Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF3.480
IF 5-year value: 4.194
IF 5-year
4.194
CiteScore value: 6.7
CiteScore
6.7
SNIP value: 1.143
SNIP1.143
IPP value: 3.65
IPP3.65
SJR value: 1.761
SJR1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
index
118
h5-index value: 60
h5-index60
Volume 11, issue 22
Biogeosciences, 11, 6471–6481, 2014
https://doi.org/10.5194/bg-11-6471-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 9th International Carbon Dioxide Conference (ICDC9) (ESD/ACP/AMT/BG...

Biogeosciences, 11, 6471–6481, 2014
https://doi.org/10.5194/bg-11-6471-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Nov 2014

Research article | 27 Nov 2014

Impacts of freezing and thawing dynamics on foliar litter carbon release in alpine/subalpine forests along an altitudinal gradient in the eastern Tibetan Plateau

W. Fuzhong et al.

Related subject area

Biogeochemistry: Organic Biogeochemistry
Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts
Gerard J. M. Versteegh, Alexander J. P. Houben, and Karin A. F. Zonneveld
Biogeosciences, 17, 3545–3561, https://doi.org/10.5194/bg-17-3545-2020,https://doi.org/10.5194/bg-17-3545-2020, 2020
Short summary
Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England)
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020,https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
The nonconservative distribution pattern of organic matter in the Rajang, a tropical river with peatland in its estuary
Zhuo-Yi Zhu, Joanne Oakes, Bradley Eyre, Youyou Hao, Edwin Sien Aun Sia, Shan Jiang, Moritz Müller, and Jing Zhang
Biogeosciences, 17, 2473–2485, https://doi.org/10.5194/bg-17-2473-2020,https://doi.org/10.5194/bg-17-2473-2020, 2020
Short summary
Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication
Wenjie Xiao, Yasong Wang, Yongsheng Liu, Xi Zhang, Linlin Shi, and Yunping Xu
Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020,https://doi.org/10.5194/bg-17-2135-2020, 2020
Short summary
High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling
Yuge Bai, Edisson Subdiaga, Stefan B. Haderlein, Heike Knicker, and Andreas Kappler
Biogeosciences, 17, 683–698, https://doi.org/10.5194/bg-17-683-2020,https://doi.org/10.5194/bg-17-683-2020, 2020
Short summary

Cited articles

Aerts, R.: The freezer defrosting: global warming and litter decomposition rates in cold biomes, J. Ecol., 94, 713–724, 2006.
Aerts, R., Callaghan, T. V., Dorrepaal, E., van Logtestijn, R. S. P., and Cornelissen, J. H. C.: Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species, Oecologia, 170, 809–819, 2012.
Ayres, E., Steltzer, H., Berg, S., and Wall, D. H.: Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them, J. Ecol., 97, 901–912, 2009.
Baptist, F., Yoccoz, N. G., and Choler, P.: Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient, Plant Soil, 328, 397–410, 2010.
Berg, B. and McClaugherty, C.: Plant litter: decomposition, humus formation, carbon sequestration, 2nd Edn., New York, Springer, 2008.
Publications Copernicus
Download
Notice on corrigendum

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
A 2-year field litter decomposition experiment was conducted along an altitudinal gradient in the eastern Tibetan Plateau. More rapid 2-year C is released from fresh foliar litter at upper elevations compared to lower elevations. However, high C release was observed at low altitudes during winter, but high altitudes exhibited high C release during growing season. The results suggested that the onset of C release in fresh litter could delay in this cold region in the scenario of climate warming.
A 2-year field litter decomposition experiment was conducted along an altitudinal gradient in...
Citation
Altmetrics
Final-revised paper
Preprint