Articles | Volume 13, issue 14
https://doi.org/10.5194/bg-13-4279-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-4279-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Chemodiversity of dissolved organic matter in the Amazon Basin
Chesapeake Biological Laboratory, University of Maryland Center for
Environmental Science, Solomons, MD 20688, USA
Juliana Valle
Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Rio
de Janeiro, 21941-901, Brazil
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Philippe Schmitt-Kopplin
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Analytical Food Chemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany
Norbert Hertkorn
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
David Bastviken
Department of Thematic Studies – Environmental Change, Linköping
University, 58183 Linköping, Sweden
Jenna Luek
Chesapeake Biological Laboratory, University of Maryland Center for
Environmental Science, Solomons, MD 20688, USA
Mourad Harir
Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
Wanderley Bastos
Laboratory of Environmental Biogeochemistry, Universidade Federal do
Rondônia, Rodovia, 76801-974, Brazil
Alex Enrich-Prast
Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Rio
de Janeiro, 21941-901, Brazil
Department of Thematic Studies – Environmental Change, Linköping
University, 58183 Linköping, Sweden
Related authors
Alec W. Armstrong, Leanne Powers, and Michael Gonsior
Biogeosciences, 18, 3367–3390, https://doi.org/10.5194/bg-18-3367-2021, https://doi.org/10.5194/bg-18-3367-2021, 2021
Short summary
Short summary
Living things decay into organic matter, which can dissolve into water (like tea brewing). Tea receives its color by absorbing light. Similarly, this material absorbs light, which can then cause chemical reactions that change it. By measuring changes in these optical properties, we found that materials from some places are more sensitive to light than others. Comparing sensitivity to light helps us understand where these materials come from and what happens as they move through water.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Manon Maisonnier, Maoyuan Feng, David Bastviken, Sandra Arndt, Ronny Lauerwald, Aidin Jabbari, Goulven Gildas Laruelle, Murray D. MacKay, Zeli Tan, Wim Thiery, and Pierre Regnier
EGUsphere, https://doi.org/10.5194/egusphere-2025-1306, https://doi.org/10.5194/egusphere-2025-1306, 2025
Short summary
Short summary
A new process-based modelling framework, FLaMe v1.0 (Fluxes of Lake Methane version 1.0), is developed to simulate methane (CH4) emissions from lakes at large scales. FLaMe couples the dynamics of organic carbon, oxygen and methane in lakes and rests on an innovative, computationally efficient lake clustering approach for the simulation of CH4 emissions across a large number of lakes. The model evaluation suggests that FLaMe captures the sub-annual and spatial variability of CH4 emissions well.
Felix L. Arens, Alessandro Airo, Christof Sager, Hans-Peter Grossart, Kai Mangelsdorf, Rainer U. Meckenstock, Mark Pannekens, Philippe Schmitt-Kopplin, Jenny Uhl, Bernardita Valenzuela, Pedro Zamorano, Luca Zoccarato, and Dirk Schulze-Makuch
Biogeosciences, 21, 5305–5320, https://doi.org/10.5194/bg-21-5305-2024, https://doi.org/10.5194/bg-21-5305-2024, 2024
Short summary
Short summary
We studied unique nitrate-rich soils in the hyperarid Atacama Desert that form brines at night under high relative humidity. Despite providing water for microorganisms, these soils exhibit extremely low microbial activity, indicating that the high nitrate levels inhibit microbial life. On the other hand, enriched organic matter indicates their potential preservation. This research helps to understand the limits of life in extreme environments and aids in the search for signs of life on Mars.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Alec W. Armstrong, Leanne Powers, and Michael Gonsior
Biogeosciences, 18, 3367–3390, https://doi.org/10.5194/bg-18-3367-2021, https://doi.org/10.5194/bg-18-3367-2021, 2021
Short summary
Short summary
Living things decay into organic matter, which can dissolve into water (like tea brewing). Tea receives its color by absorbing light. Similarly, this material absorbs light, which can then cause chemical reactions that change it. By measuring changes in these optical properties, we found that materials from some places are more sensitive to light than others. Comparing sensitivity to light helps us understand where these materials come from and what happens as they move through water.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Cited articles
Amado, A. M., Farjalla, V. F., Esteves, F. D. A., Bozelli, R. L., Roland, F., and Enrich-Prast, A.: Complementary pathways of dissolved organic carbon removal pathways in clear-water Amazonian ecosystems: photochemical degradation and bacterial uptake, Fems Microbiol. Ecol., 56, 8–17, https://doi.org/10.1111/j.1574-6941.2006.00028.x, 2006.
Aucour, A. M., Tao, F. X., Moreira-Turcq, P., Seyler, P., Sheppard, S., and Benedetti, M. F.: The Amazon River: behaviour of metals (Fe, Al, Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solimões confluence, Chem. Geol., 197, 271–285, https://doi.org/10.1016/S0009-2541(02)00398-4, 2003.
Benner, R., Opsahl, S., ChinLeo, G., Richey, J. E., and Forsberg, B. R.: Bacterial carbon metabolism in the Amazon River system, Limnol. Oceanogr., 40, 1262–1270, 1995.
Boutegrabet, L., Kanawati, B., Gebefügi, I., Peyron, D., Cayot, P., Gougeon, R. D., and Schmitt-Kopplin, P.: Attachment of Chloride Anion to Sugars: Mechanistic Investigation and Discovery of a New Dopant for Efficient Sugar Ionization/Detection in Mass Spectrometers, Chem.-Eur. J., 18, 13059–13067, https://doi.org/10.1002/chem.201103788, 2012.
Bro, R. and Smilde, A. K.: Principal component analysis, Anal. Meth., 6, 2812–2831, https://doi.org/10.1039/c3ay41907j, 2014.
Centre national pour l'exploitation des océans (France): Manuel des analyses chimiques en milieu marin, edited by: Aminot, A. and Chaussepied, M., CNEXO, Brest, 395 pp., 1983.
Chen, M., Price, R. M., Yamashita, Y., and Jaffe, R.: Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics, Appl. Geochem., 25, 872–880, https://doi.org/10.1016/j.apgeochem.2010.03.005, 2010.
Costa, M. P. F., Novo, E., and Telmer, K. H.: Spatial and temporal variability of light attenuation in large rivers of the Amazon, Hydrobiologia, 702, 171–190, https://doi.org/10.1007/s10750-012-1319-2, 2013.
D'Andrilli, J., Dittmar, T., Koch, B. P., Purcell, J. M., Marshall, A. G., and Cooper, W. T.: Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization, Rapid Commun. Mass Sp., 24, 643–650, 2010.
Dittmar, T., Koch, B., Hertkorn, N., and Kattner, G.: A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater, Limnol. Oceanogr.-Meth., 6, 230–235, 2008.
Duncan, W. and Fernandes, M.: Physicochemical characterization of the white, black, and clearwater rivers of the Amazon Basin and its implications on the distribution of freshwater stingrays (Chondrichthyes, Potamotrygonidae), Pan-American Journal of Aquatic Sciences, 5, 454–464, 2010.
Ertel, J. R., Hedges, J. I., Devol, A. H., and Richey, J. E.: Dissolved Humic Substances of the Amazon River System, Limnol. Oceanogr., 31, 739–754, 1986.
Farjalla, V. F., Esteves, F. A., Bozelli, R. L., and Roland, F.: Nutrient limitation of bacterial production in clear water Amazonian ecosystems, Hydrobiologia, 489, 197–205, https://doi.org/10.1023/a:1023288922394, 2002.
Flerus, R., Koch, B. P., Schmitt-Kopplin, P., Witt, M., and Kattner, G.: Molecular level investigation of reactions between dissolved organic matter and extraction solvents using FT-ICR MS, Mar. Chem., 124, 100–107, https://doi.org/10.1016/j.marchem.2010.12.006, 2011.
Galindo, C. and Del Nero, M.: Molecular Level Description of the Sorptive Fractionation of a Fulvic Acid on Aluminum Oxide Using Electrospray Ionization Fourier Transform Mass Spectrometry, Environ. Sci. Technol., 48, 7401–7408, https://doi.org/10.1021/es501465h, 2014.
Gaspar, A., Kunenkov, E. V., Lock, R., Desor, M., Perminova, I., and Schmitt-Kopplin, P.: Combined utilization of ion mobility and ultra-high-resolution mass spectrometry to identify multiply charged constituents in natural organic matter, Rapid Commun. Mass Sp., 23, 683–688, https://doi.org/10.1002/rcm.3924, 2009.
Gonsior, M., Peake, B. M., Cooper, W. T., Podgorski, D. C., D'Andrilli, J., Dittmar, T., and Cooper, W. J.: Characterization of dissolved organic matter across the Subtropical Convergence off the South Island, New Zealand, Mar. Chem., 123, 99–110, https://doi.org/10.1016/j.marchem.2010.10.004, 2011.
Gonsior, M., Schmitt-Kopplin, P., and Bastviken, D.: Depth-dependent molecular composition and photo-reactivity of dissolved organic matter in a boreal lake under winter and summer conditions, Biogeosciences, 10, 6945–6956, https://doi.org/10.5194/bg-10-6945-2013, 2013.
Gonsior, M., Valle, J., Schmitt-Kopplin, P., Hertkorn, N., Bastviken, D., Luek, J., Harir, M., Bastos, W., and Enrich-Prast, A.: Data from: Chemodiversity of dissolved organic matter in the Amazon Basin, Dryad Digital Repository, https://doi.org/10.5061/dryad.r44rh, 2016.
Hedges, J. I., Hatcher, P. G., Ertel, J. R., and Meyers-Schulte, K. J.: A comparison of dissolved humic substances from seawater with Amazon River counterparts by carbon-13 NMR spectrometry, Geochim. Cosmochim. Ac., 56, 1753–1757, 1992.
Hedges, J. I., Cowie, G. L., Richey, J. E., Quay, P. D., Benner, R., Strom, M., and Forsberg, B. R.: Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids, Limnol. Oceanogr., 39, 743–761, https://doi.org/10.4319/lo.1994.39.4.0743, 1994.
Hedges, J. I., Mayorga, E., Tsamakis, E., McClain, M. E., Quay, P., Richey, J. E., Benner, R., Opsahl, S., Black, B., Pimentel, T., Quintanilla, J., and Maurice, L.: Organic matter in Bolivian tributaries of the Amazon River: A comparison to the lower mainstream, Limnol. Oceanogr., 45, 1449–1466, https://doi.org/10.4319/lo.2000.45.7.1449, 2000.
Hertkorn, N., Frommberger, M., Witt, M., Koch, B., Schmitt-Kopplin, P., and Perdue, E. M.: Natural Organic Matter and the Event Horizon of Mass Spectrometry, Anal. Chem., 80, 8908–8919, https://doi.org/10.1021/ac800464g, 2008.
Hertkorn, N., Harir, M., Koch, B. P., Michalke, B., and Schmitt-Kopplin, P.: High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter, Biogeosciences, 10, 1583–1624, https://doi.org/10.5194/bg-10-1583-2013, 2013.
Horbe, A. M. C., Queiroz, M. M. D., Moura, C. A. V., and Toro, M. A. G.: Chemistry of waters of the middle and lower Madeira River and its main tributaries – Amazonas – Brazil, Acta Amazonica, 43, 489–504, 2013.
Johnson, M. S., Lehmann, J., Selva, E. C., Abdo, M., Riha, S., and Couto, E. G.: Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon, Hydrol. Process., 20, 2599–2614, https://doi.org/10.1002/hyp.6218, 2006.
Junk, W. J.: Ecology of the várzea, floodplain of Amazonian whitewater rivers, in: The Amazon, edited by: Sioli, H., Monographiae Biologicae, Springer, the Netherlands, 215–243, 1984.
Kendrick, E.: A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds, Anal. Chem., 35, 2146–2154, https://doi.org/10.1021/ac60206a048, 1963.
Kuhnert, N., Drynan, J. W., Obuchowicz, J., Clifford, M. N., and Witt, M.: Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation, Rapid Commun. Mass Sp., 24, 3387–3404, https://doi.org/10.1002/rcm.4778, 2010.
Leenheer, J. A.: Origin and Nature of Humic Substances in the Waters of the Amazon River Basin, Acta Amazonica, 10, 513–526, 1980.
Liu, Z. F., Sleighter, R. L., Zhong, J. Y., and Hatcher, P. G.: The chemical changes of DOM from black waters to coastal marine waters by HPLC combined with ultrahigh resolution mass spectrometry, Estuar. Coast Shelf S., 92, 205–216, https://doi.org/10.1016/j.ecss.2010.12.030, 2011.
Luciani, X., Mounier, S., Paraquetti, H. H. M., Redon, R., Lucas, Y., Bois, A., Lacerda, L. D., Raynaud, M., and Ripert, M.: Tracing of dissolved organic matter from the SEPETIBA Bay (Brazil) by PARAFAC analysis of total luminescence matrices, Mar. Environ. Res., 65, 148–157, https://doi.org/10.1016/j.marenvres.2007.09.004, 2008.
Maurice, P. A., Cabaniss, S. E., Drummond, J., and Ito, E.: Hydrogeochemical controls on the variations in chemical characteristics of natural organic matter at a small freshwater wetland, Chem. Geol., 187, 59–77, https://doi.org/10.1016/S0009-2541(02)00016-5, 2002.
McClain, M. E., Richey, J. E., and Reynaldo, L. V.: Andean Contributions to the Biogeochemistry of the Amazon River System, Bull. Inst. fr. études andines, 24, 425–437, 1995.
McClain, M. E., Richey, J. E., Brandes, J. A., and Pimentel, T. P.: Dissolved organic matter and terrestrial-lotic linkages in the central Amazon basin of Brazil, Global Biogeochem. Cy., 11, 295–311, https://doi.org/10.1029/97gb01056, 1997.
Moreira-Turcq, P., Seyler, P., Guyot, J. L., and Etcheber, H.: Exportation of organic carbon from the Amazon River and its main tributaries, Hydrol. Process., 17, 1329–1344, https://doi.org/10.1002/hyp.1287, 2003.
Moreira-Turcq, P., Bonnet, M. P., Amorim, M., Bernardes, M., Lagane, C., Maurice, L., Perez, M., and Seyler, P.: Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River, Global Biogeochem. Cy., 27, 119–130, https://doi.org/10.1002/gbc.20022, 2013.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence spectroscopy and multi-way techniques. PARAFAC, Anal. Meth., 5, 6557–6566, https://doi.org/10.1039/c3ay41160e, 2013.
Patel-Sorrentino, N., Mounier, S., and Benaim, J. Y.: Excitation–emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers, Water Res., 36, 2571–2581, https://doi.org/10.1016/S0043-1354(01)00469-9, 2002.
Philippe, A. and Schaumann, G. E.: Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids: A Review, Environ. Sci. Technol., 48, 8946–8962, https://doi.org/10.1021/es502342r, 2014.
Quay, P. D., Wilbur, D. O., Richey, J. E., Hedges, J. I., Devol, A. H., and Victoria, R.: Carbon cycling in the Amazon River: Implications from the 13C compositions of particles and solutes, Limnol. Oceanogr., 37, 857–871, 1992.
Richey, J. E., Hedges, J. I., Devol, A. H., Quay, P. D., Victoria, R., Martinelli, L., and Forsberg, B. R.: Biogeochemistry of Carbon in the Amazon River, Limnol. Oceanogr., 35, 352–371, 1990.
Shakeri Yekta, S., Gonsior, M., Schmitt-Kopplin, P., and Svensson, B. H.: Characterization of Dissolved Organic Matter in Full Scale Continuous Stirred Tank Biogas Reactors Using Ultrahigh Resolution Mass Spectrometry: A Qualitative Overview, Environ. Sci. Technol., 46, 12711–12719, https://doi.org/10.1021/es3024447, 2012.
Sharpless, C. M. and Blough, N. V.: The importance of charge-transfer interactions in determining chromophoric dissolved organic matter (CDOM) optical and photochemical properties, Environmental Science: Processes & Impacts, 16, 654–671, https://doi.org/10.1039/c3em00573a, 2014.
Sioli, H.: Das Wasser im Amazonasgebiet, Forschungen und Fortschritte, 26, 274–280, 1950.
Sleighter, R. L., Liu, Z., Xue, J., and Hatcher, P. G.: Multivariate Statistical Approaches for the Characterization of Dissolved Organic Matter Analyzed by Ultrahigh Resolution Mass Spectrometry, Environ. Sci. Technol., 44, 7576–7582, https://doi.org/10.1021/es1002204, 2010.
Stedmon, C. A., Markager, S., and Bro, R.: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy, Mar. Chem., 82, 239–254, https://doi.org/10.1016/S0304-4203(03)00072-0, 2003.
Stenson, A. C., Landing, W. M., Marshall, A. G., and Cooper, W. T.: Ionization and Fragmentation of Humic Substances in Electrospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry, Anal. Chem., 74, 4397–4409, 2002.
Stenson, A. C., Marshall, A. G., and Cooper, W. T.: Exact Masses and Chemical Formulas of Individual Suwannee River Fulvic Acids from Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra, Anal. Chem., 75, 1275–1284, 2003.
Stubbins, A., Spencer, R. G. M., Chen, H., Hatcher, P. G., Mopper, K., Hernes, P. J., Mwamba, V. L., Mangangu, A. M., Wabakanghanzi, J. N., and Six, J.: Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry, Limnol. Oceanogr., 55, 1467–1477, https://doi.org/10.4319/lo.2010.55.4.1467, 2010.
Stubbins, A., Lapierre, J. F., Berggren, M., Prairie, Y. T., Dittmar, T., and del Giorgio, P. A.: What's in an EEM? Molecular Signatures Associated with Dissolved Organic Fluorescence in Boreal Canada, Environ. Sci. Technol., 48, 10598–10606, https://doi.org/10.1021/es502086e, 2014.
Townsend-Small, A., Noguera, J. L., McClain, M. E., and Brandes, J. A.: Radiocarbon and stable isotope geochemistry of organic matter in the Amazon headwaters, Peruvian Andes, Global Biogeochem. Cy., 21, GB2029, https://doi.org/10.1029/2006gb002835, 2007.
Tremblay, L. B., Dittmar, T., Marshall, A. G., Cooper, W. J., and Cooper, W. T.: Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy, Mar. Chem., 105, 15–29, 2007.
van Krevelen, D. W.: Graphical-statistical method for the study of structure and reaction processes of coal, Fuel, 29, 269–284, 1950.
Ward, N. D., Keil, R. G., Medeiros, P. M., Brito, D. C., Cunha, A. C., Dittmar, T., Yager, P. L., Krusche, A. V., and Richey, J. E.: Degradation of terrestrially derived macromolecules in the Amazon River, Nat. Geosci., 6, 530–533, https://doi.org/10.1038/ngeo1817, 2013.
Werner, E., Croixmarie, V., Umbdenstock, T., Ezan, E., Chaminade, P., Tabet, J.-C., and Junot, C.: Mass spectrometry-based metabolomics: Accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution, Anal. Chem., 80, 4918–4932, https://doi.org/10.1021/ac800094p, 2008.
Yamaguchi, Y., Matsubara, Y., Ochi, T., Wakamiya, T., and Yoshida, Z.-i.: How the π Conjugation Length Affects the Fluorescence Emission Efficiency, J. Am. Chem. Soc., 130, 13867–13869, https://doi.org/10.1021/ja8040493, 2008.
Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T. M., Miltner, A., and Schroth, G.: Factors controlling humification and mineralization of soil organic matter in the tropics, Geoderma, 79, 117–161, https://doi.org/10.1016/S0016-7061(97)00040-2, 1997.
Short summary
We present in this study a highly diverse and complex chemodiversity of dissolved organic matter (DOM) in the Amazon Basin analyzed by modern ultrahigh-resolution mass spectrometry and optical property analyses. DOM within the Rio Madeira (white water), Rio Negro (black water) and Rio Tapajós (clear water) area showed a large overlap of thousands of molecular formulae, but also unique signatures were apparent for each region, with significant correlations to colored DOM.
We present in this study a highly diverse and complex chemodiversity of dissolved organic matter...
Altmetrics
Final-revised paper
Preprint