarés, P., and Verrelst, J.: Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring, Agronomy, 10, 618, https://doi.org/10.3390/agronomy10050618, 2020b. a
Berger, K., Rivera Caicedo, J. P., Martino, L., Wocher, M., Hank, T., and Verrelst, J.: A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data, Remote Sens., 13, 287, https://doi.org/10.3390/rs13020287, 2021. a
Berger, K., Machwitz, M., Kycko, M., Kefauver, S. C., Van Wittenberghe, S., Gerhards, M., Verrelst, J., Atzberger, C., Van der Tol, C., Damm, A., Rascher, U., Herrmann, I., Paz, V. S., Fahrner, S., Pieruschka, R., Prikaziuk, E., Buchaillot, M. L., Halabuk, A., and Schlerf, M.: Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review, Remote Sens. Environ., 280, 113198, https://doi.org/10.1016/j.rse.2022.113198, 2022. a, b
Berger, M., Moreno, J., Johannessen, J., Levelt, P., and Hanssen, R.: ESA's sentinel missions in support of Earth system science, Remote Sens. Environ., 120, 84–90, 2012. a
Berni, J. A. J., Zarco-Tejada, P. J., Suarez, L., and Fereres, E.: Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle, IEEE Trans. Geosci. Remote Sens., 47, 722–738, https://doi.org/10.1109/TGRS.2008.2010457, 2009. a
Berra, E. F. and Gaulton, R.: Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics, Forest Ecol. Manag., 480, 118663, https://doi.org/10.1016/j.foreco.2020.118663, 2021. a
Bi, W., He, W., Zhou, Y., Ju, W., Liu, Y., Liu, Y., Zhang, X., Wei, X., and Cheng, N.: A global 0.05 dataset for gross primary production of sunlit and shaded vegetation canopies from 1992 to 2020, Sci. Data, 9, 213, https://doi.org/10.1038/s41597-022-01309-2, 2022. a
Boisvenue, C., Smiley, B. P., White, J. C., Kurz, W. A., and Wulder, M. A.: Integration of Landsat time series and field plots for forest productivity estimates in decision support models, Forest Ecol. Manag., 376, 284–297, https://doi.org/10.1016/j.foreco.2016.06.022, 2016. a, b, c
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/J.RSE.2020.111685, 2020. a, b
Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M., and Oleson, K. W.: A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics, Glob. Change Biol., 9, 1543–1566, https://doi.org/10.1046/j.1365-2486.2003.00681.x, 2003. a
Borra-Serrano, I., De Swaef, T., Quataert, P., Aper, J., Saleem, A., Saeys, W., Somers, B., Roldán-Ruiz, I., and Lootens, P.: Closing the phenotyping gap: High resolution UAV time series for soybean growth analysis provides objective data from field trials, Remote Sens., 12, 1644, https://doi.org/10.3390/rs12101644, 2020. a
Brede, B., Darvishzadeh, R., Fluit, F., Ganeva, D., García Millán, V., Graf, L., Hermann, I., Karlsen, S.R., Kooistra, L., Koren, G., Kycko, M., Machwitz, M., Rautiainen, M., Rozenstein, O., and Tomelleri, E.: Data and analysis for “Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity”, Zenodo [data set and code], https://doi.org/10.5281/zenodo.10524851, 2024. a
Brinckmann, S., Trentmann, J., and Ahrens, B.: Homogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset Derived from Geostationary Satellite Observations, Remote Sens., 6, 352–378, https://doi.org/10.3390/rs6010352, 2013. a
Brinkmann, K., Dickhoefer, U., Schlecht, E., and Buerkert, A.: Quantification of aboveground rangeland productivity and anthropogenic degradation on the Arabian Peninsula using Landsat imagery and field inventory data, Remote Sens. Environ., 115, 465–474, https://doi.org/10.1016/j.rse.2010.09.016, 2011. a, b
Brunori, E., Farina, R., and Biasi, R.: Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem, Agr. Ecosyst. Environ., 223, 10–21, https://doi.org/10.1016/j.agee.2016.02.012, 2016. a
Buitink, J., Swank, A. M., van der Ploeg, M., Smith, N. E., Benninga, H.-J. F., van der Bolt, F., Carranza, C. D. U., Koren, G., van der Velde, R., and Teuling, A. J.: Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices, Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, 2020. a
Bultan, S., Nabel, J. E. M. S., Hartung, K., Ganzenmüller, R., Xu, L., Saatchi, S., and Pongratz, J.: Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration, Nat. Commun., 13, 1–14, https://doi.org/10.1038/s41467-022-32456-0, 2022. a, b
Caballero, G., Pezzola, A., Winschel, C., Sanchez Angonova, P., Casella, A., Orden, L., Salinero-Delgado, M., Reyes-Muñoz, P., Berger, K., Delegido, J., and Verrelst, J.: Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes, Remote Sens., 15, 1822, https://doi.org/10.3390/rs15071822, 2023. a, b
Cai, Z., Junttila, S., Holst, J., Jin, H., Ardö, J., Ibrom, A., Peichl, M., Mölder, M., Jönsson, P., Rinne, J., Karamihalaki, M., and Eklundh, L.: Modelling daily gross primary productivity with sentinel-2 data in the nordic region – comparison with data from MODIS, Remote Sens., 13, 1–18, https://doi.org/10.3390/RS13030469, 2021. a, b
Campbell, A. D., Fatoyinbo, T., Charles, S. P., Bourgeau-Chavez, L. L., Goes, J., Gomes, H., Halabisky, M., Holmquist, J., Lohrenz, S., Mitchell, C., Moskal, L. M., Poulter, B., Qiu, H., De Sousa, C. H. R., Sayers, M., Simard, M., Stewart, A. J., Singh, D., Trettin, C., Wu, J., Zhang, X., and Lagomasino, D.: A review of carbon monitoring in wet carbon systems using remote sensing, Environ. Res. Lett., 17, 025009, https://doi.org/10.1088/1748-9326/ac4d4d, 2022. a
Caparros-Santiago, J. A., Rodriguez-Galiano, V., and Dash, J.: Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review, ISPRS J. Photogramm. Remote Sens., 171, 330–347, https://doi.org/10.1016/j.isprsjprs.2020.11.019, 2021. a, b
Carletto, C., Jolliffe, D., and Banerjee, R.: From Tragedy to Renaissance: Improving Agricultural Data for Better Policies, J. Dev. Stud., 51, 133–148, https://doi.org/10.1080/00220388.2014.968140, 2015. a
Cavender-Bares, J., Gamon, J. A., and Townsend, P. A. (Eds.): Remote Sensing of Plant Biodiversity, Springer International Publishing, ISBN 978-3-030-33156-6, https://doi.org/10.1007/978-3-030-33157-3, 2020. a
Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., and Grégoire, J.-M.: Detecting vegetation leaf water content using reflectance in the optical domain, Remote Sens. Environ., 77, 22–33, https://doi.org/10.1016/S0034-4257(01)00191-2, 2001. a
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh, L.: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter, Remote Sens. Environ., 91, 332–344, 2004. a
Chen, S., Sui, L., Liu, L., and Liu, X.: Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation, Remote Sens., 14, 57 https://doi.org/10.3390/rs14010057, 2022. a
Cheng, T., Riaño, D., and Ustin, S. L.: Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis, Remote Sens. Environ., 143, 39–53, https://doi.org/10.1016/j.rse.2013.11.018, 2014a. a
Cheng, Y.-B., Zhang, Q., Lyapustin, A. I., Wang, Y., and Middleton, E. M.: Impacts of light use efficiency and fPAR parameterization on gross primary production modeling, Agr. Forest Meteorol., 189, 187–197, 2014b. a
Cherif, E., Feilhauer, H., Berger, K., Dao, P. D., Ewald, M., Hank, T. B., He, Y., Kovach, K. R., Lu, B., Townsend, P. A., and Kattenborn, T.: From spectra to plant functional traits: Transferable multi-trait models from heterogeneous and sparse data, Remote Sens. Environ., 292, 113580, https://doi.org/10.1016/j.rse.2023.113580, 2023. a
Chevrel, M., Courtois, M., and Weill, G.: The SPOT satellite remote sensing mission, Photogramm. Eng. Remote S., 47, 1163–1171, 1981. a
Chopping, M., Schaaf, C. B., Zhao, F., Wang, Z., Nolin, A. W., Moisen, G. G., Martonchik, J. V., and Bull, M.: Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR, Remote Sens. Environ., 115, 2943–2953, https://doi.org/10.1016/j.rse.2010.08.031, 2011. a
Chu, H., Baldocchi, D. D., John, R., Wolf, S., and Reichstein, M.: Fluxes all of the time? A primer on the temporal representativeness of FLUXNET, J. Geophys. Res.-Biogeo., 122, 289–307, https://doi.org/10.1002/2016JG003576, 2017. a, b
Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., and Justice, C.: The Harmonized Landsat and Sentinel-2 surface reflectance data set, Remote Sens. Environ., 219, 145–161, https://doi.org/10.1016/j.rse.2018.09.002, 2018. a
Croft, H., Chen, J. M., and Zhang, Y.: Temporal disparity in leaf chlorophyll content and leaf area index across a growing season in a temperate deciduous forest, Int. J. Appl. Earth Obs. Geoinf., 33, 312–320, https://doi.org/10.1016/j.jag.2014.06.005, 2014. a
Croft, H., Chen, J. M., Froelich, N. J., Chen, B., and Staebler, R. M.: Seasonal controls of canopy chlorophyll content on forest carbon uptake: Implications for GPP modeling, J. Geophys. Res.-Biogeo., 120, 1576–1586, https://doi.org/10.1002/2015JG002980, 2015. a
Croft, H., Chen, J. M., Luo, X., Bartlett, P., Chen, B., and Staebler, R. M.: Leaf chlorophyll content as a proxy for leaf photosynthetic capacity, Glob. Change Biol., 23, 3513–3524, https://doi.org/10.1111/gcb.13599, 2017. a
Croft, H., Chen, J., Wang, R., Mo, G., Luo, S., Luo, X., He, L., Gonsamo, A., Arabian, J., Zhang, Y., Simic-Milas, A., Noland, T.L., He, Y., Homolová, L., Malenovský, Z., Yi, Q., Beringer, J., Amiri, R., Hutley, L., Arellano, P., Stahl, C., and Bonal, D.: The global distribution of leaf chlorophyll content, Remote Sens. Environ., 236, 111479, https://doi.org/10.1016/j.rse.2019.111479, 2020. a, b
Damm, A., Guanter, L., Paul-Limoges, E., Van der Tol, C., Hueni, A., Buchmann, N., Eugster, W., Ammann, C., and Schaepman, M. E.: Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches, Remote Sens. Environ., 166, 91–105, https://doi.org/10.1016/j.rse.2015.06.004, 2015. a, b
Danner, M., Berger, K., Wocher, M., Mauser, W., and Hank, T.: Efficient RTM-based training of machine learning regression algorithms to quantify biophysical and biochemical traits of agricultural crops, ISPRS J. Photogramm. Remote Sens., 173, 278–296, https://doi.org/10.1016/j.isprsjprs.2021.01.017, 2021. a
Darvishzadeh, R., Skidmore, A., Atzberger, C., and van Wieren, S.: Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture, Int. J. Appl. Earth Obs. Geoinf., 10, 358–373, https://doi.org/10.1016/j.jag.2008.02.005, 2008. a
Darvishzadeh, R., Atzberger, C., Skidmore, A., and Schlerf, M.: Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models, ISPRS J. Photogramm. Remote Sens., 66, 894–906, https://doi.org/10.1016/j.isprsjprs.2011.09.013, 2011. a
Dash, J. P., Pearse, G. D., and Watt, M. S.: UAV Multispectral Imagery Can Complement Satellite Data for Monitoring Forest Health, Remote Sens., 10, 1216, https://doi.org/10.3390/rs10081216, 2018. a
De Beurs, K. M. and Henebry, G. M.: Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan, Remote Sens. Environ., 89, 497–509, 2004. a
Delécolle, R., Maas, S., Guérif, M., and Baret, F.: Remote sensing and crop production models: present trends, ISPRS J. Photogramm., 47, 145–161, https://doi.org/10.1016/0924-2716(92)90030-D, 1992. a, b, c, d
Descals, A., Verger, A., Yin, G., Filella, I., and Peñuelas, J.: Widespread drought‐induced leaf shedding and legacy effects on productivity in European deciduous forests, Remote Sens. Ecol. Conserv., 9, 76–89, https://doi.org/10.1002/rse2.296, 2023. a
De Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., Supit, I., van der Wijngaart, R., and van Diepen, K.: 25 years of the WOFOST cropping systems model, Agr. Syst., 168, 154–167, 2019. a
Dong, Y. and Peng, C. Y. J.: Principled missing data methods for researchers, SpringerPlus, 2, 1–17, https://doi.org/10.1186/2193-1801-2-222, 2013. a
Doughty, R., Köhler, P., Frankenberg, C., Magney, T. S., Xiao, X., Qin, Y., Wu, X., and Moore, B.: TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest, P. Natl. Acad. Sci. USA, 116, 22393–22398, https://doi.org/10.1073/PNAS.1908157116, 2019. a
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012. a
Duchemin, B. and Courrier, G.: Monitoring Phenological Key Stages and Cycle Duration of Temperate Deciduous Forest Ecosystems with NOAA/AVHRR Data, Remote Sens. Environ., 67, 68–82, https://doi.org/10.1016/S0034-4257(98)00067-4, 1999. a
Dusseux, P., Guyet, T., Pattier, P., Barbier, V., and Nicolas, H.: Monitoring of grassland productivity using Sentinel-2 remote sensing data, Int. J. Appl. Earth Obs. Geoinf., 111, 102843, https://doi.org/10.1016/j.jag.2022.102843, 2022. a, b
Duveiller, G., López-Lozano, R., and Baruth, B.: Enhanced Processing of 1-km Spatial Resolution fAPAR Time Series for Sugarcane Yield Forecasting and Monitoring, Remote Sens., 5, 1091–1116, https://doi.org/10.3390/rs5031091, 2013. a
Eastman, R. J., Sangermano, F., Ghimire, B., Zhu, H., Chen, H., Neeti, N., Cai, Y., Machado, E. A., and Crema, S. C.: Seasonal trend analysis of image time series, Int. J. Remote Sens., 30, 2721–2726, https://doi.org/10.1080/01431160902755338, 2009. a
EEA, E. E. A.: Vegetation productivity, https://www.eea.europa.eu/data-and-maps/indicators/land-productivity-dynamics/assessment (last access: 13 January 2024), 2021. a
Eerens, H., Haesen, D., Rembold, F., Urbano, F., Tote, C., and Bydekerke, L.: Image time series processing for agriculture monitoring, Environ. Model. Softw., 53, 154–162, https://doi.org/10.1016/j.envsoft.2013.10.021, 2014. a, b
Eilers, P. H. C.: A Perfect Smoother, Anal. Chem., 75, 3631–3636, https://doi.org/10.1021/ac034173t, 2003. a
Eitel, J. U., Höfle, B., Vierling, L. A., Abellán, A., Asner, G. P., Deems, J. S., Glennie, C. L., Joerg, P. C., LeWinter, A. L., Magney, T. S., Mandlburger, G., Morton, D. C., and Müller, öand Vierling, K. T.: Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences, Remote Sens. Environ., 186, 372–392, https://doi.org/10.1016/j.rse.2016.08.018, 2016. a
Elmore, A. J., Guinn, S. M., Minsley, B. J., and Richardson, A. D.: Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests, Glob. Change Biol., 18, 656–674, 2012. a
Erasmi, S., Klinge, M., Dulamsuren, C., Schneider, F., and Hauck, M.: Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe, Environ. Monit. Assess., 193, 1–18, https://doi.org/10.1007/s10661-021-08996-1, 2021. a, b, c
Estevez, J., Berger, K., Vicent, J., Rivera-Caicedo, J. P., Wocher, M., and Verrelst, J.: Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow, Remote Sens., 13, 1589, https://doi.org/10.3390/rs13081589, 2021. a
Fang, H., Baret, F., Plummer, S., and Schaepman-Strub, G.: An overview of global leaf area index (LAI): Methods, products, validation, and applications, Rev. Geophys., 57, 739–799, 2019. a
FAO: Forest plantation productivity, Report based on the work of W. J. Libby and C. Palmberg-Lerche, techreport, Forest Resources Development Service, Forest Resources Division, UN Food and Agriculture Organization, https://books.google.nl/books/about/Forest_Plantation_Productivity.html?id=W7o7NQAACAAJ&redir_esc=y (last access: 19 January 2024), 2010. a
FAO: Global Forest Resources Assessment, Tech. Rep., U.N. Food and Agriculture Organization, https://doi.org/10.4060/ca8753en, 2020. a
Feagin, R. A., Forbrich, I., Huff, T. P., Barr, J. G., Ruiz-Plancarte, J., Fuentes, J. D., Najjar, R. G., Vargas, R., Vázquez-Lule, A., Windham-Myers, L., Kroeger, K. D., Ward, E. J., Moore, G. W., Leclerc, M., Krauss, K. W., Stagg, C. L., Alber, M., Knox, S. H., Schäfer, K. V., Bianchi, T. S., Hutchings, J. A., Nahrawi, H., Noormets, A., Mitra, B., Jaimes, A., Hinson, A. L., Bergamaschi, B., King, J. S., and Miao, G.: Tidal Wetland Gross Primary Production Across the Continental United States, 2000–2019, Global Biogeochem. Cy., 34, e2019GB006349, https://doi.org/10.1029/2019GB006349, 2020. a
Fensholt, R., Sandholt, I., Stisen, S., and Tucker, C.: Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor, Remote Sens. Environ., 101, 212–229, https://doi.org/10.1016/j.rse.2005.11.013, 2006. a
Fensholt, R., Rasmussen, K., Kaspersen, P., Huber, S., Horion, S., and Swinnen, E.: Assessing land degradation/recovery in the african sahel from long-term earth observation based primary productivity and precipitation relationships, Remote Sens., 5, 664–686, https://doi.org/10.3390/RS5020664, 2013. a
Féret, J. B., François, C., Asner, G. P., Gitelson, A. A., Martin, R. E., Bidel, L. P. R., Ustin, S. L., le Maire, G., and Jacquemoud, S.: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments, Remote Sens. Environ., 112, 3030–3043, https://doi.org/10.1016/j.rse.2008.02.012, 2008. a
Féret, J. B., Gitelson, A. A., Noble, S. D., and Jacquemoud, S.: PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle, Remote Sens. Environ., 193, 204–215, https://doi.org/10.1016/j.rse.2017.03.004, 2017. a
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.: Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components, Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998. a
Fiore, N. M., Goulden, M. L., Czimczik, C. I., Pedron, S. A., and Tayo, M. A.: Do recent NDVI trends demonstrate boreal forest decline in Alaska?, Environ. Res. Lett., 15, 095007, https://doi.org/10.1088/1748-9326/AB9C4C, 2020. a, b
Fischer, A., Kergoat, L., and Dedieu, G.: Coupling satellite data with vegetation functional models: Review of different approaches and perspectives suggested by the assimilation strategy, Remote Sens. Rev., 15, 283–303, https://doi.org/10.1080/02757259709532343, 1997. a
Fisher, J. I., Mustard, J. F., and Vadeboncoeur, M. A.: Green leaf phenology at Landsat resolution: Scaling from the field to the satellite, Remote Sens. Environ., 100, 265–279, 2006. a
Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A., and Yokota, T.: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity, Geophys. Res. Lett., 38, L17706, https://doi.org/10.1029/2011GL048738, 2011. a, b
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2022, Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, 2022. a
Gamon, J., Rahman, A., Dungan, J., Schildhauer, M., and Huemmrich, K.: Spectral Network (SpecNet) – What is it and why do we need it?, Remote Sens. Environ., 103, 227–235, https://doi.org/10.1016/j.rse.2006.04.003, 2006. a
Gamon, J. A., Coburn, C., Flanagan, L. B., Huemmrich, K. F., Kiddle, C., Sanchez-Azofeifa, G. A., Thayer, D. R., Vescovo, L., Gianelle, D., Sims, D. A., Rahman, A. F., and Pastorello, G. Z.: SpecNet revisited: bridging flux and remote sensing communities, Can. J. Remote Sens., 36, S376–S390, https://doi.org/10.5589/m10-067, 2010. a
Gao, L., Darvishzadeh, R., Somers, B., Johnson, B. A., Wang, Y., Verrelst, J., Wang, X., and Atzberger, C.: Hyperspectral response of agronomic variables to background optical variability: Results of a numerical experiment, Agr. Forest Meteorol., 326, 109178, https://doi.org/10.1016/j.agrformet.2022.109178, 2022. a
Gao, T., Xu, B., Yang, X., Deng, S., Liu, Y., Jin, Y., Ma, H., Li, J., Yu, H., Zheng, X., and Yu, Q.: Aboveground net primary productivity of vegetation along a climate-related gradient in a Eurasian temperate grassland: spatiotemporal patterns and their relationships with climate factors, Environ. Earth Sci., 76, 56, https://doi.org/10.1007/S12665-016-6158-4, 2017. a
Georganos, S., Abdi, A. M., Tenenbaum, D. E., and Kalogirou, S.: Examining the NDVI-rainfall relationship in the semi-arid Sahel using geographically weighted regression, J. Arid Environ., 146, 64–74, https://doi.org/10.1016/j.jaridenv.2017.06.004, 2017. a
Getachew Mengistu, A., Mengistu Tsidu, G., Koren, G., Kooreman, M. L., Folkert Boersma, K., Tagesson, T., Ardö, J., Nouvellon, Y., and Peters, W.: Sun-induced fluorescence and near-infrared reflectance of vegetation track the seasonal dynamics of gross primary production over Africa, Biogeosciences, 18, 2843–2857, https://doi.org/10.5194/bg-18-2843-2021, 2021. a
Gevaert, C. M., Suomalainen, J., Tang, J., and Kooistra, L.: Generation of Spectral-Temporal Response Surfaces by Combining Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications, IEEE J. Sel. Top. Appl., 8, 3140–3146, https://doi.org/10.1109/JSTARS.2015.2406339, 2015. a
Gitelson, A. A., Verma, S. B., Viña, A., Rundquist, D. C., Keydan, G., Leavitt, B., Arkebauer, T. J., Burba, G. G., and Suyker, A. E.: Novel technique for remote estimation of CO2 flux in maize, Geophys. Res. Lett., 30, 1486, https://doi.org/10.1029/2002GL016543, 2003. a
Gitelson, A. A., Peng, Y., Arkebauer, T. J., and Schepers, J.: Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production, Remote Sens. Environ., 144, 65–72, https://doi.org/10.1016/j.rse.2014.01.004, 2014. a
Gitelson, A. A., Peng, Y., Arkebauer, T. J., and Suyker, A. E.: Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: Implications for remote sensing of crop primary production, J. Plant Physiol., 177, 100–109, https://doi.org/10.1016/j.jplph.2014.12.015, 2015. a
Gobron, N., Pinty, B., Aussedat, O., Chen, J. M., Cohen, W. B., Fensholt, R., Gond, V., Huemmrich, K. F., Lavergne, T., Mélin, F., Privette, J. L., Sandholt, I., Taberner, M., Turner, D. P., Verstraete, M. M., and Widlowski, J.: Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: Methodology and results using Joint Research Center products derived from SeaWiFS against ground-based estimations, J. Geophys. Res.-Atmos., 111, D13110, https://doi.org/10.1029/2005JD006511, 2006. a
Goetz, S. J., Baccini, A., Laporte, N. T., Johns, T., Walker, W., Kellndorfer, J., Houghton, R. A., and Sun, M.: Mapping and monitoring carbon stocks with satellite observations: a comparison of methods, Carbon Balance Manag., 4, 2, https://doi.org/10.1186/1750-0680-4-2, 2009. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. a
Goudriaan, J. and Monteith, J. L.: A Mathematical Function for Crop Growth Based on Light Interception and Leaf Area Expansion, Ann. Bot., 66, 695–701, https://doi.org/10.1093/oxfordjournals.aob.a088084, 1990. a
Graf, L. V., Gorroño, J., Hueni, A., Walter, A., and Aasen, H.: Propagating Sentinel-2 Top-of-Atmosphere Radiometric Uncertainty Into Land Surface Phenology Metrics Using a Monte Carlo Framework, IEEE J. Sel. Top. Appl., 16, 8632–8654, https://doi.org/10.1109/JSTARS.2023.3297713, 2023. a
Grelle, A., Hedwall, P.-O., Strömgren, M., Håkansson, C., and Bergh, J.: From source to sink – recovery of the carbon balance in young forests, Agr. Forest Meteorol., 330, 109290, https://doi.org/10.1016/j.agrformet.2022.109290, 2023. a
Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J., Kuze, A., Suto, H., and Grainger, R. G.: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements, Remote Sens. Environ., 121, 236–251, https://doi.org/10.1016/j.rse.2012.02.006, 2012. a, b
Guo, C., Tang, Y., Lu, J., Zhu, Y., Cao, W., Cheng, T., Zhang, L., and Tian, Y.: Predicting wheat productivity: Integrating time series of vegetation indices into crop modeling via sequential assimilation, Agr. Forest Meteorol., 272/273, 69–80, https://doi.org/10.1016/j.agrformet.2019.01.023, 2019. a
Gutman, G. G.: On the use of long-term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer, J. Geophys. Res.-Atmos., 104, 6241–6255, https://doi.org/10.1029/1998JD200106, 1999. a
Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., Jørgensen, H. B., and Isberg, P.-E.: How does tillage intensity affect soil organic carbon? A systematic review, Environ. Evid., 6, 1–48, https://doi.org/10.1186/s13750-017-0108-9, 2017. a
Hank, T. B., Bach, H., and Mauser, W.: Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe, Remote Sens., 7, 3934–3965, https://doi.org/10.3390/rs70403934, 2015. a
Harmon, M. E., Bond-Lamberty, B., Tang, J., and Vargas, R.: Heterotrophic respiration in disturbed forests: A review with examples from North America, J. Geophys. Res.-Biogeo., 116, G00K04, https://doi.org/10.1029/2010JG001495, 2011. a
He, L. and Mostovoy, G.: Cotton Yield Estimate Using Sentinel-2 Data and an Ecosystem Model over the Southern US, Remote Sens., 11, 2000, https://doi.org/10.3390/rs11172000, 2019. a
He, Y., Piao, S., Li, X., Chen, A., and Qin, D.: Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models, Agr. Forest Meteorol., 256/257, 150–158, https://doi.org/10.1016/j.agrformet.2018.03.009, 2018. a
Helman, D.: Land surface phenology: What do we really “see” from space?, Sci. Total Environ., 618, 665–673, https://doi.org/10.1016/j.scitotenv.2017.07.237, 2018. a
Hilker, T., Gitelson, A., Coops, N. C., Hall, F. G., and Black, T. A.: Tracking plant physiological properties from multi-angular tower-based remote sensing, Oecologia, 165, 865–876, https://doi.org/10.1007/s00442-010-1901-0, 2011. a
Hill, M. J. and Donald, G. E.: Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series, Remote Sens. Environ., 84, 367–384, https://doi.org/10.1016/S0034-4257(02)00128-1, 2003. a
Houborg, R., F. McCabe, M., Cescatti, A., and A. Gitelson, A.: Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems, Int. J. Appl. Earth Obs. Geoinf., 43, 160–176, https://doi.org/10.1016/j.jag.2015.03.016, 2015. a
Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G.: A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing, J. Forest. Res., 32, 1–6, 2021. a
Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002. a, b, c
Jacquemoud, S., Ustin, S. L., Verdebout, J., Schmuck, G., Andreoli, G., and Hosgood, B.: Estimating leaf biochemistry using the PROSPECT leaf optical properties model, Remote Sens. Environ., 56, 194–202, https://doi.org/10.1016/0034-4257(95)00238-3, 1996. a
Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS), Remote Sens. Environ., 186, 528–547, https://doi.org/10.1016/j.rse.2016.08.030, 2016. a
Jin, H. and Eklundh, L.: A physically based vegetation index for improved monitoring of plant phenology, Remote Sens. Environ., 152, 512–525, https://doi.org/10.1016/J.RSE.2014.07.010, 2014. a
Johnson, D. M.: An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States, Remote Sens. Environ., 141, 116–128, https://doi.org/10.1016/j.rse.2013.10.027, 2014. a
Jönsson, P. and Eklundh, L.: TIMESAT – a program for analyzing time-series of satellite sensor data, Comput. Geosci., 30, 833–845, https://doi.org/10.1016/j.cageo.2004.05.006, 2004. a
Jönsson, P. and Eklundh, L.: TIMESAT – a program for analyzing time-series of satellite sensor data, Comput. Geosci., 30, 833–845, https://doi.org/10.1016/j.cageo.2004.05.006, 2004. a, b, c
Jönsson, P., Cai, Z., Melaas, E., Friedl, M. A., and Eklundh, L.: A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data, Remote Sens., 10, 635, https://doi.org/10.3390/RS10040635, 2018. a
Jung, M., Le Maire, G., Zaehle, S., Luyssaert, S., Vetter, M., Churkina, G., Ciais, P., Viovy, N., and Reichstein, M.: Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe, Biogeosciences, 4, 647–656, https://doi.org/10.5194/bg-4-647-2007, 2007. a
Jung, M., Reichstein, M., Margolis, H. a., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, J. Geophys. Res., 116, G00J07, https://doi.org/10.1029/2010JG001566, 2011. a
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E. M. S., Nelson, J. A., O'Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, 2020. a, b, c
Justice, C., Belward, A., Morisette, J., Lewis, P., Privette, J., and Baret, F.: Developments in the “validation” of satellite sensor products for the study of the land surface, Int. J. Remote Sens., 21, 3383–3390, https://doi.org/10.1080/014311600750020000, 2000. a
Kamir, E., Waldner, F., and Hochman, Z.: Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods, ISPRS J. Photogramm. Remote Sens., 160, 124–135, https://doi.org/10.1016/j.isprsjprs.2019.11.008, 2020. a
Kandasamy, S., Baret, F., Verger, A., Neveux, P., and Weiss, M.: A comparison of methods for smoothing and gap filling time series of remote sensing observations – application to MODIS LAI products, Biogeosciences, 10, 4055–4071, https://doi.org/10.5194/bg-10-4055-2013, 2013. a
Kang, S., Running, S. W., Lim, J.-H., amd Chan-Ryul Park, M. Z., and Loehman, R.: A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index, Remote Sens. Environ., 86, 232–242, https://doi.org/10.1016/S0034-4257(03)00103-2, 2003. a
Kang, X., Yan, L., Zhang, X., Li, Y., Tian, D., Peng, C., Wu, H., Wang, J., and Zhong, L.: Modeling gross primary production of a typical Coastal Wetland in China using MODIS time series and CO2 Eddy Flux Tower Data, Remote Sens., 10, 708, https://doi.org/10.3390/RS10050708, 2018. a, b
Karkauskaite, P., Tagesson, T., and Fensholt, R.: Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for Start-of-Season Trend Analysis of the Northern Hemisphere Boreal Zone, Remote Sens., 9, 485, https://doi.org/10.3390/rs9050485, 2017. a
Karlsen, S. R., Anderson, H. B., van der Wal, R., and Hansen, B. B.: A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity, Environ. Res. Lett., 13, 025011, https://doi.org/10.1088/1748-9326/aa9f75, 2018. a
Karlsen, S. R., Stendardi, L., Tømmervik, H., Nilsen, L., Arntzen, I., and Cooper, E. J.: Time-Series of Cloud-Free Sentinel-2 NDVI Data Used in Mapping the Onset of Growth of Central Spitsbergen, Svalbard, Remote Sens., 13, 3031, https://doi.org/10.3390/rs13153031, 2021. a
Kattenborn, T., Leitloff, J., Schiefer, F., and Hinz, S.: Review on Convolutional Neural Networks (CNN) in vegetation remote sensing, ISPRS J. Photogramm. Remote Sens., 173, 24–49, https://doi.org/10.1016/j.isprsjprs.2020.12.010, 2021. a, b
Killough, B.: Overview of the Open Data Cube Initiative, in: IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, 8629–8632, IEEE, ISBN 978-1-5386-7150-4, https://doi.org/10.1109/IGARSS.2018.8517694, 2018. a
Kimes, D. S., Nelson, R. F., Manry, M. T., and Fung, A. K.: Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements, Int. J. Remote Sens., 19, 2639–2663, https://doi.org/10.1080/014311698214433, 1998. a
Klisch, A. and Atzberger, C.: Operational Drought Monitoring in Kenya Using MODIS NDVI Time Series, Remote Sens., 8, 267, https://doi.org/10.3390/rs8040267, 2016. a
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015. a
Knauer, K., Gessner, U., Fensholt, R., Forkuor, G., and Kuenzer, C.: Monitoring Agricultural Expansion in Burkina Faso over 14 Years with 30 m Resolution Time Series: The Role of Population Growth and Implications for the Environment, Remote Sens., 9, 132, https://doi.org/10.3390/rs9020132, 2017. a
Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J., and Running, S. W.: Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data, J. Geophys. Res., 103, 32257, https://doi.org/10.1029/98JD02462, 1998. a
Koetz, B., Baret, F., Poilvé, H., and Hill, J.: Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics, Remote Sens. Environ., 95, 115–124, https://doi.org/10.1016/j.rse.2004.11.017, 2005. a
Kogan, F.: Application of vegetation index and brightness temperature for drought detection, Adv. Space Res., 15, 91–100, https://doi.org/10.1016/0273-1177(95)00079-T, 1995. a
Kong, D., McVicar, T. R., Xiao, M., Zhang, Y., Peña-Arancibia, J. L., Filippa, G., Xie, Y., and Gu, X.: phenofit: An R package for extracting vegetation phenology from time series remote sensing, Methods Ecol. Evol., 13, 1508–1527, https://doi.org/10.1111/2041-210X.13870, 2022. a
Körner, C.: Paradigm shift in plant growth control, Curr. Opin. Plant Biol., 25, 107–114, https://doi.org/10.1016/j.pbi.2015.05.003, 2015. a
Koren, G., Van Schaik, E., Araújo, A. C., Boersma, K. F., Gärtner, A., Killaars, L., Kooreman, M. L., Kruijt, B., Van Der Laan-Luijkx, I. T., Von Randow, C., Smith, N. E., and Peters, W.: Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Niño, Philos. T. R. Soc. B, 373, 20170408, https://doi.org/10.1098/RSTB.2017.0408, 2018. a
Kovács, D. D., Reyes-Muñoz, P., Salinero-Delgado, M., Mészáros, V. I., Berger, K., and Verrelst, J.: Cloud-Free Global Maps of Essential Vegetation Traits Processed from the TOA Sentinel-3 Catalogue in Google Earth Engine, Remote Sens., 15, 3404, https://doi.org/10.3390/rs15133404, 2023. a, b
Krause, A., Papastefanou, P., Gregor, K., Layritz, L. S., Zang, C. S., Buras, A., Li, X., Xiao, J., and Rammig, A.: Quantifying the impacts of land cover change on gross primary productivity globally, Sci. Rep., 12, 1–10, https://doi.org/10.1038/s41598-022-23120-0, 2022. a
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005. a
Kuenzer, C., Dech, S., and Wagner, W.: Remote Sensing Time Series Revealing Land Surface Dynamics, Remote Sens. Time Ser., 22, eBook ISBN 978-3-319-15967-6, https://doi.org/10.1007/978-3-319-15967-6, 2015. a
Kussul, N., Lavreniuk, M., Skakun, S., and Shelestov, A.: Cropland productivity assessment for Ukraine based on time series of optical satellite images, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 5007–5010, https://doi.org/10.1109/IGARSS.2017.8128127, 2017. a
Landsberg, J. J. and Gower, S. T.: Applications of Physiological Ecology to Forest Management, Elsevier, Academic Press, ISBN 978-0-12-435955-0, https://doi.org/10.1016/B978-0-12-435955-0.X5000-6, 1997. a
Lara, B., Gandini, M., Gantes, P., and Matteucci, S. D.: Regional patterns of ecosystem functional diversity in the Argentina Pampas using MODIS time-series, Ecol. Inform., 43, 65–72, https://doi.org/10.1016/J.ECOINF.2017.11.004, 2018. a
Larcher, W.: Physiological Plant Ecology, Springer, Berlin, Germany, ISBN 978-3-540-43516-7, https://link.springer.com/book/9783540435167 (last access: 13 January 2024), 2003. a
Launay, M. and Guerif, M.: Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications, Agr. Ecosyst. Environ., 111, 321–339, https://doi.org/10.1016/j.agee.2005.06.005, 2005. a
Lausch, A., Heurich, M., Magdon, P., Rocchini, D., Schulz, K., Bumberger, J., and King, D. J.: A Range of Earth Observation Techniques for Assessing Plant Diversity, in: Remote Sensing of Plant Biodiversity, 309–348, Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-030-33157-3_13, 2020. a
Lecerf, R., Ceglar, A., López-Lozano, R., Van Der Velde, M., and Baruth, B.: Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe, Agr. Syst., 168, 191–202, https://doi.org/10.1016/j.agsy.2018.03.002, 2019. a
Lee, J. E., Frankenberg, C., Van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., Fisher, J. B., Morrow, E., Worden, J. R., Asefi, S., Badgley, G., and Saatchi, S.: Forest productivity and water stress in Amazonia: Observations from GOSAT chlorophyll fluorescence, Tohoku J. Exp. Med., 230, 20130171, https://doi.org/10.1098/RSPB.2013.0171, 2013. a
Lees, T., Tseng, G., Atzberger, C., Reece, S., and Dadson, S.: Deep Learning for Vegetation Health Forecasting: A Case Study in Kenya, Remote Sens., 14, 698, https://doi.org/10.3390/rs14030698, 2022. a
Leopold, U., Gräler, B., Bredel, H., Torres-Matallana, J. A., Pinheiro, P., Stefas, M., Udelhoven, T., Dries, J., Valentin, B., Gale, L., Mougnaud, P., and Schlerf, M.: The Earth Observation Time Series Analysis Toolbox (EOTSA) - An R package with WPS, Web-Client and Spark integration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21974, https://doi.org/10.5194/egusphere-egu2020-21974, 2020. a, b
Li, S., Xu, L., Jing, Y., Yin, H., Li, X., and Guan, X.: High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques, Int. J. Appl. Earth Obs., 105, 102640, 2021a. a
Li, X., Xiao, J., Fisher, J. B., and Baldocchi, D. D.: ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station, Remote Sens. Environ., 258, 112360, https://doi.org/10.1016/j.rse.2021.112360, 2021b. a
Li, Z., Ding, L., and Xu, D.: Exploring the potential role of environmental and multi-source satellite data in crop yield prediction across Northeast China, Sci. Total Environ., 815, https://doi.org/10.1016/j.scitotenv.2021.152880, 2022. a
Liao, Z., Zhou, B., Zhu, J., Jia, H., and Fei, X.: A critical review of methods, principles and progress for estimating the gross primary productivity of terrestrial ecosystems, Front. Environ. Sci., 11, 464, https://doi.org/10.3389/fenvs.2023.1093095, 2023. a, b
Lin, S., Li, J., Liu, Q., Li, L., Zhao, J., and Yu, W.: Evaluating the Effectiveness of Using Vegetation Indices Based on Red-Edge Reflectance from Sentinel-2 to Estimate Gross Primary Productivity, Remote Sens., 11, 1303, https://doi.org/10.3390/rs11111303, 2019. a
Lin, S., Huang, X., Zheng, Y., Zhang, X., and Yuan, W.: An Open Data Approach for Estimating Vegetation Gross Primary Production at Fine Spatial Resolution, Remote Sens., 14, 2651, https://doi.org/10.3390/rs14112651, 2022. a
Liu, D., Cai, W., Xia, J., Dong, W., Zhou, G., Chen, Y., Zhang, H., and Yuan, W.: Global Validation of a Process-Based Model on Vegetation Gross Primary Production Using Eddy Covariance Observations, PLoS One, 9, e110407, https://doi.org/10.1371/journal.pone.0110407, 2014. a
Liu, F., Wang, C., and Wang, X.: Can vegetation index track the interannual variation in gross primary production of temperate deciduous forests?, Ecol. Proc. 10, 1–13, 2021a. a
Liu, J., Chen, J. M., Cihlar, J., and Park, W. M.: A process-based boreal ecosystem productivity simulator using remote sensing inputs, Remote Sens. Environ., 62, 158–175, https://doi.org/10.1016/S0034-4257(97)00089-8, 1997. a
Liu, J., Sun, O. J., Jin, H., Zhou, Z., and Han, X.: Application of two remote sensing GPP algorithms at a semiarid grassland site of North China, J. Plant Ecol., 4, 302–312, https://doi.org/10.1093/JPE/RTR019, 2011. a
Liu, P.: A survey of remote-sensing big data, Front. Environ. Sci., 3, 45, https://doi.org/10.3389/fenvs.2015.00045, 2015. a
Liu, X., Chen, F., Barlage, M., Zhou, G., and Niyogi, D.: Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model, J. Geophys. Res.-Atmos., 121, 13953–13972, https://doi.org/10.1002/2016JD025597, 2016. a
Liu, Y., Wang, J., Dong, J., Wang, S., and Ye, H.: Variations of Vegetation Phenology Extracted from Remote Sensing Data over the Tibetan Plateau Hinterland during 2000–2014, J. Meteorol. Res., 34, 786–797, https://doi.org/10.1007/S13351-020-9211-X, 2020. a
Liu, Y., Zhou, R., Ren, H., Zhang, W., Zhang, Z., Zhang, Z., and Wen, Z.: Evaluating the dynamics of grassland net primary productivity in response to climate change in China, Global Ecol. Conserv., 28, e01574, https://doi.org/10.1016/j.gecco.2021.e01574, 2021b. a
Lopresti, M. F., Di Bella, C. M., and Degioanni, A. J.: Relationship between MODIS-NDVI data and wheat yield: A case study in Northern Buenos Aires province, Argentina, Inform. Process. Agr., 2, 73–84, https://doi.org/10.1016/j.inpa.2015.06.001, 2015. a
Lumbierres, M., Méndez, P. F., Bustamante, J., Soriguer, R., and Santamaría, L.: Modeling Biomass Production in Seasonal Wetlands Using MODIS NDVI Land Surface Phenology, Remote Sens., 9, 392, https://doi.org/10.3390/rs9040392, 2017. a
Luo, X., Croft, H., Chen, J. M., He, L., and Keenan, T. F.: Improved estimates of global terrestrial photosynthesis using information on leaf chlorophyll content, Glob. Change Biol., 25, 2499–2514, https://doi.org/10.1111/gcb.14624, 2019. a
Luo, Z., Wang, E., and Sun, O. J.: Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: A review and synthesis, Geoderma, 155, 211–223, https://doi.org/10.1016/j.geoderma.2009.12.012, 2010. a
Ma, Y., Zhang, Z., Kang, Y., and Özdoğan, M.: Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach, Remote Sens. Environ., 259, 112408, https://doi.org/10.1016/j.rse.2021.112408, 2021. a
Machwitz, M., Gessner, U., Conrad, C., Falk, U., Richters, J., and Dech, S.: Modelling the Gross Primary Productivity of West Africa with the Regional Biomass Model RBM+, using optimized 250 m MODIS FPAR and fractional vegetation cover information, Int. J. Appl. Earth Obs. Geoinf., 43, 177–194, https://doi.org/10.1016/j.jag.2015.04.007, 2015. a
Madani, N., Kimball, J. S., Ballantyne, A. P., Affleck, D. L. R., van Bodegom, P. M., Reich, P. B., Kattge, J., Sala, A., Nazeri, M., Jones, M. O., Zhao, M., and Running, S. W.: Future global productivity will be affected by plant trait response to climate, Sci. Rep., 8, 1–10, https://doi.org/10.1038/s41598-018-21172-9, 2018. a
Malenovskỳ, Z., Homolová, L., Lukeš, P., Buddenbaum, H., Verrelst, J., Alonso, L., Schaepman, M. E., Lauret, N., and Gastellu-Etchegorry, J.-P.: Variability and uncertainty challenges in scaling imaging spectroscopy retrievals and validations from leaves up to vegetation canopies, Surv. Geophys., 40, 631–656, 2019. a
Mancini, M. S., Galli, A., Niccolucci, V., Lin, D., Bastianoni, S., Wackernagel, M., and Marchettini, N.: Ecological Footprint: Refining the carbon Footprint calculation, Ecol. Indic., 61, 390–403, https://doi.org/10.1016/j.ecolind.2015.09.040, 2016. a
Manivasagam, V., Kaplan, G., and Rozenstein, O.: Developing Transformation Functions for VENUS and Sentinel-2 Surface Reflectance over Israel, Remote Sens., 11, 1710, https://doi.org/10.3390/rs11141710, 2019. a
Mariotto, I., Thenkabail, P. S., Huete, A., Slonecker, E. T., and Platonov, A.: Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission, Remote Sens. Environ., 139, 291–305, https://doi.org/10.1016/j.rse.2013.08.002, 2013. a
Mayr, M. J., Vanselow, K. A., and Samimi, C.: Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000-2016) on the controls of fire activity in Namibia from spatial predictive models, Ecol. Indic., 91, 324–337, https://doi.org/10.1016/J.ECOLIND.2018.04.022, 2018. a
Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft, P. R.: Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2, J. Geophys. Res.-Biogeo., 114, G01002, https://doi.org/10.1029/2008JG000812, 2009. a
Melaas, E. K., Friedl, M. A., and Zhu, Z.: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data, Remote Sens. Environ., 132, 176–185, https://doi.org/10.1016/J.RSE.2013.01.011, 2013. a
Mercier, A., Betbeder, J., Rapinel, S., Jegou, N., Baudry, J., and Hubert-Moy, L.: Evaluation of Sentinel-1 and -2 time series for estimating LAI and biomass of wheat and rapeseed crop types, in: Journal of Applied Remote Sensing, Vol. 14, Issue 2, Vol. 14, 024512, SPIE, https://doi.org/10.1117/1.JRS.14.024512, 2020. a
Meroni, M., Atzberger, C., Vancutsem, C., Gobron, N., Baret, F., Lacaze, R., Eerens, H., and Leo, O.: Evaluation of Agreement Between Space Remote Sensing SPOT-VEGETATION fAPAR Time Series, IEEE Trans. Geosci. Remote Sens., 51, 1951–1962, https://doi.org/10.1109/TGRS.2012.2212447, 2012. a
Merrick, T., Pau, S., Jorge, M. L. S. P., Silva, T. S. F., and Bennartz, R.: Spatiotemporal Patterns and Phenology of Tropical Vegetation Solar-Induced Chlorophyll Fluorescence across Brazilian Biomes Using Satellite Observations, Remote Sens., 11, 1746, https://doi.org/10.3390/rs11151746, 2019. a
Monteith, J. L.: Solar Radiation and Productivity in Tropical Ecosystems, J. Appl. Ecol., 9, 747–766, https://doi.org/10.2307/2401901, 1972. a
Morcillo-Pallarés, P., Rivera-Caicedo, J. P., Belda, S., De Grave, C., Burriel, H., Moreno, J., and Verrelst, J.: Quantifying the robustness of vegetation indices through global sensitivity analysis of homogeneous and forest leaf-canopy radiative transfer models, Remote Sens., 11, 2418, https://doi.org/10.3390/rs11202418, 2019. a
Morisette, J. T., Baret, F., Privette, J. L., Myneni, R. B., Nickeson, J. E., Garrigues, S., Shabanov, N. V., Weiss, M., Fernandes, R. A., Leblanc, S. G., Kalacska, M., Sanchez-Azofeifa, G. A., Chubey, M., Rivard, B., Stenberg, P., Rautiainen, M., Voipio, P., Manninen, T., Pilant, A. N., Lewis, T. E., Iiames, J. S., Colombo, R., Meroni, M., Busetto, L., Cohen, W. B., Turner, D. P., Warner, E. D., Petersen, G. W., Seufert, G., and Cook, R.: Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup, IEEE Trans. Geosci. Remote Sens., 44, 1804–1817, https://doi.org/10.1109/TGRS.2006.872529, 2006. a
Moulin, S., Bondeau, A., and Delecolle, R.: Combining agricultural crop models and satellite observations: From field to regional scales, Int. J. Remote Sens., 19, 1021–1036, https://doi.org/10.1080/014311698215586, 1998. a, b
Munawar, S. and Udelhoven, T.: Land change syndromes identification in temperate forests of Hindukush Himalaya Karakorum (HHK) mountain ranges, Int. J. Remote Sens., 41, 7735–7756, https://doi.org/10.1080/01431161.2020.1763509, 2020. a
Myneni, R., Hoffman, S., Knyazikhin, Y., Privette, J., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G., Lotsch, A., Friedl, M., Morisette, J., Votava, P., Nemani, R., and Running, S.: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens. Environ., 83, 214–231, https://doi.org/10.1016/S0034-4257(02)00074-3, 2002. a
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500 m SIN Grid V006, Boston University and MODAPS SIPS – NASA, NASA LP DAAC, 2015. a
Myneni, R. B., Los, S. O., and Asrar, G.: Potential gross primary productivity of terrestrial vegetation from 1982-1990, Geophys. Res. Lett., 22, 2617–2620, https://doi.org/10.1029/95GL02562, 1995. a, b
Myneni, R. B., Ramakrishna, R., Nemani, R., and Running, S. W.: Estimation of global leaf area index and absorbed par using radiative transfer models, IEEE Trans. Geosci. Remote Sens., 35, 1380–1393, https://doi.org/10.1109/36.649788, 1997. a, b
NASA: CEOS group on Calibration and Validation, Land product validation subgroup, https://lpvs.gsfc.nasa.gov/Pheno/Pheno_home.html (last access: 13 January 2024), 2023. a
Nguyen, T. H., Jones, S. D., Soto-Berelov, M., Haywood, A., and Hislop, S.: Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data, Int. J. Appl. Earth Obs., 84, 101952, https://doi.org/10.1016/J.JAG.2019.101952, 2020. a, b
Norton, A. J., Rayner, P. J., Koffi, E. N., Scholze, M., Silver, J. D., and Wang, Y.-P.: Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model, Biogeosciences, 16, 3069–3093, https://doi.org/10.5194/bg-16-3069-2019, 2019. a
Olsson, P.-O., Heliasz, M., Jin, H., and Eklundh, L.: Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks, Biogeosciences, 14, 1703–1719, https://doi.org/10.5194/bg-14-1703-2017, 2017. a
ORNL DAAC: Net Primary Productivity, https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=13 (last access: 13 January 2024), 2023. a
Pacheco-Labrador, J., Perez-Priego, O., El-Madany, T., Julitta, T., Rossini, M., Guan, J., Moreno, G., Carvalhais, N., Martín, M., Gonzalez-Cascon, R., Kolle, O., Reischtein, M., van der Tol, C., Carrara, A., Martini, D., Hammer, T., Moossen, H., and Migliavacca, M.: Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits, Remote Sens. Environ., 234, 111362, https://doi.org/10.1016/j.rse.2019.111362, 2019. a
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., and Moher, D.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, 372, 71, https://doi.org/10.1136/bmj.n71, 2021. a, b
Park, T., Chen, C., Macias-Fauria, M., Tømmervik, H., Choi, S., Winkler, A., Bhatt, U. S., Walker, D. A., Piao, S., Brovkin, V., Nemani, R. R., and Myneni, R. B.: Changes in timing of seasonal peak photosynthetic activity in northern ecosystems, Glob. Change Biol., 25, 2382–2395, https://doi.org/10.1111/gcb.14638, 2019. a
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R., Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D'Andrea, E., da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. d., Ligne, A. D., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, P. d., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson, A., Goded, I., Goeckede, M., Goldstein, A. H., Gough, C. M., Goulden, M. L., Graf, A., Griebel, A., Gruening, C., Grünwald, T., Hammerle, A., Han, S., Han, X., Hansen, B. U., Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch, B., Hinko-Najera, N., Hörtnagl, L., Hutley, L., Ibrom, A., Ikawa, H., Jackowicz-Korczynski, M., Janouš, D., Jans, W., Jassal, R., Jiang, S., Kato, T., Khomik, M., Klatt, J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G., Kolle, O., Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J., Kutsch, W. L., Kwon, H., Launiainen, S., Laurila, T., Law, B., Leuning, R., Li, Y., Liddell, M., Limousin, J.-M., Lion, M., Liska, A. J., Lohila, A., López-Ballesteros, A., López-Blanco, E., Loubet, B., Loustau, D., Lucas-Moffat, A., Lüers, J., Ma, S., Macfarlane, C., Magliulo, V., Maier, R., Mammarella, I., Manca, G., Marcolla, B., Margolis, H. A., Marras, S., Massman, W., Mastepanov, M., Matamala, R., Matthes, J. H., Mazzenga, F., McCaughey, H., McHugh, I., McMillan, A. M. S., Merbold, L., Meyer, W., Meyers, T., Miller, S. D., Minerbi, S., Moderow, U., Monson, R. K., Montagnani, L., Moore, C. E., Moors, E., Moreaux, V., Moureaux, C., Munger, J. W., Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets, A., Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W., Olesen, J. E., Ourcival, J.-M., Papuga, S. A., Parmentier, F.-J., Paul-Limoges, E., Pavelka, M., Peichl, M., Pendall, E., Phillips, R. P., Pilegaard, K., Pirk, N., Posse, G., Powell, T., Prasse, H., Prober, S. M., Rambal, S., Rannik, Ü., Raz-Yaseef, N., Rebmann, C., Reed, D., Dios, V. R. d., Restrepo-Coupe, N., Reverter, B. R., Roland, M., Sabbatini, S., Sachs, T., Saleska, S. R., Sánchez-Cañete, E. P., Sanchez-Mejia, Z. M., Schmid, H. P., Schmidt, M., Schneider, K., Schrader, F., Schroder, I., Scott, R. L., Sedlák, P., Serrano-Ortíz, P., Shao, C., Shi, P., Shironya, I., Siebicke, L., Šigut, L., Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R. M., Sturtevant, C., Suyker, A., Tagesson, T., Takanashi, S., Tang, Y., Tapper, N., Thom, J., Tomassucci, M., Tuovinen, J.-P., Urbanski, S., Valentini, R., van der Molen, M., van Gorsel, E., van Huissteden, K., Varlagin, A., Verfaillie, J., Vesala, T., Vincke, C., Vitale, D., Vygodskaya, N., Walker, J. P., Walter-Shea, E., Wang, H., Weber, R., Westermann, S., Wille, C., Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y., Zampedri, R., Zhang, J., Zhou, G., Zona, D., Agarwal, D., Biraud, S., Torn, M., and Papale, D.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 1–27, https://doi.org/10.1038/s41597-020-0534-3, 2020. a
Pei, Y., Dong, J., Zhang, Y., Yuan, W., Doughty, R., Yang, J., Zhou, D., Zhang, L., and Xiao, X.: Evolution of light use efficiency models: Improvement, uncertainties, and implications, Agr. Forest Meteorol., 317, 108905, https://doi.org/10.1016/j.agrformet.2022.108905, 2022. a, b
Peng, B., Guan, K., Zhou, W., Jiang, C., Frankenberg, C., Sun, Y., He, L., and Köhler, P.: Assessing the benefit of satellite-based Solar-Induced Chlorophyll Fluorescence in crop yield prediction, Int. J. Appl. Earth Obs., 90, 102126, https://doi.org/10.1016/j.jag.2020.102126, 2020. a
Penman, J., Green, C., Olofsson, P., Raison, J., Woodcock, C., Balzter, H., Baltuck, M., and Foody, G. M.: Integration of remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests: methods and guidance from the Global Forest Observations Initiative, Tech. rep., U.N. Food and Agriculture Organization, https://nottingham-repository.worktribe.com/output/974817 (last access: 13 January 2024), 2016. a
Perich, G., Turkoglu, M. O., Graf, L. V., Wegner, J. D., Aasen, H., Walter, A., and Liebisch, F.: Pixel-based yield mapping and prediction from Sentinel-2 using spectral indices and neural networks, Field Crops Res., 292, 108824, https://doi.org/10.1016/j.fcr.2023.108824, 2023. a
Pflugmacher, D., Cohen, W. B., Kennedy, R. E., and Yang, Z.: Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics, Remote Sens. Environ., 151, 124–137, https://doi.org/10.1016/J.RSE.2013.05.033, 2014. a
Pinzon, J. E. and Tucker, C. J.: A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series, Remote Sens., 6, 6929–6960, https://doi.org/10.3390/rs6086929, 2014. a
Pipia, L., Muñoz-Marí, J., Amin, E., Belda, S., Camps-Valls, G., and Verrelst, J.: Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes, Remote Sens. Environ., 235, 111452, https://doi.org/10.1016/j.rse.2019.111452, 2019. a, b
Pipia, L., Belda, S., Franch, B., and Verrelst, J.: Trends in Satellite Sensors and Image Time Series Processing Methods for Crop Phenology Monitoring, https://www.springerprofessional.de/trends-in-satellite-sensors-and-image-time-series-processing-met/20302486 (last access: 13 January 2024), 2022. a, b
Poulter, B., Currey, B., Calle, L., Shiklomanov, A. N., Amaral, C. H., Brookshire, E. N. J., Campbell, P., Chlus, A., Cawse-Nicholson, K., Huemmrich, F., Miller, C. E., Miner, K., Pierrat, Z., Raiho, A. M., Schimel, D., Serbin, S., Smith, W. K., Stavros, N., Stutz, J., Townsend, P., Thompson, D. R., and Zhang, Z.: Simulating Global Dynamic Surface Reflectances for Imaging Spectroscopy Spaceborne Missions: LPJ-PROSAIL, J. Geophys. Res.-Biogeo., 128, e2022JG006935, https://doi.org/10.1029/2022JG006935, 2023. a
Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, G. G., Pierce, K. B., and Ohmann, J. L.: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches, Remote Sens. Environ., 114, 1053–1068, https://doi.org/10.1016/J.RSE.2009.12.018, 2010. a, b
Prescher, A.-K., Grünwald, T., and Bernhofer, C.: Land use regulates carbon budgets in eastern Germany: From NEE to NBP, Agr. Forest Meteorol., 150, 1016–1025, https://doi.org/10.1016/j.agrformet.2010.03.008, 2010. a, b
Quillet, A., Peng, C., and Garneau, M.: Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: recent developments, limitations, and future challenges, Environ. Rev., 18, 333–353, https://doi.org/10.1139/A10-016, 2010. a
Ramoelo, A., Cho, M. A., Mathieu, R., Madonsela, S., van de Kerchove, R., Kaszta, Z., and Wolff, E.: Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data, Int. J. Appl. Earth Obs., 43, 43–54, https://doi.org/10.1016/j.jag.2014.12.010, 2015. a
Rankine, C., Sánchez-Azofeifa, G. A., Guzmán, J. A., Espirito-Santo, M. M., and Sharp, I.: Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers, Environ. Res. Lett., 12, 105007, https://doi.org/10.1088/1748-9326/aa838c, 2017. a
Rasmussen, K., Fensholt, R., Fog, B., Vang Rasmussen, L., and Yanogo, I.: Explaining NDVI trends in northern Burkina Faso, Geogr. Tidsskr., 114, 17–24, https://doi.org/10.1080/00167223.2014.890522, 2014. a
Rautiainen, M.: Retrieval of leaf area index for a coniferous forest by inverting a forest reflectance model, Remote Sens. Environ., 99, 295–303, https://doi.org/10.1016/j.rse.2005.09.004, 2005. a
Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and Widmann, H.: Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global Biogeochem. Cy., 19, GB2026, https://doi.org/10.1029/2004GB002254, 2005. a
Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., Merchant, J. W., and Ohlen, D. O.: Measuring phenological variability from satellite imagery, J. Veg. Sci., 5, 703–714, https://doi.org/10.2307/3235884, 1994. a
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019. a
Reinermann, S., Gessner, U., Asam, S., Kuenzer, C., and Dech, S.: The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics, Remote Sens., 11, 1783, https://doi.org/10.3390/rs11151783, 2019. a
Rembold, F., Meroni, M., Rojas, O., Atzberger, C., Fillol, E., and Ham, F.: Agricultural Drought Monitoring Using Space-Derived Vegetation and Biophysical Products: A Global Perspective, CRC Press, Taylor and Francis Group, ISBN 978-1-4822-1792-6, https://publications.jrc.ec.europa.eu/repository/handle/JRC89364 (last access: 13 January 2024), 2015a. a
Rembold, F., Meroni, M., Urbano, F., Royer, A., Atzberger, C., Lemoine, G., Eerens, H., and Haesen, D.: Remote sensing time series analysis for crop monitoring with the SPIRITS software: new functionalities and use examples, Front. Environ. Sci., 3, https://doi.org/10.3389/fenvs.2015.00046, 2015b. a
Reyes-Muñoz, P., Pipia, L., Salinero-Delgado, M., Belda, S., Berger, K., Estévez, J., Morata, M., Rivera-Caicedo, J. P., and Verrelst, J.: Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine, Remote Sens., 14, 1347, https://doi.org/10.3390/rs14061347, 2022. a
Richter, K., Atzberger, C., Vuolo, F., Weihs, P., and D'Urso, G.: Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize, Can. J. Remote Sens., 35, 230–247, https://doi.org/10.5589/m09-010, 2009. a
Rotllan-Puig, X., Ivits, E., and Cherlet, M.: LPDynR: A new tool to calculate the land productivity dynamics indicator, Ecol. Indic., 133, 108386, https://doi.org/10.1016/j.ecolind.2021.108386, 2021. a
Rouse, W., Haas, R., Well, J., and Deering, D. W.: Monitoring vegetation systems in the Great Plains with ERTS, Presented at the proceedings of the Third ERTS Symposium, 1, 309–317, 1974. a
Roxburgh, S. H., Berry, S. L., Buckley, T. N., Barnes, B., and Roderick, M. L.: What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production, Funct. Ecol., 19, 378–382, https://doi.org/10.1111/j.1365-2435.2005.00983.x, 2005. a
Roy, D. P., Huang, H., Houborg, R., and Martins, V. S.: A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery, Remote Sens. Environ., 264, 112586, https://doi.org/10.1016/j.rse.2021.112586, 2021. a
Running, S. W., Thornton, P. E., Nemani, R., and Glassy, J. M.: Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System, in: Methods in Ecosystem Science, 44–57, Springer, New York, NY, ISBN 978-1-4612-1224-9, https://doi.org/10.1007/978-1-4612-1224-9_4, 2000. a
Ryu, Y., Baldocchi, D. D., Kobayashi, H., van Ingen, C., Li, J., Black, T. A., Beringer, J., van Gorsel, E., Knohl, A., Law, B. E., and Roupsard, O.: Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales, Global Biogeochem. Cy., 25, GB4017, https://doi.org/10.1029/2011GB004053, 2011. a
Ryu, Y., Berry, J. A., and Baldocchi, D. D.: What is global photosynthesis? History, uncertainties and opportunities, Remote Sens. Environ., 223, 95–114, https://doi.org/10.1016/j.rse.2019.01.016, 2019. a, b
Sadeh, Y., Zhu, X., Dunkerley, D., Walker, J. P., Zhang, Y., Rozenstein, O., Manivasagam, V., and Chenu, K.: Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI monitoring, Int. J. Appl. Earth Obs., 96, 102260, https://doi.org/10.1016/j.jag.2020.102260, 2021. a
Sagan, V., Maimaitijiang, M., Sidike, P., Maimaitiyiming, M., Erkbol, H., Hartling, S., Peterson, K. T., Peterson, J., Burken, J., and Fritschi, F.: Uav/Satellite Multiscale Data Fusion For Crop Monitoring And Early Stress Detection, International Archives of the Photogrammetry, Remote Sens. Spatial Inform. Sci., XLII-2-W13, 715–722, https://doi.org/10.5194/isprs-archives-XLII-2-W13-715-2019, 2019. a
Salinero-Delgado, M. V. and Verrelst, J.: Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression, Remote Sens., 14, 146, https://doi.org/10.3390/rs14010146, 2021. a
Schiefer, F., Schmidtlein, S., and Kattenborn, T.: The retrieval of plant functional traits from canopy spectra through RTM-inversions and statistical models are both critically affected by plant phenology, Ecol. Indic., 121, 107062, https://doi.org/10.1016/j.ecolind.2020.107062, 2021. a
Schulze, E. D., Valentini, R., and Bouriaud, O.: The role of net ecosystem productivity and of inventories in climate change research: the need for “net ecosystem productivity with harvest”, NEPH, Forest Ecosyst., 8, 1–8, https://doi.org/10.1186/s40663-021-00294-z, 2021. a
Schwartz, M.: Phenology: An Integrative Environmental Science, Vol. 2, Springer Netherlands, ISBN 978-94-017-8153-4, https://doi.org/10.1007/978-94-007-6925-0, 2013. a
Scurlock, J. M. O. and Olson, R. J.: Terrestrial net primary productivity A brief history and a new worldwide database, Environ. Rev., 10, 91–109, https://doi.org/10.1139/a02-002, 2002. a
Senf, C. and Seidl, R.: Mapping the forest disturbance regimes of Europe, Nat. Sustain., 4, 63–70, https://doi.org/10.1038/s41893-020-00609-, 2021. a
Senf, C., Pflugmacher, D., Heurich, M., and Krueger, T.: A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series, Remote Sens. Environ., 194, 155–160, https://doi.org/10.1016/j.rse.2017.03.020, 2017. a
Senf, C., Buras, A., Zang, C. S., Rammig, A., and Seidl, R.: Excess forest mortality is consistently linked to drought across Europe, Nat. Commun., 11, 6200, https://doi.org/10.1038/s41467-020-19924-1, 2020. a
Shammi, S. A. and Meng, Q.: Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling, Ecol. Indic., 121, 107124, https://doi.org/10.1016/j.ecolind.2020.107124, 2021. a, b
Shi, H., Li, L., Eamus, D., Huete, A., Cleverly, J., Tian, X., Yu, Q., Wang, S., Montagnani, L., Magliulo, V., Rotenberg, E., Pavelka, M., and Carrara, A.: Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types, Ecol. Indic., 72, 153–164, https://doi.org/10.1016/j.ecolind.2016.08.022, 2017. a
Shiklomanov, A. N., Dietze, M. C., Fer, I., Viskari, T., and Serbin, S. P.: Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance, Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021, 2021. a
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003. a
Sloat, L., Lin, M., Butler, E., Johnson, D., Holbrook, N., Huybers, P., Lee, J.-E., and Mueller, N.: Evaluating the benefits of chlorophyll fluorescence for in-season crop productivity forecasting, Remote Sens. Environ., 260, 112478, https://doi.org/10.1016/j.rse.2021.112478, 2021. a
Smets, B., Eerens, H., Jacobs, T., and Toté, C.: Product User Manual. Vegetation Condition Index (VCI) and Vegetation Productivity Index (VPI), GIO Global Land Component Lot I “Operation of the Global Land Component”, GMES Initial Operations, GIO-GL Lot 1, GMES Initial Operations, 2015. a
Smith, W. K., Biederman, J. A., Scott, R. L., Moore, D. J., He, M., Kimball, J. S., Yan, D., Hudson, A., Barnes, M. L., MacBean, N., Fox, A. M., and Litvak, M. E.: Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of Southwestern North America, Geophys. Res. Lett., 45, 748–757, https://doi.org/10.1002/2017GL075922, 2018. a
Somkuti, P., Bösch, H., Feng, L., Palmer, P. I., Parker, R. J., and Quaife, T.: A new space-borne perspective of crop productivity variations over the US Corn Belt, Agr. Forest Meteorol., 281, 107826, https://doi.org/10.1016/j.agrformet.2019.107826, 2020. a
SpecNet: SpecNet network, https://specnet.info/ (last access: 13 January 2024), 2022. a
Stellmes, M., Röder, A., Udelhoven, T., and Hill, J.: Mapping syndromes of land change in Spain with remote sensing time series, demographic and climatic data, Land Use Policy, 30, 685–702, https://doi.org/10.1016/j.landusepol.2012.05.007, 2013. a
Suijker, W. and Medrano, E. A.: Temporal and spatial aggregation of the normalized difference vegetation index for the prediction of rice yields, in: Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, Vol. 10783, 233–244, SPIE, https://doi.org/10.1117/12.2319189, 2018. a
Tagliabue, G., Panigada, C., Dechant, B., Baret, F., Cogliati, S., Colombo, R., Migliavacca, M., Rademske, P., Schickling, A., Schüttemeyer, D., Verrelst, J., Rascher, U., Ryu, Y., and Rossini, M.: Exploring the spatial relationship between airborne-derived red and far-red sun-induced fluorescence and process-based GPP estimates in a forest ecosystem, Remote Sens. Environ., 231, 111 272, https://doi.org/10.1016/j.rse.2019.111272, 2019. a
Teubner, I. E., Forkel, M., Jung, M., Liu, Y. Y., Miralles, D. G., Parinussa, R., van der Schalie, R., Vreugdenhil, M., Schwalm, C. R., Tramontana, G., Camps-Valls, G., and Dorigo, W. A.: Assessing the relationship between microwave vegetation optical depth and gross primary production, Int. J. Appl. Earth Obs. Geoinf., 65, 79–91, https://doi.org/10.1016/j.jag.2017.10.006, 2018. a
Tian, F., Cai, Z., Jin, H., Hufkens, K., Scheifinger, H., Tagesson, T., Smets, B., Van Hoolst, R., Bonte, K., Ivits, E., Tong, X., Ardö, J., and Eklundh, L.: Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe, Remote Sens. Environ., 260, 112456, https://doi.org/10.1016/J.RSE.2021.112456, 2021. a, b
Tomelleri, E., Belelli Marchesini, L., Yaroslavtsev, A., Asgharinia, S., and Valentini, R.: Toward a Unified TreeTalker Data Curation Process, Forests, 13, 855, https://doi.org/10.3390/f13060855, 2022. a
Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S., Sonnentag, O., Baldocchi, D. D., Bernacchi, C. J., Biraud, S. C., Bohrer, G., Brzostek, E., Burns, S. P., Coursolle, C., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Monson, R. K., Munger, J. W., Pallardy, S., Phillips, R. P., Torn, M. S., Wharton, S., Zeri, M., and Richardson, A. D.: Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis, Ecol. Appl., 25, 99–115, https://doi.org/10.1890/14-0005.1, 2015. a
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979. a
Turner, D. P., Ritts, W. D., Law, B. E., Cohen, W. B., Yang, Z., Hudiburg, T., Campbell, J. L., and Duane, M.: Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States, Biogeosciences, 4, 597–612, https://doi.org/10.5194/bg-4-597-2007, 2007. a
Tüshaus, J., Dubovyk, O., Khamzina, A., and Menz, G.: Comparison of medium spatial resolution ENVISAT-MERIS and terra-MODIS time series for vegetation decline analysis: A case study in central Asia, Remote Sens., 6, 5238–5256, https://doi.org/10.3390/RS6065238, 2014. a
Udelhoven, T.: TimeStats: A Software Tool for the Retrieval of Temporal Patterns From Global Satellite Archives, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 4, 310–317, https://doi.org/10.1109/JSTARS.2010.2051942, 2010. a
Udelhoven, T.: TimeStats: A Software Tool for the Retrieval of Temporal Patterns From Global Satellite Archives, IEEE J. Sel. Top. Appl., 4, 310–317, https://doi.org/10.1109/JSTARS.2010.2051942, 2011. a, b
Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger, J. W.: Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest, J. Geophys. Res.-Biogeo., 112, G02020, https://doi.org/10.1029/2006JG000293, 2007. a
Ustin, S. L. and Middleton, E. M.: Current and near-term advances in Earth observation for ecological applications, Ecol. Process., 10, 1–57, https://doi.org/10.1186/s13717-020-00255-4, 2021. a
Valentini, R., Marchesini, L. B., Gianelle, D., Sala, G., Yarovslavtsev, A., Vasenev, V. I., and Castaldi, S.: New tree monitoring systems: From industry 4.0 to nature 4.0, Ann. Silvicul. Res., 43, 84–88, https://doi.org/10.12899/asr-1847, 2019. a
Van Den Bergh, F., Wessels, K. J., Miteff, S., Van Zyl, T. L., Gazendam, A. D., and Bachoo, A. K.: HiTempo: a platform for time-series analysis of remote-sensing satellite data in a high-performance computing environment, Int. J. Remote Sens., 33, 4720–4740, https://doi.org/10.1080/01431161.2011.638339, 2012. a, b
van der Linden, S., Rabe, A., Held, M., Jakimow, B., Leitão, P. J., Okujeni, A., Schwieder, M., Suess, S., and Hostert, P.: The EnMAP-box-A toolbox and application programming interface for EnMAP data processing, Remote Sens., 7, 11249–11266, https://doi.org/10.3390/RS70911249, 2015. a, b
Van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., and Su, Z.: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance, Biogeosciences, 6, 3109–3129, https://doi.org/10.5194/bg-6-3109-2009, 2009. a
Verbesselt, J., Hyndman, R., Newnham, G., and Culvenor, D.: Detecting Trend and Seasonal Changes in Satellite Image Time Series, Remote Sens. Environ., 114, 106–115, https://doi.org/10.1016/j.rse.2009.08.014, 2010. a, b, c
Verdouw, C., Tekinerdogan, B., Beulens, A., and Wolfert, S.: Digital twins in smart farming, Agr. Syst., 189, 103046, https://doi.org/10.1016/j.agsy.2020.103046, 2021. a
Verger, A., Filella, I., Baret, F., and Peñuelas, J.: Vegetation baseline phenology from kilometric global LAI satellite products, Remote Sens. Environ., 178, 1–14, 2016. a
Verhoef, W. and Bach, H.: Remote sensing data assimilation using coupled radiative transfer models, Phys. Chem. Earth Pt. A/B/C, 28, 3–13, https://doi.org/10.1016/S1474-7065(03)00003-2, 2003. a
Verrelst, J., Schaepman, M. E., Koetz, B., and Kneubühler, M.: Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data, Remote Sens. Environ., 112, 2341–2353, https://doi.org/10.1016/j.rse.2007.11.001, 2008. a
Verrelst, J., Schaepman, M. E., Malenovskỳ, Z., and Clevers, J. G.: Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval, Remote Sens. Environ., 114, 647–656, 2010. a
Verrelst, J., Alonso, L., Camps-Valls, G., and Delegido, J.: Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques, IEEE Trans. Geosci. Remote Sens., 50, 1832–1843, https://doi.org/10.1109/TGRS.2011.2168962, 2011. a
Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., and Moreno, J.: Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3, Remote Sens. Environ., 118, 127–139, https://doi.org/10.1016/j.rse.2011.11.002, 2012. a
Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P., Veroustraete, F., Clevers, J. G., and Moreno, J.: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – A review, ISPRS J. Photogramm. Remote Sens., 108, 273–290, https://doi.org/10.1016/j.isprsjprs.2015.05.005, 2015a. a
Verrelst, J., Rivera, J. P., van der Tol, C., Magnani, F., Mohammed, G., and Moreno, J.: Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence?, Remote Sens. Environ., 166, 8–21, 2015b. a
Verrelst, J., Van der Tol, C., Magnani, F., Sabater, N., Rivera, J. P., Mohammed, G., and Moreno, J.: Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study, Remote Sens. Environ., 176, 139–151, https://doi.org/10.1016/j.rse.2016.01.018, 2016. a
Verrelst, J., Vicent, J., Rivera-Caicedo, J. P., Lumbierres, M., Morcillo-Pallarés, P., and Moreno, J.: Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data, Remote Sens., 11, 1923, https://doi.org/10.3390/rs11161923, 2019b. a
Verrelst, J., Rivera-Caicedo, J. P., Reyes-Muñoz, P., Morata, M., Amin, E., Tagliabue, G., Panigada, C., Hank, T., and Berger, K.: Mapping landscape canopy nitrogen content from space using PRISMA data, ISPRS J. Photogramm. Remote Sens., 178, 382–395, https://doi.org/10.1016/j.isprsjprs.2021.06.017, 2021. a
Vuolo, F., Ng, W.-T., and Atzberger, C.: Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data, Int. J. Appl. Earth Obs. Geoinf., 57, 202–213, https://doi.org/10.1016/j.jag.2016.12.012, 2017. a
Wang, C., Beringer, J., Hutley, L. B., Cleverly, J., Li, J., Liu, Q., and Sun, Y.: Phenology Dynamics of Dryland Ecosystems Along the North Australian Tropical Transect Revealed by Satellite Solar-Induced Chlorophyll Fluorescence, Geophys. Res. Lett., 46, 5294–5302, https://doi.org/10.1029/2019GL082716, 2019. a
Wang, J., Delang, C. O., Hou, G., Gao, L., and Lu, X. X.: Net primary production increases in the Yangtze River Basin within the latest two decades, Global Ecol. Conserv., 26, e01497, https://doi.org/10.1016/J.GECCO.2021.E01497, 2021. a, b
Wang, L., Zhu, H., Lin, A., Zou, L., Qin, W., and Du, Q.: Evaluation of the latest MODIS GPP products across multiple biomes using global eddy covariance flux data, Remote Sens., 9, 418, https://doi.org/10.3390/rs9050418, 2017. a
Wang, Y., Braghiere, R. K., Longo, M., Norton, A. J., Köhler, P., Doughty, R., Yin, Y., Bloom, A. A., and Frankenberg, C.: Modeling Global Vegetation Gross Primary Productivity, Transpiration and Hyperspectral Canopy Radiative Transfer Simultaneously Using a Next Generation Land Surface Model–CliMA Land, J. Adv. Model. Earth Syst., 15, e2021MS002964, https://doi.org/10.1029/2021MS002964, 2023. a
Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J., and Dokken, D. J. E.: Land Use, Land-Use Change, and Forestry – IPCC, https://www.ipcc.ch/report/land-use-land-use-change-and-forestry (last access: 13 January 2024), 2000. a
Wessels, K. J., Prince, S. D., Frost, P. E., and van Zyl, D.: Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series, Remote Sens. Environ., 91, 47–67, https://doi.org/10.1016/j.rse.2004.02.005, 2004. a
Wild, B., Teubner, I., Moesinger, L., Zotta, R.-M., Forkel, M., van der Schalie, R., Sitch, S., and Dorigo, W.: VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing, Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022, 2022. a
Wilson, A. M. and Jetz, W.: Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions, PLoS Biol., 14, e1002415, https://doi.org/10.1371/journal.pbio.1002415, 2016. a
Winkler, K., Fuchs, R., Rounsevell, M., and Herold, M.: Global land use changes are four times greater than previously estimated, Nat. Commun., 12, 2501, https://doi.org/10.1038/s41467-021-22702-2, 2021. a
Wocher, M., Berger, K., Verrelst, J., and Hank, T.: Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas, ISPRS J. Photogramm. Remote Sens., 193, 104–114, https://doi.org/10.1016/j.isprsjprs.2022.09.003, 2022. a
Wood, D. J. A., Powell, S., Stoy, P. C., Thurman, L. L., and Beever, E. A.: Is the grass always greener? Land surface phenology reveals differences in peak and season-long vegetation productivity responses to climate and management, Ecol. Evol., 11, 11168–11199, https://doi.org/10.1002/ece3.7904, 2021. a
Wu, X., Xiao, Q., Wen, J., You, D., and Hueni, A.: Advances in quantitative remote sensing product validation: Overview and current status, Earth-Sci. Rev., 196, 102875, https://doi.org/10.1016/j.earscirev.2019.102875, 2019. a
Xu, M., Liu, R., Chen, J. M., Liu, Y., Wolanin, A., Croft, H., He, L., Shang, R., Ju, W., Zhang, Y., He, Y., and Wang, R.: A 21-Year Time Series of Global Leaf Chlorophyll Content Maps From MODIS Imagery, IEEE Trans. Geosci. Remote Sens., 60, 1–13, https://doi.org/10.1109/TGRS.2022.3204185, 2022. a
Yan, H., Fu, Y., Xiao, X., Huang, H. Q., He, H., and Ediger, L.: Modeling gross primary productivity for winter wheat–maize double cropping system using MODIS time series and CO2 eddy flux tower data, Agr. Ecosyst. Environ., 129, 391–400, https://doi.org/10.1016/j.agee.2008.10.017, 2009. a
Yan, K., Park, T., Yan, G., Chen, C., Yang, B., Liu, Z., Nemani, R. R., Knyazikhin, Y., and Myneni, R. B.: Evaluation of MODIS LAI/FPAR product collection 6, Part 1: Consistency and improvements, Remote Sens., 8, 359, 2016. a
Yang, B., Knyazikhin, Y., Mõttus, M., Rautiainen, M., Stenberg, P., Yan, L., Chen, C., Yan, K., Choi, S., Park, T., and Myneni, R. B.: Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis, Remote Sens. Environ., 198, 69–84, https://doi.org/10.1016/j.rse.2017.05.033, 2017. a
Yang, P., Prikaziuk, E., Verhoef, W., and Van der Tol, C.: SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals, Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021, 2021a. a
Yang, P., Verhoef, W., Prikaziuk, E., and Van der Tol, C.: Improved retrieval of land surface biophysical variables from time series of Sentinel-3 OLCI TOA spectral observations by considering the temporal autocorrelation of surface and atmospheric properties, Remote Sens. Environ., 256, 112328, https://doi.org/10.1016/j.rse.2021.112328, 2021b. a
Yang, S., Yang, J., Shi, S., Song, S., Zhang, Y., Luo, Y., and Du, L.: An exploration of solar-induced chlorophyll fluorescence (SIF) factors simulated by SCOPE for capturing GPP across vegetation types, Ecol. Model., 472, 110079, https://doi.org/10.1016/j.ecolmodel.2022.110079, 2022. a
You, Y., Wang, S., Ma, Y., Wang, X., and Liu, W.: Improved modeling of gross primary productivity of alpine grasslands on the Tibetan Plateau using the Biome-BGC model, Remote Sens., 11, 1287, https://doi.org/10.3390/RS11111287, 2019. a
Younes, N., Joyce, K. E., and Maier, S. W.: All models of satellite-derived phenology are wrong, but some are useful: A case study from northern Australia, Int. J. Appl. Earth Obs., 97, 102285, https://doi.org/10.1016/j.jag.2020.102285, 2021. a
Zhang, M.: Modeling net primary productivity of wetland with a satellite-based light use efficiency model, Geocarto Int., https://doi.org/10.1080/10106049.2021.1886343, 2021. a
Zhang, M., Yuan, N., Lin, H., Liu, Y., and Zhang, H.: Quantitative estimation of the factors impacting spatiotemporal variation in NPP in the Dongting Lake wetlands using Landsat time series data for the last two decades, Ecol. Indic., 135, 108544, https://doi.org/10.1016/J.ECOLIND.2022.108544, 2022a. a
Zhang, Q., Cheng, Y.-B., Lyapustin, A. I., Wang, Y., Zhang, X., Suyker, A., Verma, S., Shuai, Y., and Middleton, E. M.: Estimation of crop gross primary production (GPP): II. Do scaled MODIS vegetation indices improve performance?, Agr. Forest Meteorol. 200, 1–8, 2015. a
Zhang, X. and Zhang, Q.: Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations, ISPRS J. Photogramm. Remote Sens., 114, 191–205, https://doi.org/10.1016/j.isprsjprs.2016.02.010, 2016. a
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., Reed, B. C., and Huete, A.: Monitoring vegetation phenology using MODIS, Remote Sens. Environ., 84, 471–475, 2003. a
Zhang, Y., Piao, S., Sun, Y., Rogers, B. M., Li, X., Lian, X., Liu, Z., Chen, A., and Peñuelas, J.: Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere, Nat. Clim. Change, 12, 581–586, https://doi.org/10.1038/s41558-022-01374-w, 2022b. a
Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sens. Environ., 95, 164–176, 2005. a
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795, https://doi.org/10.1038/nclimate3004, 2016. a
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation...
Altmetrics
Final-revised paper
Preprint