Articles | Volume 11, issue 11
Biogeosciences, 11, 2961–2976, 2014
https://doi.org/10.5194/bg-11-2961-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Carbon and greenhouse gases in managed peatlands
Research article 05 Jun 2014
Research article | 05 Jun 2014
Nitrogen mineralization and gaseous nitrogen losses from waterlogged and drained organic soils in a black alder (Alnus glutinosa (L.) Gaertn.) forest
T. Eickenscheidt et al.
Related authors
T. Eickenscheidt, J. Heinichen, and M. Drösler
Biogeosciences, 12, 5161–5184, https://doi.org/10.5194/bg-12-5161-2015, https://doi.org/10.5194/bg-12-5161-2015, 2015
T. Eickenscheidt, A. Freibauer, J. Heinichen, J. Augustin, and M. Drösler
Biogeosciences, 11, 6187–6207, https://doi.org/10.5194/bg-11-6187-2014, https://doi.org/10.5194/bg-11-6187-2014, 2014
Daniel A. Frick, Rainer Remus, Michael Sommer, Jürgen Augustin, Danuta Kaczorek, and Friedhelm von Blanckenburg
Biogeosciences, 17, 6475–6490, https://doi.org/10.5194/bg-17-6475-2020, https://doi.org/10.5194/bg-17-6475-2020, 2020
Short summary
Short summary
Silicon is taken up by some plants to increase structural stability and to develop stress resistance and is rejected by others. To explore the underlying mechanisms, we used the stable isotopes of silicon that shift in their relative abundance depending on the biochemical transformation involved. On species with a rejective (tomato, mustard) and active (wheat) uptake mechanism, grown in hydroculture, we found that the transport of silicic acid is controlled by the precipitation of biogenic opal.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Sebastian Rainer Fiedler, Jürgen Augustin, Nicole Wrage-Mönnig, Gerald Jurasinski, Bertram Gusovius, and Stephan Glatzel
SOIL, 3, 161–176, https://doi.org/10.5194/soil-3-161-2017, https://doi.org/10.5194/soil-3-161-2017, 2017
Short summary
Short summary
Injection of biogas digestates (BDs) is suspected to increase losses of N2O and thus to counterbalance prevented NH3 emissions. We determined N2O and N2 losses after mixing high concentrations of BD into two soils by an incubation under an artificial helium–oxygen atmosphere. Emissions did not increase with the application rate of BD, probably due to an inhibitory effect of the high NH4+ content in BD on nitrification. However, cumulated gaseous N losses may effectively offset NH3 reductions.
Mathias Hoffmann, Nicole Jurisch, Juana Garcia Alba, Elisa Albiac Borraz, Marten Schmidt, Vytas Huth, Helmut Rogasik, Helene Rieckh, Gernot Verch, Michael Sommer, and Jürgen Augustin
Biogeosciences, 14, 1003–1019, https://doi.org/10.5194/bg-14-1003-2017, https://doi.org/10.5194/bg-14-1003-2017, 2017
Short summary
Short summary
We present a suitable and reliable method to detect short-term and small-scale soil organic carbon stock dynamics (ΔSOC). Spatiotemporal dynamics of ΔSOC are determined for a 5-year study period at the experimental field trial
CarboZALFusing automatic chamber measurements of NEE and modeled NPPshoot. Results were compared against ΔSOC observed from repeated soil inventories. Both ∆SOC data sets corresponded well regarding their magnitude and spatial tendency.
Dominika Lewicka-Szczebak, Jürgen Augustin, Anette Giesemann, and Reinhard Well
Biogeosciences, 14, 711–732, https://doi.org/10.5194/bg-14-711-2017, https://doi.org/10.5194/bg-14-711-2017, 2017
Short summary
Short summary
The consumption of the greenhouse gas nitrous oxide (N2O) by its reduction to dinitrogen via microbial denitrification in soil is poorly quantified. This precludes improvements in nitrogen (N) efficiency in agricultural ecosystems and mitigation of N losses to the environment including N2O fluxes. We present a laboratory evaluation for the determination of N2O reduction based on stable isotope values of soil-emitted N2O as a new approach to determine N2O reduction in the field studies.
Mathias Hoffmann, Maximilian Schulz-Hanke, Juana Garcia Alba, Nicole Jurisch, Ulrike Hagemann, Torsten Sachs, Michael Sommer, and Jürgen Augustin
Atmos. Meas. Tech., 10, 109–118, https://doi.org/10.5194/amt-10-109-2017, https://doi.org/10.5194/amt-10-109-2017, 2017
Short summary
Short summary
Processes driving production and transport of CH4 in wetlands are complex. We present an algorithm to separate open-water automatic chamber CH4 fluxes into diffusion and ebullition. This helps to reveal dynamics, identify drivers and obtain reliable CH4 emissions. The algorithm is based on sudden concentration changes during single measurements. A variable filter is applied using a multiple of the interquartile range. The algorithm was verified for data of a rewetted former fen grassland site.
Merten Minke, Jürgen Augustin, Andrei Burlo, Tatsiana Yarmashuk, Hanna Chuvashova, Annett Thiele, Annette Freibauer, Vitalij Tikhonov, and Mathias Hoffmann
Biogeosciences, 13, 3945–3970, https://doi.org/10.5194/bg-13-3945-2016, https://doi.org/10.5194/bg-13-3945-2016, 2016
Short summary
Short summary
We studied GHG emissions along water-level gradients of two inundated cutover fens with closed chambers. N2O fluxes were negligible. CO2 and CH4 fluxes were controlled by vegetation composition and plant productivity, which in turn depended on water level and nutrient conditions. CH4 fluxes from mesotrophic sites were low and largely compensated for by CO2 uptake. Eutrophic sites were strong CH4 sources, and GHG balances depended on the plant's net C sink, which strongly differed between species.
Daniela Franz, Franziska Koebsch, Eric Larmanou, Jürgen Augustin, and Torsten Sachs
Biogeosciences, 13, 3051–3070, https://doi.org/10.5194/bg-13-3051-2016, https://doi.org/10.5194/bg-13-3051-2016, 2016
Short summary
Short summary
Based on the eddy covariance method we investigate the ecosystem–atmosphere exchange of CH4 and CO2 at a eutrophic shallow lake as a challenging ecosystem often evolving during peatland rewetting. Both open water and emergent vegetation are net emitters of CH4 and CO2, but with strikingly different release rates. Even after 9 years of rewetting the lake ecosystem exhibits a considerable carbon loss and global warming impact, the latter mainly driven by high CH4 emissions from the open waterbody.
Dominika Lewicka-Szczebak, Jens Dyckmans, Jan Kaiser, Alina Marca, Jürgen Augustin, and Reinhard Well
Biogeosciences, 13, 1129–1144, https://doi.org/10.5194/bg-13-1129-2016, https://doi.org/10.5194/bg-13-1129-2016, 2016
Short summary
Short summary
Oxygen isotopic signatures of N2O are formed in complex multistep enzymatic reactions and depend on isotopic fractionation during enzymatic reduction of nitrate to N2O and on the oxygen isotope exchange with soil water. We propose a new method for quantification of oxygen isotope exchange, with simultaneous determination of oxygen isotopic signatures, to decipher the mechanism of oxygen isotopic fractionation. We indicate the differences between fractionation mechanisms by various pathways.
T. Eickenscheidt, J. Heinichen, and M. Drösler
Biogeosciences, 12, 5161–5184, https://doi.org/10.5194/bg-12-5161-2015, https://doi.org/10.5194/bg-12-5161-2015, 2015
M. Hoffmann, M. Schulz-Hanke, J. Garcia Alba, N. Jurisch, U. Hagemann, T. Sachs, M. Sommer, and J. Augustin
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-12923-2015, https://doi.org/10.5194/bgd-12-12923-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
Processes driving the production, transformation and transport of CH4 in wetlands are highly complex. Thus, serious challenges are constitutes in terms of process understanding, potential drivers and the calculation of reliable CH4 emission estimates. We present a simple calculation algorithm to separate CH4 fluxes measured with closed chambers into diffusion- and ebullition-derived components, which helps facilitating the identification of underlying dynamics and potential drivers.
M. Pohl, M. Hoffmann, U. Hagemann, M. Giebels, E. Albiac Borraz, M. Sommer, and J. Augustin
Biogeosciences, 12, 2737–2752, https://doi.org/10.5194/bg-12-2737-2015, https://doi.org/10.5194/bg-12-2737-2015, 2015
Short summary
Short summary
Dynamic SOC and N stocks in the aerobic zone play a key role in the regulation of plant- and microbially mediated CO2 and CH4 fluxes in drained and cultivated fen peatlands. Their interaction with the groundwater level (GWL) strongly influenced soil C gas exchange, indicating effects of GWL-dependent N availability on C formation and transformation processes in the plant--soil system. In contrast, static SOC and N stocks showed no significant effect on C gas fluxes.
D. Zak, H. Reuter, J. Augustin, T. Shatwell, M. Barth, J. Gelbrecht, and R. J. McInnes
Biogeosciences, 12, 2455–2468, https://doi.org/10.5194/bg-12-2455-2015, https://doi.org/10.5194/bg-12-2455-2015, 2015
Short summary
Short summary
In this paper, the CO2 and CH4 production due to the subaqueous decomposition of the five most abundant plant species, which are considered to be representative of different rewetting stages, will be presented. Beside continuous gas flux measurements, bulk chemical analyses of plant tissue were performed to gain insights into changing litter characteristics. With respect to temporal vegetation shifts in rewetted fens, the results provide new insights into the climate effect of these ecosystems.
M. Köchy, R. Hiederer, and A. Freibauer
SOIL, 1, 351–365, https://doi.org/10.5194/soil-1-351-2015, https://doi.org/10.5194/soil-1-351-2015, 2015
Short summary
Short summary
Soils contain 1062Pg organic C (SOC) in 0-1m depth based on the adjusted Harmonized World Soil Database. Different estimates of bulk density of Histosols cause an uncertainty in the range of -56/+180Pg. We also report the frequency distribution of SOC stocks by continent, wetland type, and permafrost type. Using additional estimates for frozen and deeper soils, global soils are estimated to contain 1325Pg SOC in 0-1m and ca. 3000Pg, including deeper layers.
M. Köchy, A. Don, M. K. van der Molen, and A. Freibauer
SOIL, 1, 367–380, https://doi.org/10.5194/soil-1-367-2015, https://doi.org/10.5194/soil-1-367-2015, 2015
Short summary
Short summary
Using ranges for variables in a model of organic C stocks of the top 1m of soil on a global 0.5° grid, we assessed the (un)certainty of changes in stocks over the next 75 years. Changes are more certain where land-use change strongly affects carbon inputs and where higher temperatures and adequate moisture favour decomposition, e.g. tropical mountain forests. Global stocks will increase by 1% with a certainty of 75% if inputs to the soil increase due to CO₂ fertilization of the vegetation.
C. Metzger, P.-E. Jansson, A. Lohila, M. Aurela, T. Eickenscheidt, L. Belelli-Marchesini, K. J. Dinsmore, J. Drewer, J. van Huissteden, and M. Drösler
Biogeosciences, 12, 125–146, https://doi.org/10.5194/bg-12-125-2015, https://doi.org/10.5194/bg-12-125-2015, 2015
Short summary
Short summary
To identify site specific differences in CO2-related processes in open peatlands, we calibrated a process oriented model to fit to detailed measurements of carbon fluxes and compared the resulting parameter ranges between the sites. For most processes a common configuration could be applied. Site specific differences were identified for soil respiration coefficients, plant radiation-use efficiencies and plant storage fractions for spring regrowth.
T. Leppelt, R. Dechow, S. Gebbert, A. Freibauer, A. Lohila, J. Augustin, M. Drösler, S. Fiedler, S. Glatzel, H. Höper, J. Järveoja, P. E. Lærke, M. Maljanen, Ü. Mander, P. Mäkiranta, K. Minkkinen, P. Ojanen, K. Regina, and M. Strömgren
Biogeosciences, 11, 6595–6612, https://doi.org/10.5194/bg-11-6595-2014, https://doi.org/10.5194/bg-11-6595-2014, 2014
T. Eickenscheidt, A. Freibauer, J. Heinichen, J. Augustin, and M. Drösler
Biogeosciences, 11, 6187–6207, https://doi.org/10.5194/bg-11-6187-2014, https://doi.org/10.5194/bg-11-6187-2014, 2014
J. Leifeld, C. Bader, E. Borraz, M. Hoffmann, M. Giebels, M. Sommer, and J. Augustin
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-12341-2014, https://doi.org/10.5194/bgd-11-12341-2014, 2014
Revised manuscript not accepted
J. Hommeltenberg, H. P. Schmid, M. Drösler, and P. Werle
Biogeosciences, 11, 3477–3493, https://doi.org/10.5194/bg-11-3477-2014, https://doi.org/10.5194/bg-11-3477-2014, 2014
S. Frank, B. Tiemeyer, J. Gelbrecht, and A. Freibauer
Biogeosciences, 11, 2309–2324, https://doi.org/10.5194/bg-11-2309-2014, https://doi.org/10.5194/bg-11-2309-2014, 2014
K. Leiber-Sauheitl, R. Fuß, C. Voigt, and A. Freibauer
Biogeosciences, 11, 749–761, https://doi.org/10.5194/bg-11-749-2014, https://doi.org/10.5194/bg-11-749-2014, 2014
R. M. Rees, J. Augustin, G. Alberti, B. C. Ball, P. Boeckx, A. Cantarel, S. Castaldi, N. Chirinda, B. Chojnicki, M. Giebels, H. Gordon, B. Grosz, L. Horvath, R. Juszczak, Å. Kasimir Klemedtsson, L. Klemedtsson, S. Medinets, A. Machon, F. Mapanda, J. Nyamangara, J. E. Olesen, D. S. Reay, L. Sanchez, A. Sanz Cobena, K. A. Smith, A. Sowerby, M. Sommer, J. F. Soussana, M. Stenberg, C. F. E. Topp, O. van Cleemput, A. Vallejo, C. A. Watson, and M. Wuta
Biogeosciences, 10, 2671–2682, https://doi.org/10.5194/bg-10-2671-2013, https://doi.org/10.5194/bg-10-2671-2013, 2013
Related subject area
Biogeochemistry: Greenhouse Gases
Partitioning carbon sources between wetland and well-drained ecosystems to a tropical first-order stream – implications for carbon cycling at the watershed scale (Nyong, Cameroon)
Extreme events driving year-to-year differences in gross primary productivity across the US
Methane gas emissions from savanna fires: what analysis of local burning regimes in a working West African landscape tell us
Methane in Zackenberg Valley, NE Greenland: multidecadal growing season fluxes of a high-Arctic tundra
Field-scale CH4 emission at a subarctic mire with heterogeneous permafrost thaw status
Evaluation of denitrification and decomposition from three biogeochemical models using laboratory measurements of N2, N2O and CO2
Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst
Ideas and Perspectives: Enhancing research and monitoring of carbon pools and land-to-atmosphere greenhouse gases exchange in developing countries
Assessing the spatial and temporal variability of GHG emissions from different configurations of on-site wastewater treatment system using discrete and continuous gas flux measurement
Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China
Variability of North Atlantic CO2 fluxes for the 2000–2017 period estimated from atmospheric inverse analyses
Adding organic matter to restore wetland soils may increase methane generation and is not needed for hydric soil development
Effects of clear-fell harvesting on soil CO2, CH4, and N2O fluxes in an upland Sitka spruce stand in England
Dimethylated sulfur compounds in the Peruvian upwelling system
Conventional subsoil irrigation techniques do not lower carbon emissions from drained peat meadows
Different responses of ecosystem CO2 and N2O emissions and CH4 uptake to seasonally asymmetric warming in an alpine grassland of the Tianshan
The role of termite CH4 emissions on the ecosystem scale: a case study in the Amazon rainforest
Biogeochemical and plant trait mechanisms drive enhanced methane emissions in response to whole-ecosystem warming
A decade of dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) measurements in the southwestern Baltic Sea
Methane dynamics in three different Siberian water bodies under winter and summer conditions
Topography-based statistical modelling reveals high spatial variability and seasonal emission patches in forest floor methane flux
Technical note: CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO2 in fresh water
Comparison of greenhouse gas fluxes from tropical forests and oil palm plantations on mineral soil
Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration?
Intraseasonal variability of greenhouse gas emission factors from biomass burning in the Brazilian Cerrado
Evaluating stream CO2 outgassing via drifting and anchored flux chambers in a controlled flume experiment
Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons
Using satellite data to identify the methane emission controls of South Sudan's wetlands
Ideas and perspectives: patterns of soil CO2, CH4, and N2O fluxes along an altitudinal gradient – a pilot study from an Ecuadorian neotropical montane forest
Estimating immediate post-fire carbon fluxes using the eddy-covariance technique
Water flow controls the spatial variability of methane emissions in a northern valley fen ecosystem
Seasonality, drivers, and isotopic composition of soil CO2 fluxes from tropical forests of the Congo Basin
Spatially resolved evaluation of Earth system models with satellite column-averaged CO2
Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment
Stem and soil nitrous oxide fluxes from rainforest and cacao agroforest on highly weathered soils in the Congo Basin
Methane paradox in tropical lakes? Sedimentary fluxes rather than pelagic production in oxic conditions sustain methanotrophy and emissions to the atmosphere
Organic matter and sediment properties determine in-lake variability of sediment CO2 and CH4 production and emissions of a small and shallow lake
Mineralization of organic matter in boreal lake sediments: rates, pathways, and nature of the fermenting substrates
Technical note: Facilitating the use of low-cost methane (CH4) sensors in flux chambers – calibration, data processing, and an open-source make-it-yourself logger
N2O changes from the Last Glacial Maximum to the preindustrial – Part 2: terrestrial N2O emissions and carbon–nitrogen cycle interactions
Carbon dioxide and methane fluxes from different surface types in a created urban wetland
A decade of methane measurements at the Boknis Eck Time Series Station in Eckernförde Bay (southwestern Baltic Sea)
Dissolved CH4 coupled to photosynthetic picoeukaryotes in oxic waters and to cumulative chlorophyll a in anoxic waters of reservoirs
Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production
Decadal variation in CO2 fluxes and its budget in a wheat and maize rotation cropland over the North China Plain
Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya
Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (Halophila stipulacea) sediments
Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials
Maize root and shoot litter quality controls short-term CO2 and N2O emissions and bacterial community structure of arable soil
Moussa Moustapha, Loris Deirmendjian, David Sebag, Jean-Jacques Braun, Stéphane Audry, Henriette Ateba Bessa, Thierry Adatte, Carole Causserand, Ibrahima Adamou, Benjamin Ngounou Ngatcha, and Frédéric Guérin
Biogeosciences, 19, 137–163, https://doi.org/10.5194/bg-19-137-2022, https://doi.org/10.5194/bg-19-137-2022, 2022
Short summary
Short summary
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the tropical Nyong River (Cameroon), across groundwater and increasing stream orders. We show the significant contribution of wetland as a C source for tropical rivers. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds. Finally, total fluvial carbon losses might offset ~10 % of the net C sink estimated for the whole Nyong watershed.
Alexander J. Turner, Philipp Köhler, Troy S. Magney, Christian Frankenberg, Inez Fung, and Ronald C. Cohen
Biogeosciences, 18, 6579–6588, https://doi.org/10.5194/bg-18-6579-2021, https://doi.org/10.5194/bg-18-6579-2021, 2021
Short summary
Short summary
This work builds a high-resolution estimate (500 m) of gross primary productivity (GPP) over the US using satellite measurements of solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) between 2018 and 2020. We identify ecosystem-specific scaling factors for estimating gross primary productivity (GPP) from TROPOMI SIF. Extreme precipitation events drive four regional GPP anomalies that account for 28 % of year-to-year GPP differences across the US.
Paul Laris, Moussa Koné, Fadiala Dembélé, Christine M. Rodrigue, Lilian Yang, Rebecca Jacobs, and Quincy Laris
Biogeosciences, 18, 6229–6244, https://doi.org/10.5194/bg-18-6229-2021, https://doi.org/10.5194/bg-18-6229-2021, 2021
Short summary
Short summary
Savanna fires play a key role in the global carbon cycle because they release methane. Although it burns the most, there are few studies from West Africa. We conducted 36 experimental fires according to local practice to collect smoke samples. We found that fires set early in the season had higher methane emissions than those set later, and head fires had double the emissions of backfires. We conclude policies to reduce emissions will not have the desired effects if fire type is not considered.
Johan H. Scheller, Mikhail Mastepanov, Hanne H. Christiansen, and Torben R. Christensen
Biogeosciences, 18, 6093–6114, https://doi.org/10.5194/bg-18-6093-2021, https://doi.org/10.5194/bg-18-6093-2021, 2021
Short summary
Short summary
Our study presents a time series of methane emissions in a high-Arctic-tundra landscape over 14 summers, which shows large variations between years. The methane emissions from the valley are expected to more than double in the late 21st century. This warming increases permafrost thaw, which could increase surface erosion in the valley. Increased erosion could offset some of the rise in methane fluxes from the valley, but this would require large-scale impacts on vegetated surfaces.
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Sarah Waldo, Jake J. Beaulieu, William Barnett, D. Adam Balz, Michael J. Vanni, Tanner Williamson, and John T. Walker
Biogeosciences, 18, 5291–5311, https://doi.org/10.5194/bg-18-5291-2021, https://doi.org/10.5194/bg-18-5291-2021, 2021
Short summary
Short summary
Human-made reservoirs impact the carbon cycle. In particular, the breakdown of organic matter in reservoir sediments can result in large emissions of greenhouse gases (especially methane) to the atmosphere. This study takes an intensive look at the patterns in greenhouse gas emissions from a single reservoir in Ohio (United States) and the role of water temperature, precipitation, and algal blooms in emissions. We saw a "spring burst" of elevated emissions that challenged our assumptions.
Dong-Gill Kim, Ben Bond-Lamberty, Youngryel Ryu, Bumsuk Seo, and Dario Papale
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-237, https://doi.org/10.5194/bg-2021-237, 2021
Revised manuscript accepted for BG
Short summary
Short summary
While carbon (C) and greenhouse gas (GHG) research has adopted appropriate technology and approach (AT&A) such as low-cost instrument, open source software and participatory research and their results were well accepted by scientific communities. In terms of cost, feasibility and performance, integration of low-cost and low-technology, participatory and networking based research approaches can be AT&A for enhancing C and GHG research in developing countries.
Jan Knappe, Celia Somlai, and Laurence Gill
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-198, https://doi.org/10.5194/bg-2021-198, 2021
Preprint under review for BG
Short summary
Short summary
Two domestic on-site wastewater treatment systems have been monitored for greenhouse gas (carbon dioxide, methane and nitrous oxide) emissions coming from the process units, the soil and vent pipes. This has enabled the net greenhouse gas per person to be quantified for the first time, as well as the impact of pre-treatment on the effluent before being discharged to soil. These decentralised wastewater treatment systems serve approx. 20 % of the population in both Europe and the United States.
Xinyu Liu, Xixi Lu, Ruihong Yu, Heyang Sun, Hao Xue, Zhen Qi, Zhengxu Cao, Zhuangzhuang Zhang, and Tingxi Liu
Biogeosciences, 18, 4855–4872, https://doi.org/10.5194/bg-18-4855-2021, https://doi.org/10.5194/bg-18-4855-2021, 2021
Short summary
Short summary
Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. We analyzed the emissions of CO2, CH4, and N2O from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas emissions. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect greenhouse gas emissions.
Zhaohui Chen, Parvadha Suntharalingam, Andrew J. Watson, Ute Schuster, Jiang Zhu, and Ning Zeng
Biogeosciences, 18, 4549–4570, https://doi.org/10.5194/bg-18-4549-2021, https://doi.org/10.5194/bg-18-4549-2021, 2021
Short summary
Short summary
As the global temperature continues to increase, carbon dioxide (CO2) is a major driver of this global warming. The increased CO2 is mainly caused by emissions from fossil fuel use and land use. At the same time, the ocean is a significant sink in the carbon cycle. The North Atlantic is a critical ocean region in reducing CO2 concentration. We estimate the CO2 uptake in this region based on a carbon inverse system and atmospheric CO2 observations.
Brian Scott, Andrew Baldwin, and Stephanie Yarwood
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-182, https://doi.org/10.5194/bg-2021-182, 2021
Revised manuscript accepted for BG
Short summary
Short summary
Carbon dioxide and methane contribute to global warming. What can we do? Build wetlands – they store carbon dioxide and should cause global cooling. Except ... when first built they produce excess methane. Eventually built wetlands will cause cooling, but it may take decades or even centuries. How we build wetlands matters. We show that a common practice, using organic matter, such as manure, can make a big difference whether or not the wetlands we build start global cooling within our lifetime.
Sirwan Yamulki, Jack Forster, Georgios Xenakis, Adam Ash, Jacqui Brunt, Mike Perks, and James I. L. Morison
Biogeosciences, 18, 4227–4241, https://doi.org/10.5194/bg-18-4227-2021, https://doi.org/10.5194/bg-18-4227-2021, 2021
Short summary
Short summary
The effect of clear-felling on soil greenhouse gas (GHG) fluxes was assessed in a Sitka spruce forest. Measurements over 4 years showed that CO2, CH4, and N2O fluxes responded differently to clear-felling due to significant changes in soil biotic and abiotic factors and showed large variations between years. Over 3 years since felling, the soil GHG flux was reduced by 45% due to a much larger reduction in CO2 efflux than increases in N2O (up to 20%) and CH4 (changed from sink to source) fluxes.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-174, https://doi.org/10.5194/bg-2021-174, 2021
Revised manuscript accepted for BG
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Stefan Theodorus Johannes Weideveld, Weier Liu, Merit van den Berg, Leon Peter Maria Lamers, and Christian Fritz
Biogeosciences, 18, 3881–3902, https://doi.org/10.5194/bg-18-3881-2021, https://doi.org/10.5194/bg-18-3881-2021, 2021
Short summary
Short summary
Raising the groundwater table (GWT) trough subsoil irrigation does not lead to a reduction of carbon emissions from drained peat meadows, even though there was a clear increase in the GWT during summer. Most likely, the largest part of the peat oxidation takes place in the top 70 cm of the soil, which stays above the GWT with the use of subsoil irrigation. We conclude that the use of subsoil irrigation is ineffective as a mitigation measure to sufficiently lower peat oxidation rates.
Yanming Gong, Ping Yue, Kaihui Li, Anwar Mohammat, and Yanyan Liu
Biogeosciences, 18, 3529–3537, https://doi.org/10.5194/bg-18-3529-2021, https://doi.org/10.5194/bg-18-3529-2021, 2021
Short summary
Short summary
At present, data on the influence of asymmetric warming on the GHG flux on a temporal scale are scarce. GHG fluxes were measured using static chambers and a gas chromatograph. Our study showed that the effect of seasonally asymmetrical warming on CO2 flux was obvious, with the GHG flux being able to adapt to continuous warming. Warming in the non-growing season increased the temperature dependence of GHG flux.
Hella van Asperen, João Rafael Alves-Oliveira, Thorsten Warneke, Bruce Forsberg, Alessandro Carioca de Araújo, and Justus Notholt
Biogeosciences, 18, 2609–2625, https://doi.org/10.5194/bg-18-2609-2021, https://doi.org/10.5194/bg-18-2609-2021, 2021
Short summary
Short summary
Termites are insects that are highly abundant in tropical ecosystems. It is known that termites emit CH4, an important greenhouse gas, but their absolute emission remains uncertain. In the Amazon rainforest, we measured CH4 emissions from termite nests and groups of termites. In addition, we tested a fast and non-destructive field method to estimate termite nest colony size. We found that termites play a significant role in an ecosystem's CH4 budget and probably emit more than currently assumed.
Genevieve L. Noyce and J. Patrick Megonigal
Biogeosciences, 18, 2449–2463, https://doi.org/10.5194/bg-18-2449-2021, https://doi.org/10.5194/bg-18-2449-2021, 2021
Short summary
Short summary
Methane (CH4) is a potent greenhouse gas that contributes to global radiative forcing. A mechanistic understanding of how wetland CH4 cycling will respond to global warming is crucial for improving prognostic models. We present results from the first 4 years of a novel whole-ecosystem warming experiment in a coastal wetland, showing that warming increases CH4 emissions and identifying four potential mechanisms that can be added to future modeling efforts.
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021, https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
Ingeborg Bussmann, Irina Fedorova, Bennet Juhls, Pier Paul Overduin, and Matthias Winkel
Biogeosciences, 18, 2047–2061, https://doi.org/10.5194/bg-18-2047-2021, https://doi.org/10.5194/bg-18-2047-2021, 2021
Short summary
Short summary
Arctic rivers, lakes, and bays are affected by a warming climate. We measured the amount and consumption of methane in waters from Siberia under ice cover and in open water. In the lake, methane concentrations under ice cover were much higher than in summer, and methane consumption was highest. The ice cover leads to higher methane concentration under ice. In a warmer Arctic, there will be more time with open water when methane is consumed by bacteria, and less methane will escape into the air.
Elisa Vainio, Olli Peltola, Ville Kasurinen, Antti-Jussi Kieloaho, Eeva-Stiina Tuittila, and Mari Pihlatie
Biogeosciences, 18, 2003–2025, https://doi.org/10.5194/bg-18-2003-2021, https://doi.org/10.5194/bg-18-2003-2021, 2021
Short summary
Short summary
We studied forest floor methane exchange over an area of 10 ha in a boreal pine forest. The results demonstrate high spatial variability in soil moisture and consequently in the methane flux. We detected wet patches emitting high amounts of methane in the early summer; however, these patches turned to methane uptake in the autumn. We concluded that the small-scale spatial variability of the boreal forest methane flux highlights the importance of soil chamber placement in similar studies.
Matthias Koschorreck, Yves T. Prairie, Jihyeon Kim, and Rafael Marcé
Biogeosciences, 18, 1619–1627, https://doi.org/10.5194/bg-18-1619-2021, https://doi.org/10.5194/bg-18-1619-2021, 2021
Short summary
Short summary
The concentration of carbon dioxide (CO2) in water samples is often measured using a gas chromatograph. Depending on the chemical composition of the water, this method can produce wrong results. We quantified the possible error and how it depends on water composition and the analytical procedure. We propose a method to correct wrong results by additionally analysing alkalinity in the samples. We provide an easily usable computer code to perform the correction calculations.
Julia Drewer, Melissa M. Leduning, Robert I. Griffiths, Tim Goodall, Peter E. Levy, Nicholas Cowan, Edward Comynn-Platt, Garry Hayman, Justin Sentian, Noreen Majalap, and Ute M. Skiba
Biogeosciences, 18, 1559–1575, https://doi.org/10.5194/bg-18-1559-2021, https://doi.org/10.5194/bg-18-1559-2021, 2021
Short summary
Short summary
In Southeast Asia, oil palm plantations have largely replaced tropical forests. The impact of this shift in land use on greenhouse gas fluxes and soil microbial communities remains uncertain. We have found emission rates of the potent greenhouse gas nitrous oxide on mineral soil to be higher from oil palm plantations than logged forest over a 2-year study and concluded that emissions have increased over the last 42 years in Sabah, with the proportion of emissions from plantations increasing.
Lutz Merbold, Charlotte Decock, Werner Eugster, Kathrin Fuchs, Benjamin Wolf, Nina Buchmann, and Lukas Hörtnagl
Biogeosciences, 18, 1481–1498, https://doi.org/10.5194/bg-18-1481-2021, https://doi.org/10.5194/bg-18-1481-2021, 2021
Short summary
Short summary
Our study investigated the exchange of the three major greenhouse gases (GHGs) over a temperate grassland prior to and after restoration through tillage in central Switzerland. Our results show that irregular management events, such as tillage, have considerable effects on GHG emissions in the year of tillage while leading to enhanced carbon uptake and similar nitrogen losses via nitrous oxide in the years following tillage to those observed prior to tillage.
Roland Vernooij, Marcos Giongo, Marco Assis Borges, Máximo Menezes Costa, Ana Carolina Sena Barradas, and Guido R. van der Werf
Biogeosciences, 18, 1375–1393, https://doi.org/10.5194/bg-18-1375-2021, https://doi.org/10.5194/bg-18-1375-2021, 2021
Short summary
Short summary
We used drones to measure greenhouse gas emission factors from fires in the Brazilian Cerrado. We compared early-dry-season management fires and late-dry-season fires to determine if fire management can be a tool for abating emissions.
Although we found some evidence of increased CO and CH4 emission factors, the seasonal effect was smaller than that found in previous studies. For N2O, the third most important greenhouse gas, we found opposite trends in grass- and shrub-dominated areas.
Filippo Vingiani, Nicola Durighetto, Marcus Klaus, Jakob Schelker, Thierry Labasque, and Gianluca Botter
Biogeosciences, 18, 1223–1240, https://doi.org/10.5194/bg-18-1223-2021, https://doi.org/10.5194/bg-18-1223-2021, 2021
Short summary
Short summary
Flexible foil chamber design and the anchored deployment might be useful techniques to enhance the robustness and the accuracy of CO2 measurements in low-order streams. Moreover, the study demonstrates the value of analytical and numerical techniques for the estimation of gas exchange velocities. These results may contribute to the development of novel procedures for chamber data analysis which might improve the robustness and reliability of chamber-based CO2 measurements in first-order streams.
Lauri Heiskanen, Juha-Pekka Tuovinen, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Timo Penttilä, Maiju Linkosalmi, Juha Mikola, Tuomas Laurila, and Mika Aurela
Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, https://doi.org/10.5194/bg-18-873-2021, 2021
Short summary
Short summary
We studied ecosystem- and plant-community-level carbon (C) exchange between subarctic mire and the atmosphere during 2017–2018. We found strong spatial variation in CO2 and CH4 dynamics between the main plant communities. The earlier onset of growing season in 2018 strengthened the CO2 sink of the ecosystem, but this gain was counterbalanced by a later drought period. Variation in water table level, soil temperature and vegetation explained most of the variation in ecosystem-level C exchange.
Sudhanshu Pandey, Sander Houweling, Alba Lorente, Tobias Borsdorff, Maria Tsivlidou, A. Anthony Bloom, Benjamin Poulter, Zhen Zhang, and Ilse Aben
Biogeosciences, 18, 557–572, https://doi.org/10.5194/bg-18-557-2021, https://doi.org/10.5194/bg-18-557-2021, 2021
Short summary
Short summary
We use atmospheric methane observations from the novel TROPOspheric Monitoring Instrument (TROPOMI; Sentinel-5p) to estimate methane emissions from South Sudan's wetlands. Our emission estimates are an order of magnitude larger than the estimate of process-based wetland models. We find that this underestimation by the models is likely due to their misrepresentation of the wetlands' inundation extent and temperature dependences.
Paula Alejandra Lamprea Pineda, Marijn Bauters, Hans Verbeeck, Selene Baez, Matti Barthel, Samuel Bodé, and Pascal Boeckx
Biogeosciences, 18, 413–421, https://doi.org/10.5194/bg-18-413-2021, https://doi.org/10.5194/bg-18-413-2021, 2021
Short summary
Short summary
Tropical forest soils are an important source and sink of greenhouse gases (GHGs) with tropical montane forests having been poorly studied. In this pilot study, we explored soil fluxes of CO2, CH4, and N2O in an Ecuadorian neotropical montane forest, where a net consumption of N2O at higher altitudes was observed. Our results highlight the importance of short-term variations in N2O and provide arguments and insights for future, more detailed studies on GHG fluxes from montane forest soils.
Bruna R. F. Oliveira, Carsten Schaller, J. Jacob Keizer, and Thomas Foken
Biogeosciences, 18, 285–302, https://doi.org/10.5194/bg-18-285-2021, https://doi.org/10.5194/bg-18-285-2021, 2021
Short summary
Short summary
Forest fires have a significant impact on carbon dioxide emissions. The present study from a pine forest in Portugal is one of the few where measurements of CO2 fluxes were started immediately (1.5 months) after the forest fire. Carbon dioxide emissions were linked to soil humidity. Therefore, they started after the beginning of the rainfall in autumn. Due to the beginning of vegetation, the site was already a carbon dioxide sink the following year.
Hui Zhang, Eeva-Stiina Tuittila, Aino Korrensalo, Aleksi Räsänen, Tarmo Virtanen, Mika Aurela, Timo Penttilä, Tuomas Laurila, Stephanie Gerin, Viivi Lindholm, and Annalea Lohila
Biogeosciences, 17, 6247–6270, https://doi.org/10.5194/bg-17-6247-2020, https://doi.org/10.5194/bg-17-6247-2020, 2020
Short summary
Short summary
We studied the impact of a stream on peatland microhabitats and CH4 emissions in a northern boreal fen. We found that there were higher water levels, lower peat temperatures, and greater oxygen concentrations close to the stream; these supported the highest biomass production but resulted in the lowest CH4 emissions. Further from the stream, the conditions were drier and CH4 emissions were also low. CH4 emissions were highest at an intermediate distance from the stream.
Simon Baumgartner, Matti Barthel, Travis William Drake, Marijn Bauters, Isaac Ahanamungu Makelele, John Kalume Mugula, Laura Summerauer, Nora Gallarotti, Landry Cizungu Ntaboba, Kristof Van Oost, Pascal Boeckx, Sebastian Doetterl, Roland Anton Werner, and Johan Six
Biogeosciences, 17, 6207–6218, https://doi.org/10.5194/bg-17-6207-2020, https://doi.org/10.5194/bg-17-6207-2020, 2020
Short summary
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Bettina K. Gier, Michael Buchwitz, Maximilian Reuter, Peter M. Cox, Pierre Friedlingstein, and Veronika Eyring
Biogeosciences, 17, 6115–6144, https://doi.org/10.5194/bg-17-6115-2020, https://doi.org/10.5194/bg-17-6115-2020, 2020
Short summary
Short summary
Models from Coupled Model Intercomparison Project (CMIP) phases 5 and 6 are compared to a satellite data product of column-averaged CO2 mole fractions (XCO2). The previously believed discrepancy of the negative trend in seasonal cycle amplitude in the satellite product, which is not seen in in situ data nor in the models, is attributed to a sampling characteristic. Furthermore, CMIP6 models are shown to have made progress in reproducing the observed XCO2 time series compared to CMIP5.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Najeeb Al-Amin Iddris, Marife D. Corre, Martin Yemefack, Oliver van Straaten, and Edzo Veldkamp
Biogeosciences, 17, 5377–5397, https://doi.org/10.5194/bg-17-5377-2020, https://doi.org/10.5194/bg-17-5377-2020, 2020
Short summary
Short summary
We quantified the changes in stem and soil nitrous oxide (N2O) fluxes with forest conversion to cacao agroforestry in the Congo Basin, Cameroon. All forest and cacao trees consistently emitted N2O, contributing 8–38 % of the total (soil and stem) emissions. Forest conversion to extensively managed (>–20 years old) cacao agroforestry had no effect on stem and soil N2O fluxes. Our results highlight the importance of including tree-mediated fluxes in the ecosystem-level N2O budget.
Cédric Morana, Steven Bouillon, Vimac Nolla-Ardèvol, Fleur A. E. Roland, William Okello, Jean-Pierre Descy, Angela Nankabirwa, Erina Nabafu, Dirk Springael, and Alberto V. Borges
Biogeosciences, 17, 5209–5221, https://doi.org/10.5194/bg-17-5209-2020, https://doi.org/10.5194/bg-17-5209-2020, 2020
Short summary
Short summary
A growing body of studies challenges the paradigm that methane (CH4) production occurs only under anaerobic conditions. Our field experiments revealed that oxic CH4 production is closely related to phytoplankton metabolism and is indeed a common feature in five contrasting African lakes. Nevertheless, we found that methanotrophic activity in surface waters and CH4 emissions to the atmosphere were predominantly fuelled by CH4 generated in sediments and physically transported to the surface.
Leandra Stephanie Emilia Praetzel, Nora Plenter, Sabrina Schilling, Marcel Schmiedeskamp, Gabriele Broll, and Klaus-Holger Knorr
Biogeosciences, 17, 5057–5078, https://doi.org/10.5194/bg-17-5057-2020, https://doi.org/10.5194/bg-17-5057-2020, 2020
Short summary
Short summary
Small lakes are important but variable sources of greenhouse gas emissions. We performed lab experiments to determine spatial patterns and drivers of CO2 and CH4 emission and sediment gas production within a lake. The observed high spatial variability of emissions and production could be explained by the degradability of the sediment organic matter. We did not see correlations between production and emissions and suggest on-site flux measurements as the most accurate way for determing emissions.
François Clayer, Yves Gélinas, André Tessier, and Charles Gobeil
Biogeosciences, 17, 4571–4589, https://doi.org/10.5194/bg-17-4571-2020, https://doi.org/10.5194/bg-17-4571-2020, 2020
Short summary
Short summary
Here, we quantified the sediment production of methane and carbon dioxide in lake sediments to better characterize the nature of the organic matter at the origin of these two greenhouse gases. We demonstrate that the production of these gases is not adequately represented in models for deep lake sediments. We thus propose to improve the representation of organic matter degradation reactions in current models for improving predictions of greenhouse gas cycling in aquatic sediments.
David Bastviken, Jonatan Nygren, Jonathan Schenk, Roser Parellada Massana, and Nguyen Thanh Duc
Biogeosciences, 17, 3659–3667, https://doi.org/10.5194/bg-17-3659-2020, https://doi.org/10.5194/bg-17-3659-2020, 2020
Short summary
Short summary
This study presents a low-cost way to measure methane emissions applicable in nature and society. This facilitates widespread and affordable methane measurements, which are greatly needed for verifying that greenhouse gas mitigation is effective and for improved quantification of fluxes and how they are regulated. The paper also describes an open-source do-it-yourself methane–carbon dioxide–humidity–temperature logger, to increase the distributed capacity to measure greenhouse gases.
Fortunat Joos, Renato Spahni, Benjamin D. Stocker, Sebastian Lienert, Jurek Müller, Hubertus Fischer, Jochen Schmitt, I. Colin Prentice, Bette Otto-Bliesner, and Zhengyu Liu
Biogeosciences, 17, 3511–3543, https://doi.org/10.5194/bg-17-3511-2020, https://doi.org/10.5194/bg-17-3511-2020, 2020
Short summary
Short summary
Results of the first globally resolved simulations of terrestrial carbon and nitrogen (N) cycling and N2O emissions over the past 21 000 years are compared with reconstructed N2O emissions. Modelled and reconstructed emissions increased strongly during past abrupt warming events. This evidence appears consistent with a dynamic response of biological N fixation to increasing N demand by ecosystems, thereby reducing N limitation of plant productivity and supporting a land sink for atmospheric CO2.
Xuefei Li, Outi Wahlroos, Sami Haapanala, Jukka Pumpanen, Harri Vasander, Anne Ojala, Timo Vesala, and Ivan Mammarella
Biogeosciences, 17, 3409–3425, https://doi.org/10.5194/bg-17-3409-2020, https://doi.org/10.5194/bg-17-3409-2020, 2020
Short summary
Short summary
We measured CO2 and CH4 fluxes and quantified the global warming potential of different surface areas in a recently created urban wetland in Southern Finland. The ecosystem has a small net climate warming effect which was mainly contributed by the open-water areas. Our results suggest that limiting open-water areas and setting a design preference for areas of emergent vegetation in the establishment of urban wetlands can be a beneficial practice when considering solely the climate impact.
Xiao Ma, Mingshuang Sun, Sinikka T. Lennartz, and Hermann W. Bange
Biogeosciences, 17, 3427–3438, https://doi.org/10.5194/bg-17-3427-2020, https://doi.org/10.5194/bg-17-3427-2020, 2020
Short summary
Short summary
Monthly measurements of dissolved methane (CH4), a potent greenhouse gas, were conducted at Boknis Eck (BE), a time-series station in the southwestern Baltic Sea, from June 2006. In general CH4 concentrations increased with depth. High concentrations in the upper layer were linked to saline water inflow. Eckernförde Bay emitted CH4 to the atmosphere throughout the monitoring period. No significant trend was detected in CH4 concentrations or emissions during 2006–2017.
Elizabeth León-Palmero, Alba Contreras-Ruiz, Ana Sierra, Rafael Morales-Baquero, and Isabel Reche
Biogeosciences, 17, 3223–3245, https://doi.org/10.5194/bg-17-3223-2020, https://doi.org/10.5194/bg-17-3223-2020, 2020
Short summary
Short summary
CH4 emissions from reservoirs are responsible for the majority of the climatic forcing of these ecosystems. The origin of the recurrent CH4 supersaturation in oxic waters is still controversial. We found that the dissolved CH4 concentration varied by up to 4 orders of magnitude in the water column of 12 reservoirs and was consistently supersaturated. Our findings suggest that photosynthetic picoeukaryotes can play a significant role in determining CH4 concentration in oxic waters.
Marcus B. Wallin, Joachim Audet, Mike Peacock, Erik Sahlée, and Mattias Winterdahl
Biogeosciences, 17, 2487–2498, https://doi.org/10.5194/bg-17-2487-2020, https://doi.org/10.5194/bg-17-2487-2020, 2020
Short summary
Short summary
Here we show that small streams draining agricultural areas are potential hotspots for emissions of CO2 to the atmosphere. We further conclude that the variability in stream CO2 concentration over time is very high, caused by variations in both water discharge and primary production. Given the observed high levels of CO2 and its temporally variable nature, agricultural streams clearly need more attention in order to understand and incorporate these dynamics in large-scale extrapolations.
Quan Zhang, Huimin Lei, Dawen Yang, Lihua Xiong, Pan Liu, and Beijing Fang
Biogeosciences, 17, 2245–2262, https://doi.org/10.5194/bg-17-2245-2020, https://doi.org/10.5194/bg-17-2245-2020, 2020
Short summary
Short summary
Research into climate change has been popular over the past few decades. Greenhouse gas emissions are found to be responsible for climate change. Among all the ecosystems, cropland is the main food source for mankind, therefore its carbon cycle and contribution to the global carbon balance interest us. Our evaluation of the typical wheat–maize rotation cropland over the North China Plain shows it is a net CO2 emission to the atmosphere and that emissions will continue to rise in the future.
Sheila Wachiye, Lutz Merbold, Timo Vesala, Janne Rinne, Matti Räsänen, Sonja Leitner, and Petri Pellikka
Biogeosciences, 17, 2149–2167, https://doi.org/10.5194/bg-17-2149-2020, https://doi.org/10.5194/bg-17-2149-2020, 2020
Short summary
Short summary
Limited data on emissions in Africa translate into uncertainty during GHG budgeting. We studied annual CO2, N2O, and CH4 emissions in four land-use types in Kenyan savanna using static chambers and gas chromatography. CO2 emissions varied between seasons and land-use types. Soil moisture and vegetation explained the seasonal variation, while soil temperature was insignificant. N2O and CH4 emissions did not vary at all sites. Our results are useful in climate change mitigation interventions.
Celina Burkholz, Neus Garcias-Bonet, and Carlos M. Duarte
Biogeosciences, 17, 1717–1730, https://doi.org/10.5194/bg-17-1717-2020, https://doi.org/10.5194/bg-17-1717-2020, 2020
Short summary
Short summary
Seagrass meadows store carbon in their biomass and sediments, but they have also been shown to be sources of carbon dioxide (CO2) and methane (CH4). We experimentally investigated the effect of warming and prolonged darkness on CO2 and CH4 fluxes in Red Sea seagrass (Halophila stipulacea) communities. Our results indicated that sublethal warming may lead to increased emissions of greenhouse gases from seagrass meadows which may contribute to further enhance global warming.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Chris R. Flechard, Marcel van Oijen, David R. Cameron, Wim de Vries, Andreas Ibrom, Nina Buchmann, Nancy B. Dise, Ivan A. Janssens, Johan Neirynck, Leonardo Montagnani, Andrej Varlagin, Denis Loustau, Arnaud Legout, Klaudia Ziemblińska, Marc Aubinet, Mika Aurela, Bogdan H. Chojnicki, Julia Drewer, Werner Eugster, André-Jean Francez, Radosław Juszczak, Barbara Kitzler, Werner L. Kutsch, Annalea Lohila, Bernard Longdoz, Giorgio Matteucci, Virginie Moreaux, Albrecht Neftel, Janusz Olejnik, Maria J. Sanz, Jan Siemens, Timo Vesala, Caroline Vincke, Eiko Nemitz, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Ute M. Skiba, and Mark A. Sutton
Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, https://doi.org/10.5194/bg-17-1621-2020, 2020
Short summary
Short summary
Nitrogen deposition from the atmosphere to unfertilized terrestrial vegetation such as forests can increase carbon dioxide uptake and favour carbon sequestration by ecosystems. However the data from observational networks are difficult to interpret in terms of a carbon-to-nitrogen response, because there are a number of other confounding factors, such as climate, soil physical properties and fertility, and forest age. We propose a model-based method to untangle the different influences.
Pauline Sophie Rummel, Birgit Pfeiffer, Johanna Pausch, Reinhard Well, Dominik Schneider, and Klaus Dittert
Biogeosciences, 17, 1181–1198, https://doi.org/10.5194/bg-17-1181-2020, https://doi.org/10.5194/bg-17-1181-2020, 2020
Short summary
Short summary
Chemical composition of plant litter controls C availability for biological N transformation processes in soil. In this study, we showed that easily degradable maize shoots stimulated microbial respiration and mineralization leading to high N2O formation in litter-associated hot spots. A higher share of slowly degradable C compounds and lower concentrations of water-soluble N restricted N2O emissions from maize roots. Bacterial community structure reflected degradability of maize litter.
Cited articles
Aber, J. D., Nadelhoffer, K. J., Steudler, P., and Melillo, J. M.: Nitrogen saturation in northern forest ecosystems – Excess nitrogen from fossil fuel combustion may stress the biosphere, Bioscience, 39, 378–386, 1989.
Adams, M. A., Polglase, P. J., Attiwill, P. M., and Weston, C. J.: In situ studies of nitrogen mineralization and uptake in forest soils; some comments on methodology, Soil Biol. Biochem., 21, 423–429, 1989.
Augustin, J.: Erlenstandorte als Quelle und Senke klimarelevater Spurengase. (Alder forests as a source and sink of Greenhouse gases), in: Die Schwarz-Erle (Alnus glutinosa [L.] GAERTN.) im nordostdeutschen Tiefland, Eberswalder Forstliche Schriftenreihe, 17, 46–59, 2003.
Augustin, J., Merbach, W., and Rogasik, J.: Factors influencing nitrous oxide and methane emissions from minerotrophic fens in northeast Germany, Biol. Fert. Soils, 28, 1–4, 1998.
Binkley, D., Sollins, P., Bell, R., Sachs, D., and Myrold, D.: Biogeochemistry of adjacent conifer and alder-conifer stands, Ecology, 73, 2022–2033, 1992.
Blackmer, A. M. and Bremner, J. M.: Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms, Soil Biol. Biochem., 10, 187–191, 1978.
Bremner, J. M. and Blackmer, A. M.: Terrestrial nitrification as a source of atmospheric nitrous oxide, in: Denitrification, Nitrification and Nitrous Oxide, edited by: Delwiche, P. P., 151–170, Wiley, New York. 1981.
Brumme, R., Borken, W., and Finke, S.: Hierarchical control on nitrous oxide emission in forest ecosystems, Global Biogeochem. Cy., 13, 1137–1148, 1999.
Butterbach-Bahl, K., Willibald, G., and Papen, H.: Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils, Plant Soil, 240, 105–116, 2002.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?, P. T. R. Soc. B, 368, 20130122, https://doi.org/10.1098/rstb.2013.0122, 2013.
Compton, J. E., Church, M. R., Larned, S. T., and Hogsett, W. E.: Nitrogen export from forested watershed in the Oregon Coast Range: The role of N2-fixing red alder, Ecosystems, 6, 773–785, 2003.
Couwenberg, J., Thiele, A., Tannenberger, F., Augustin, J., Bärisch, S., Dubovik, D., Liashchynskaya, N., Michaelis, D., Minke, M., Skuratovich, A., and Joosten, H.: Assessing greenhouse gas emissions from peatlands using vegetation as a proxy, Hydrobiologia, 674, 67–89, 2011.
Crawley, M. J.: The R Book, John Wiley and Sons Ltd, Chichester, 942 pp., 2007.
Crutzen, P. J.: the role of NO and NO2 in the chemistry of the troposphere and stratosphere, Annu. Rev. Earth Pl. Sc., 7, 443–472, 1979.
Davidson, E. A.: Fluxes of nitrous and nitric oxide from terrestrial ecosystems. in: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, edited by: Rogers, J. E. and Whitman, W. P., American Society for Microbiology, Washington, D.C., 219–235, 1991.
Davidson, E. A., Swank, W. T., and Perry, T. O.: Distinguishing between nitrification ad denitrification as sources of gaseous nitrogen production in soil, Appl. Environ. Microb., 52, 1280–1286, 1986.
Del Grosso, S. J., Parton, W. J., Mosier, A. R., Ojima, D. S., Kulmala, A. E., and Phongpan, S.: General model for N2O and N2 gas emissions from soils due to denitrification, Global Biogeochem. Cy., 14, 1045–1060. 2000.
Dilly, O., Blume, H. P., Kappen, L., Kutsch, W. L., Middelhoff, U., Wötzel, J., Buscot, F., Dittert, K., Bach, H. J., Mogge, B., Pritsch, K., and Munch, J. C.: Microbial processes and features of the microbiota in histosols from a black alder forest, Geomicrobiol. J., 16, 65–78, 1999.
Dittert, K.: Die stickstofffixierende Schwarzerle- Frankia-Symbiose in einem Erlenbruch der Bornhöveder Seenkette, EcoSys. Suppl., 5, 1–98, 1992.
Dobbie, K. E. and Smith, K. A.: The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol, Eur. J. Soil Sci., 52, 667–673, 2001.
Drösler, M.: Trace gas exchange and climatic relevance of bog ecosystems, Southern Germany, PhD thesis, Chair of Vegetation Ecology, Department of Ecology, Technical University Munich, 179 pp., 2005.
Eickenscheidt, N. and Brumme, R.: NOX and N2O fluxes in a nitrogen-enriched European spruce forest soil under experimental long-term reduction of nitrogen depositions, Atmos. Environ., 60, 51–58, 2012.
Eickenscheidt, N., Brumme, R., and Veldkamp, E.: Direct contribution of nitrogen deposition to nitrous oxide emissions in a temperate beech and spruce forest – a 15N tracer study, Biogeosciences, 8, 621–635, https://doi.org/10.5194/bg-8-621-2011, 2011.
Firestone, M. K. and Davidson, E. A.: Microbial basis of NO and N2O production and consumption in soil, in: Exchange of trace gases between terrestrial ecosystems and the atmosphere, edited by: Andreae, M. O. and Schimel, D. S., John Wiley and Sons Ltd., Chichester, U.K., 7–21, 1989.
Firestone, M. K., Smith, M. S., Firestone, R. B., and Tiedje, J. M.: The influence of nitrate, nitrite, and oxygen on the composition of the gaseous products of denitrification in soil, Soil Sci. Soc. Am. J., 43, 1140–1144, 1979.
Gasche, R. and Papen, H.: A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany – 2. NO and NO2 fluxes, J. Geophys. Res.-Atmos., 104, 18505–18520, 1999.
Gonçalves, J. L. M. and Carlyle, J. C.: Modelling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil, Soil Biol. Biochem., 26, 1557–1564, 1994.
Goodroad, L. L. and Keeney, D. R.: Nitrous oxide production in aerobic soils under varying pH, temperature and water content, Soil Biol. Biochem., 16, 39–43, 1984.
Gundersen, P., Emmett, B. A., Kjønaas, O. J., Koopmans, C. J., and Tietema, A.: Impact of nitrogen deposition on nitrogen cycling: a synthesis of NITREX-data, Forest Ecol. Manag., 101, 37–55, 1998.
Hahn-Schöfl, M., Zak, D., Minke, M., Gelbrecht, J., Augustin, J., and Freibauer, A.: Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2, Biogeosciences, 8, 1539–1550, https://doi.org/10.5194/bg-8-1539-2011, 2011.
Hefting, M. M., Bobbink, R., and Caluwe, H.: Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones, J. Environ. Qual., 32, 1194–1203, 2003.
Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., and Schuetzenmeister, A.: Simultaneous Inference in General Parametric Models: R package version 1.2-17, http://cran.rproject.org/web/packages/multcomp/index.html, 2013.
IPCC: Chapter 11: N2O Emissions from managed soils, and CO2 emissions from lime and urea application, in: IPCC guidelines for national greenhouse gas inventories, edited by: Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., IGES, Hayama, Japan, 2006.
IPCC: Changes in atmospheric constituents and in radiative forcing, in: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, USA, 2007.
Janiesch, P., Mellin, C., and Müller, E.: Die Stickstoff-Netto-Mineralisierung in naturnahen und degradierten Erlenbruchwäldern als Kenngröße zur Beurteilung des ökologischen Zustandes, Poster zu Verhandlungen der Gesellschaft für Ökologie (Freising-Weihenstephan 1990), Band 20, 353–359, 1991.
Jungkunst, H. F., Fiedler, S., and Stahr, K.: N2O emissions of a mature Norway spruce (Picea abies) stand in the Black Forest (southwest Germany) as differentiated by soil pattern, J. Geophys. Res., 108, D07302, https://doi.org/10.1029/2003JD004344, 2004.
Junkunst, H. F., Freibauer, A., Neufeldt, H., and Bareth, G.: Nitrous oxide emissions from agricultural land use in Germany – a synthesis of available annual field data, J. Plant Nutr. Soil Sc., 169, 341–351, 2006.
Kätzel, R.: Zum physiologischen Anpassungspotenzial der Schwarz–Erle, In: Die Schwarz-Erle (Alnus glutinosa [L.] GAERTN.) im nordostdeutschen Tiefland, Eberswalder Forstliche Schriftenreihe, 17, 39–45, 2003.
Klemedtsson, L., Svensson, B. H., and Rosswall, T.: A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil, Biol. Fert. Soils, 6, 112–119, 1988.
Klemedtsson, L., von Arnold, K., Weslien, P., and Gundersen, P.: Soil CN ratio as a scalar parameter to predict nitrous oxide emissions, Glob. Change Biol., 11, 1142–1147, 2005.
Knowles, R.: Denitrification, Microbiol. Rev., 46, 43–70, 1982.
Kowalenko, C. G. and Cameron, D. R.: Nitrogen transformations in an incubated soil as affected by combinations of moisture content and temperature and adsorption – fixation of ammonium, Can. J. Soil Sci., 56, 63–70, 1976.
Letey, J., Valoras, N., Hadas, A., and Focht, D. D.: Effect of air-filled porosity, nitrate concentration, and time on the ratio of N2O/N2 evolution during denitrification, J. Environ. Qual., 9, 227–231, 1980.
Livingston, G. P. and Hutchinson, G. L.: Enclosure-based measurement of trace gas exchange: application and sources of error, in: Biogenic Trace Gases: Measuring Emissions from Soil and Water, edited by: Matson, P. A. and Harriss, R. C., Blackwell Science, Cambridge, 14–50, 1995.
Lõhmus, K., Kuusements, V., Ivask, M., Teiter, S., Augustin, J., and Mander, Ü.: Budgets of nitrogen fluxes in riparian grey alder forests, Arch. Hydrobiol. Suppl., 141, 321–332, 2002.
Maag, V. and Vinther, F. P.: Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures, Appl. Soil Ecol., 4, 5–14, 1996.
Machacova, K., Papen, H., Kreuzwieser, J., and Rennenberg, H.: Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa, Plant Soil, 364, 287–301, https://doi.org/10.1007/s11104-012-1359-4, 2012.
Mäkinen, A.: Peat quality and peat formation in Finnish alder swamps, in: Classification of Peat and Peatlands, edited by: Kivinen, E., Heikurainen, L., and Pakarinen, P., International Peat Society, Helsinki, 171–183, 1979.
Mander, Ü., Kuusemets, V., Lõhmus, K., and Mauring, T.: Efficiency and dimensioning of riparian buffer zones in agricultural catchments, Ecol. Eng., 8, 299–324, 1997.
Mander, Ü., Kuusemets, V., Lõhmus, K., Mauring, T., Teiter, S., and Augustin, J.: Nitrous oxide, dinitrogen, and methane emission in a subsurface flow constructed wetland, Water Sci. Technol., 4, 135–142, 2003.
Mander, Ü., Lõhmus, K., Kuusemets, V., Ivask, M., Teiter, S., and Augustin, J.: Budgets of nitrogen and phosphorus fluxes in riparian grey alder forests, Natural and Constructed Wetlands: Nutrients, Metals and Management, 1–19, 2005.
Mander, Ü., Lõhmus, K., Teiter, S., Mauring, T., Nurk, K., and Augustin, J.: Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands, Sci. Total Environ, 404, 343–353, 2008.
Merbach, W., Augustin, J., and Gans, W.: Nitrous oxide emissions from fen mires in dependence of anthropogenic activities, J. Appl. Bot., 75, 118–123, 2001.
Michaelis, L. and Menten, M. L.: Die Kinetik der Invertinwirkung, Biochem. Z., 49, 333–369, 1913.
Mogge, B., Kaiser, E. A., and Munch, J. C.: Nitrous oxide emissions and denitrification N-losses from forest soils in the Bornhöved lake region (northern Germany), Soil Biol. Biochem., 30, 703–710, 1998.
Ollinger, S. V., Smith, M. L., Martin, M. E, Hallett, R. A., Goodale, C. L., and Aber, J. D.: Regional variation in foliar chemistry and N cycling among forests of diverse history and composition, Ecology, 83, 339–355, 2002.
Pangala, S. R., Moore, S., Hornibrook, E. R. C., and Gauci, V.: Trees are major conduits for methane egress from tropical forested wetlands, New Phytol., 197, 524–531, 2012.
R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, available at: http://www.R-project.org, 2010.
Regina, K., Nykänen, H., Silvola, J., and Martikainen, P. J.: Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity, Biogeochemistry, 35, 401–418, 1996.
Robertson, G. P.: Nitrification in forested ecosystems, Philos. T. R. Soc. Lond., 296, 445–457, 1982.
Rolston, D. E., Hoffman, D. L., and Toy, D. W.: Field measurements of denitrification: 1. Flux of N2 and N2O, Soil Sci. Soc. Am. J., 42, 863–869, 1978.
Roobroeck, D., Butterbach-Bahl, K., Brüggemann, N., and Boeckx, P.: Dinitrogen and nitrous oxide exchanges from an undrained monolith fen: short-term responses following nitrate addition, Eur. J. Soil Sci., 61, 662–670, 2010.
Rusch , H. and Rennenberg, H.,: Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere, Plant Soil, 201, 1–7, 1998.
Rytter, L., Arveby, A. S., and Granhall, U.: Dinitrogen (C2H2) fixation in relation to nitrogen fertilization of grey alder [Alnus incana (L.) Moench.] plantations in a peat bog, Biol. Fert. Soils, 10, 233–240, 1991.
Schäfer, A. and Joosten, H. (Eds.): Erlenaufforstung auf wiedervernässten Niedermooren. (Alnus afforestation on restored fen peatlands), Greifswald: Institute for Sustainable Development of Landscapes of the Earth, 68 pp. 2005.
Schaufler, G., Kitzler, A., Schindlbacher, A., Skiba, U., Sutton, M. A., and Zechmeister-Boltenstern, S.: Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature, Eur. J. Soil Sci., 61, 683–696, 2010.
Schindlbacher, A., Zechmeister-Boltenstern, S., and Butterbach-Bahl, K.: Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils, J. Geophys. Res., 109, D17302, https://doi.org/10.1029/2004JD004590, 2004.
Scholefield, D., Hawkins, J. M. B., and Jackson, S. M.: Use of a flowing helium atmosphere incubation technique to measure the effects of denitrification controls applied to intact cores of a clay soil, Soil Biol. Biochem., 29, 1337–1344, 1997.
Skiba, U., Sheppard, L., Pitcairn, C. E. R., Leith, I., Crossley, A., van Dijk, S., Kennedy, V. H., and Fowler, D.: Soil nitrous oxide and nitric oxide emissions as indicators of elevated atmospheric N deposition rates in seminatural ecosystems, Environ. Pollut., 102, 457–461, 1998.
Skiba, U., Sheppard, L. J., Pitcairn, C. E. R., van Dijk, S., and Rossall, M.: The effect of N deposition on nitrous oxide and nitric oxide emissions from temperate forest soils, Water Air Soil Poll., 116, 89–98, 1999.
Smith, K. A., Thomson, P. E., Clayton, H., McTaggart, I. P., and Conen, F.: Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soil, Atmos. Environ., 32, 3301–3309, 1998.
Soosaar, K., Mander, Ü., Maddison, M., Kanal, A., Kull, A., Lõhmus, K., Truu, J., and Augustin, J.: Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests, Ecol. Eng., 37, 40–53, 2011.
Speir, T. W., Kettles, H. A., and More, R. D.: Aerobic emissions of N2O and N2 from soil cores: factors influencing production from 13N-labelled NO3- and NH4+, Soil Biol. Biochem., 27, 1299–1306, 1995.
Struwe, S. and Kjøller, A.: Seasonality of denitrification in water-logged alder stands, Plant Soil, 128, 109–113, 1990.
Teiter, S. and Mander, Ü.: Emission of N2O, N2, CH4 and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones, Ecol. Eng., 25, 528–541, 2005.
Tietema, A., Warmerdam, B., Lenting, E., and Riemer, L.: Abiotic factors regulating nitrogen transformations in the organic layer of acid forest soils: Moisture and pH, Plant Soil, 147, 69–78, 1992.
Uri, V., Lõhmus, K., and Tullus, H.: Annual net nitrogen mineralization in a grey alder (Alnus incana (L.) moench) plantation on abandoned agricultural land, Forest Ecol. Manag., 184, 167–176, 2003.
Uri, V., Lõhmus, K., Mander, Ü., Ostonen, I., Aosaar, J., Maddison, M., Helmisaari, H. S., and Augustin, J.: Long-term effects on the nitrogen budget of a short-rotation grey alder (Alnus incana (L.) Moench) forest on abandoned agricultural land, Ecol. Eng., 37, 920–930, https://doi.org/10.1016/j.ecoleng.2011.01.016, 2011.
van Groenigen, J. W., Zwart, K. B., Harris, D., and van Kessel, C.: Vertical gradients of δ15N and δ18O in soil atmospheric N2O – temporal dynamics in a sandy soil, Rapid Commun. Mass Sp., 19, 1289–1295, 2005.
van Miegroet, H., Homann, P. S., and Cole, D. W.: Soil nitrogen dynamics following harvesting and conversion of red alder and Douglas fir stands, Soil Sci. Soc. Am. J., 56, 1311–1318, 1992.
VDLUFA: Bestimmung von mineralischem (Nitrat-)Stickstoff in Bodenprofilen (Nmin- Labormethode), in: Methodenbuch Teil 2, edited by: VDLUFA, Speyer, Germany, 1997.
Venterea, R. T., Groffman, P. M., Verchot, L. V., Magill, A. H., Aber, J. D., and Steudler, P. A.: Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs, Glob. Change Biol., 9, 346–357, 2003.
von Arnold, K., Nilsson, M., Hånell, B., Weslien, P., and Klemedtsson, L.: Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests, Soil Biol. Biochem., 37, 1059–1071, 2005.
Wang, R., Willibald, G., Feng, Q., Zheng, X., Liao, T., Brüggemann, N., and Butterbach-Bahl, K.: Measurement of N2, N2O, NO and CO2 Emissions from Soil with the Gas-Flow-Soil-Core Technique, Environ. Sci. Technol., 45, 6066–6072, 2011.
Watts, S. and Seitzinger, S. P.: Denitrification rates in organic and mineral soils from riparian sites: a comparison of N2 flux and acetylene inhibition methods, Soil Biol. Biochem., 32, 1383–1392, 2000.
Weier, K. L., Doran, J. W., Power, J. F., and Walters, D. T.: Denitrification and dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate, Soil Sci. Soc. Am. J., 57, 66–72, 1993.
Wichtmann, W. and Joosten, H.: Paludiculture: peat formation and renewable resources from rewetted peatlands, in: IMCG-Newsletter 3/2007, 24–28, 2007.
Wolf, I. and Russow, R.: Different pathways of formation of N2O, N2 and NO in black earth soil, Soil Biol. Biochem., 32, 229–239, 2000.
Wray, H. E. and Bayley, S. E.: Denitrification rates in marsh frings and fens in two boreal peatlands in Alberta, Canada, Wetlands, 27, 1036–1045, 2007.
WRB, 2006 – IUSS Working Group: World Reference Base for Soil Resources 2006, 2nd Edn., World Soil Resources Reports No. 103, Rome, 2006
Special issue
Altmetrics
Final-revised paper
Preprint