Articles | Volume 15, issue 20
https://doi.org/10.5194/bg-15-6127-2018
https://doi.org/10.5194/bg-15-6127-2018
Research article
 | 
18 Oct 2018
Research article |  | 18 Oct 2018

Nitrogen and oxygen availabilities control water column nitrous oxide production during seasonal anoxia in the Chesapeake Bay

Qixing Ji, Claudia Frey, Xin Sun, Melanie Jackson, Yea-Shine Lee, Amal Jayakumar, Jeffrey C. Cornwell, and Bess B. Ward

Related authors

Investigating the effect of El Niño on nitrous oxide distribution in the eastern tropical South Pacific
Qixing Ji, Mark A. Altabet, Hermann W. Bange, Michelle I. Graco, Xiao Ma, Damian L. Arévalo-Martínez, and Damian S. Grundle
Biogeosciences, 16, 2079–2093, https://doi.org/10.5194/bg-16-2079-2019,https://doi.org/10.5194/bg-16-2079-2019, 2019
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Long-term variations in pH in coastal waters along the Korean Peninsula
Yong-Woo Lee, Mi-Ok Park, Seong-Gil Kim, Tae-Hoon Kim, Yong Hwa Oh, Sang Heon Lee, and DongJoo Joung
Biogeosciences, 22, 675–690, https://doi.org/10.5194/bg-22-675-2025,https://doi.org/10.5194/bg-22-675-2025, 2025
Short summary
The effect of carbonate mineral additions on biogeochemical conditions in surface sediments and benthic–pelagic exchange fluxes
Kadir Biçe, Tristen Myers Stewart, George G. Waldbusser, and Christof Meile
Biogeosciences, 22, 641–657, https://doi.org/10.5194/bg-22-641-2025,https://doi.org/10.5194/bg-22-641-2025, 2025
Short summary
Assessing the impacts of simulated ocean alkalinity enhancement on viability and growth of nearshore species of phytoplankton
Jessica L. Oberlander, Mackenzie E. Burke, Cat A. London, and Hugh L. MacIntyre
Biogeosciences, 22, 499–512, https://doi.org/10.5194/bg-22-499-2025,https://doi.org/10.5194/bg-22-499-2025, 2025
Short summary
Responses of microbial metabolic rates to non-equilibrated silicate- versus calcium-based ocean alkalinity enhancement
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024,https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
High metabolic zinc demand within native Amundsen and Ross sea phytoplankton communities determined by stable isotope uptake rate measurements
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024,https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary

Cited articles

Anderson, J. H.: The metabolism of hydroxylamine to nitrite by Nitrosomonas, Biochem. J., 91, 8–17, 1964. 
Arp, D. J. and Stein, L. Y.: Metabolism of inorganic N compounds by ammonia-oxidizing bacteria, Crit. Rev. Biochem. Mol., 38, 471–495, https://doi.org/10.1080/10409230390267446, 2003. 
Baird, D., Ulanowicz, R. E., and Boynton, W. R.: Seasonal Nitrogen Dynamics in Chesapeake Bay: a Network Approach, Estuar. Coast. Shelf S., 41, 137–162, https://doi.org/10.1006/ecss.1995.0058, 1995. 
Boesch, D. F., Brinsfield, R. B., and Magnien, R. E.: Chesapeake Bay Eutrophication, J. Environ. Qual., 30, 303–320, https://doi.org/10.2134/jeq2001.302303x, 2001. 
Download
Short summary
Nitrous oxide (N2O) is a strong greenhouse gas and ozone-depletion agent. Intense N2O effluxes had been observed from nutrient-rich estuaries with human impacts, such as the Chesapeake Bay. We report that increased nitrogen availability and low-oxygen conditions stimulate N2O production. Thus, controlling the nutrient input to the bay will decrease nitrogen availability and alleviate eutrophication, leading to water column reoxygenation, and subsequently will mitigate N2O emission.
Share
Altmetrics
Final-revised paper
Preprint