Articles | Volume 12, issue 1
https://doi.org/10.5194/bg-12-257-2015
https://doi.org/10.5194/bg-12-257-2015
Research article
 | 
15 Jan 2015
Research article |  | 15 Jan 2015

Emissions from prescribed fires in temperate forest in south-east Australia: implications for carbon accounting

M. Possell, M. Jenkins, T. L. Bell, and M. A. Adams

Related authors

New Particle Formation Events Observed during the COALA-2020 Campaign
Jhonathan Ramirez-Gamboa, Clare Paton-Walsh, Melita Keywood, Ruhi Humphries, Asher Mouat, Jennifer Kaiser, Malcom Possell, Jack Simmons, and Travis Naylor
EGUsphere, https://doi.org/10.5194/egusphere-2024-2062,https://doi.org/10.5194/egusphere-2024-2062, 2024
Short summary
Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050
Kathryn M. Emmerson, Malcolm Possell, Michael J. Aspinwall, Sebastian Pfautsch, and Mark G. Tjoelker
Atmos. Chem. Phys., 20, 6193–6206, https://doi.org/10.5194/acp-20-6193-2020,https://doi.org/10.5194/acp-20-6193-2020, 2020
Short summary

Related subject area

Biogeochemistry: Land
Seasonality and synchrony of photosynthesis in African forests inferred from spaceborne chlorophyll fluorescence and vegetation indices
Russell Doughty, Michael C. Wimberly, Dan Wanyama, Helene Peiro, Nicholas Parazoo, Sean Crowell, and Moses Azong Cho
Biogeosciences, 22, 1985–2004, https://doi.org/10.5194/bg-22-1985-2025,https://doi.org/10.5194/bg-22-1985-2025, 2025
Short summary
Altitudinal distribution of soil organic and inorganic carbon in a dry alpine rangeland of northern Qinghai-Tibetan Plateau
Qinglin Liu, Ailin Zhang, Xiangyi Li, Jinfei Yin, Yuxue Zhang, Osbert Jianxin Sun, and Yong Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1269,https://doi.org/10.5194/egusphere-2025-1269, 2025
Short summary
Precipitation–fire functional interactions control biomass stocks and carbon exchanges across the world's largest savanna
Mathew Williams, David T. Milodowski, T. Luke Smallman, Kyle G. Dexter, Gabi C. Hegerl, Iain M. McNicol, Michael O'Sullivan, Carla M. Roesch, Casey M. Ryan, Stephen Sitch, and Aude Valade
Biogeosciences, 22, 1597–1614, https://doi.org/10.5194/bg-22-1597-2025,https://doi.org/10.5194/bg-22-1597-2025, 2025
Short summary
Nitrogen concentrations in boreal and temperate tree tissues vary with tree age/size, growth rate, and climate
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
Biogeosciences, 22, 1475–1493, https://doi.org/10.5194/bg-22-1475-2025,https://doi.org/10.5194/bg-22-1475-2025, 2025
Short summary
Burn severity and vegetation type control phosphorus concentration, molecular composition, and mobilization
Morgan E. Barnes, Jesse Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg
EGUsphere, https://doi.org/10.5194/egusphere-2025-21,https://doi.org/10.5194/egusphere-2025-21, 2025
Short summary

Cited articles

Adams, M. A.: Mega-fires, tipping points and ecosystem services: Managing forests and woodlands in an uncertain future, Forest Ecol. Manag., 294, 250–261, https://doi.org/10.1016/j.foreco.2012.11.039, 2013.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Bennett, L. T., Aponte, C., Tolhurst, K. G., Low, M., and Baker, T. G.: Decreases in standing tree-based carbon stocks associated with repeated prescribed fires in a temperate mixed-species eucalypt forest, Forest Ecol. Manag., 306, 243–255, https://doi.org/10.1016/j.foreco.2013.06.036, 2013.
Bi, H. Q., Turner, J., and Lambert, M. J.: Additive biomass equations for native eucalypt forest trees of temperate Australia, Trees-Struct. Funct., 18, 467–479, https://doi.org/10.1007/s00468-004-0333-z, 2004.
Download
Short summary
Emissions from fires are estimated as products of fuel load, burning efficiency, area burnt and emission factors for compounds of interest. Uncertainties in these variables lead to a wide range of estimates. We demonstrate that the probability of estimating true emissions declines strongly as the amount of information available declines. Including coarse woody debris in estimates increased uncertainty in calculations because it was the most variable contributor to fuel load.
Share
Altmetrics
Final-revised paper
Preprint