Articles | Volume 16, issue 6
https://doi.org/10.5194/bg-16-1321-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-1321-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database
Marie Barbieux
CORRESPONDING AUTHOR
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Julia Uitz
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Bernard Gentili
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Orens Pasqueron de Fommervault
Alseamar-Alcen company, 9 Europarc Sainte Victoire, 13590 Meyreuil,
France
Alexandre Mignot
Mercator Océan, 31520 Ramonville-Saint-Agne, France
Antoine Poteau
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Catherine Schmechtig
OSU Ecce Terra, UMS 3455, CNRS and Sorbonne Université, Paris 6, 4
place Jussieu, 75252 Paris CEDEX 05, France
Vincent Taillandier
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Edouard Leymarie
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Christophe Penkerc'h
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Fabrizio D'Ortenzio
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Hervé Claustre
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Annick Bricaud
CNRS and Sorbonne Université, Laboratoire d'Océanographie de
Villefranche, LOV, 06230 Villefranche-sur-mer, France
Related authors
No articles found.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Mara Freilich, Alexandre Mignot, Glenn Flierl, and Raffaele Ferrari
Biogeosciences, 18, 5595–5607, https://doi.org/10.5194/bg-18-5595-2021, https://doi.org/10.5194/bg-18-5595-2021, 2021
Short summary
Short summary
Observations reveal that in some regions phytoplankton biomass increases during the wintertime when growth conditions are sub-optimal, which has been attributed to a release from grazing during mixed layer deepening. Measurements of grazer populations to support this theory are lacking. We demonstrate that a release from grazing when the winter mixed layer is deepening holds only for certain grazing models, extending the use of phytoplankton observations to make inferences about grazer dynamics.
Christophe Perron, Christian Katlein, Simon Lambert-Girard, Edouard Leymarie, Louis-Philippe Guinard, Pierre Marquet, and Marcel Babin
The Cryosphere, 15, 4483–4500, https://doi.org/10.5194/tc-15-4483-2021, https://doi.org/10.5194/tc-15-4483-2021, 2021
Short summary
Short summary
Characterizing the evolution of inherent optical properties (IOPs) of sea ice in situ is necessary to improve climate and arctic ecosystem models. Here we present the development of an optical probe, based on the spatially resolved diffuse reflectance method, to measure IOPs of a small volume of sea ice (dm3) in situ and non-destructively. For the first time, in situ vertically resolved profiles of the dominant IOP, the reduced scattering coefficient, were obtained for interior sea ice.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
France Van Wambeke, Elvira Pulido, Philippe Catala, Julie Dinasquet, Kahina Djaoudi, Anja Engel, Marc Garel, Sophie Guasco, Barbara Marie, Sandra Nunige, Vincent Taillandier, Birthe Zäncker, and Christian Tamburini
Biogeosciences, 18, 2301–2323, https://doi.org/10.5194/bg-18-2301-2021, https://doi.org/10.5194/bg-18-2301-2021, 2021
Short summary
Short summary
Michaelis–Menten kinetics were determined for alkaline phosphatase, aminopeptidase and β-glucosidase in the Mediterranean Sea. Although the ectoenzymatic-hydrolysis contribution to heterotrophic prokaryotic needs was high in terms of N, it was low in terms of C. This study points out the biases in interpretation of the relative differences in activities among the three tested enzymes in regard to the choice of added concentrations of fluorogenic substrates.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021, https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Short summary
This paper addresses the phenology of the deep chlorophyll maximum (DCM) in the Black Sea (BS). We show that the DCM forms in March at a density level set by the winter mixed layer. It maintains this location until June, suggesting an influence of the DCM on light and nutrient profiles rather than mere adaptation to external factors. In summer, the DCM concentrates ~55 % of the chlorophyll in a 10 m layer at ~35 m depth and should be considered a major feature of the BS phytoplankton dynamics.
Elena Terzić, Arnau Miró, Paolo Lazzari, Emanuele Organelli, and Fabrizio D'Ortenzio
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-473, https://doi.org/10.5194/bg-2020-473, 2021
Preprint withdrawn
Short summary
Short summary
This study integrates numerical simulations (using a multi-spectral optical model) with in-situ measurements of floats and remotely sensed observations from satellites. It aims at improving our current understanding of the impact that different constituents (such as pure water, colored dissolved organic matter, detritus and phytoplankton) have on the in-water light propagation.
Rafael Rasse, Hervé Claustre, and Antoine Poteau
Biogeosciences, 17, 6491–6505, https://doi.org/10.5194/bg-17-6491-2020, https://doi.org/10.5194/bg-17-6491-2020, 2020
Short summary
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
R. Sauzède, J. E. Johnson, H. Claustre, G. Camps-Valls, and A. B. Ruescas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 949–956, https://doi.org/10.5194/isprs-annals-V-2-2020-949-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-949-2020, 2020
Vincent Taillandier, Louis Prieur, Fabrizio D'Ortenzio, Maurizio Ribera d'Alcalà, and Elvira Pulido-Villena
Biogeosciences, 17, 3343–3366, https://doi.org/10.5194/bg-17-3343-2020, https://doi.org/10.5194/bg-17-3343-2020, 2020
Short summary
Short summary
This study addresses the role played by vertical diffusion in the nutrient enrichment of the Levantine intermediate waters, a process particularly relevant inside thermohaline staircases. Thanks to a high profiling frequency over a 4-year period, BGC-Argo float observations reveal the temporal continuity of the layering patterns encountered during the cruise PEACETIME and their impact on vertical and lateral transfers of nitrate between the deep reservoir and the surface productive zone.
Kimberly A. Casey, Cecile S. Rousseaux, Watson W. Gregg, Emmanuel Boss, Alison P. Chase, Susanne E. Craig, Colleen B. Mouw, Rick A. Reynolds, Dariusz Stramski, Steven G. Ackleson, Annick Bricaud, Blake Schaeffer, Marlon R. Lewis, and Stéphane Maritorena
Earth Syst. Sci. Data, 12, 1123–1139, https://doi.org/10.5194/essd-12-1123-2020, https://doi.org/10.5194/essd-12-1123-2020, 2020
Short summary
Short summary
An increase in spectral resolution in forthcoming remote-sensing missions will improve our ability to understand and characterize aquatic ecosystems. We organize and provide a global compilation of high spectral resolution inherent and apparent optical property data from polar, midlatitude, and equatorial open-ocean, estuary, coastal, and inland waters. The data are intended to aid in development of remote-sensing data product algorithms and to perform calibration and validation activities.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Elodie Gutknecht, Guillaume Reffray, Alexandre Mignot, Tomasz Dabrowski, and Marcos G. Sotillo
Ocean Sci., 15, 1489–1516, https://doi.org/10.5194/os-15-1489-2019, https://doi.org/10.5194/os-15-1489-2019, 2019
Short summary
Short summary
As part of the Copernicus Marine Environment Monitoring Service, an operational ocean forecasting system monitors the ocean dynamics and marine ecosystems of the European waters. This paper assesses the performance of the key biogeochemical variables (oxygen, nutrients, Chl a, primary production) using a 7-year pre-operational qualification simulation (2010–2016). The simulation can be used to better understand the current state, the changes and the health of European marine ecosystems.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019, https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Short summary
Measuring ecosystem properties in the ocean is a hard business. Recent availability of data from Biogeochemical-Argo floats can help make this task easier. Numerical models can integrate these new data in a coherent picture and can be used to investigate the functioning of ecosystem processes. Our new approach merges experimental information and model capabilities to quantitatively demonstrate the importance of light and water vertical mixing for algae dynamics in the Mediterranean Sea.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Julien Palmiéri, Jean-Claude Dutay, Fabrizio D'Ortenzio, Loïc Houpert, Nicolas Mayot, and Laurent Bopp
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-423, https://doi.org/10.5194/bg-2018-423, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this model study, we highlight the importance of the subsurface phytoplankton dynamic in the Mediterranean sea. Comparing surface chlorophyll annual cycle to vertically integrated one, we show how important the subsurface phytoplankton community is, throughout the Mediterranean. It shows that surface chlorophyll is incomplete and cannot alone be considered a good proxy of the total phytoplankton biomass. Then, we decrypt some deep chlorophyll maximum mechanisms in the low production area.
Karine Leblanc, Véronique Cornet, Peggy Rimmelin-Maury, Olivier Grosso, Sandra Hélias-Nunige, Camille Brunet, Hervé Claustre, Joséphine Ras, Nathalie Leblond, and Bernard Quéguiner
Biogeosciences, 15, 5595–5620, https://doi.org/10.5194/bg-15-5595-2018, https://doi.org/10.5194/bg-15-5595-2018, 2018
Short summary
Short summary
The Si biogeochemical cycle was studied during two oceanographic cruises in the tropical South Pacific in 2005 and 2015, between New Caledonia and the Chilean upwelling (8–34° S). Some of the lowest levels of biogenic silica stocks were found in the southern Pacific gyre, where Chlorophyll a concentrations are most depleted worldwide. Size-fractionated biogenic silica concentrations as well as Si kinetic uptake experiments revealed biological Si uptake by the picoplanktonic size fraction.
Héloise Lavigne, Giuseppe Civitarese, Miroslav Gačić, and Fabrizio D'Ortenzio
Biogeosciences, 15, 4431–4445, https://doi.org/10.5194/bg-15-4431-2018, https://doi.org/10.5194/bg-15-4431-2018, 2018
Short summary
Short summary
The north Ionian circulation, which is characterized by a decadal alternation of cyclonic and anticyclonic regime, affects phytoplankton dynamics and surface chlorophyll a. From satellite ocean color data, the cyclonic and anticyclonic regimes are compared and two chlorophyll a dynamics are observed: when circulation is anticyclonic, bloom initiation is in December and chlorophyll is low in March, whereas during the cyclonic regime, a late chlorophyll peak is commonly observed in March.
Vincent Taillandier, Thibaut Wagener, Fabrizio D'Ortenzio, Nicolas Mayot, Hervé Legoff, Joséphine Ras, Laurent Coppola, Orens Pasqueron de Fommervault, Catherine Schmechtig, Emilie Diamond, Henry Bittig, Dominique Lefevre, Edouard Leymarie, Antoine Poteau, and Louis Prieur
Earth Syst. Sci. Data, 10, 627–641, https://doi.org/10.5194/essd-10-627-2018, https://doi.org/10.5194/essd-10-627-2018, 2018
Short summary
Short summary
We report on data from an oceanographic cruise, covering western, central and eastern parts of the Mediterranean Sea. This cruise was fully dedicated to the maintenance and the metrological verification of a biogeochemical observing system based on a fleet of BGC-Argo floats.
Raphaëlle Sauzède, Elodie Martinez, Orens Pasqueron de Fommervault, Antoine Poteau, Alexandre Mignot, Christophe Maes, Hervé Claustre, Julia Uitz, Keitapu Maamaatuaiahutapu, Martine Rodier, Catherine Schmechtig, and Victoire Laurent
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-541, https://doi.org/10.5194/bg-2017-541, 2018
Revised manuscript not accepted
Emanuele Organelli, Marie Barbieux, Hervé Claustre, Catherine Schmechtig, Antoine Poteau, Annick Bricaud, Emmanuel Boss, Nathan Briggs, Giorgio Dall'Olmo, Fabrizio D'Ortenzio, Edouard Leymarie, Antoine Mangin, Grigor Obolensky, Christophe Penkerc'h, Louis Prieur, Collin Roesler, Romain Serra, Julia Uitz, and Xiaogang Xing
Earth Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, https://doi.org/10.5194/essd-9-861-2017, 2017
Short summary
Short summary
Autonomous robotic platforms such as Biogeochemical-Argo floats allow observation of the ocean, from the surface to the interior, in a new and systematic way. A fleet of 105 of these platforms have collected several biological, biogeochemical, and optical variables in still unexplored regions. The quality-controlled databases presented here will enable scientists to improve knowledge on the functioning of marine ecosystems and investigate the climatic implications.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Hervé Claustre, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford Hooker, Mati Kahru, Holger Klein, Susanne Kratzer, Hubert Loisel, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Alex J. Poulton, Michel Repecaud, Timothy Smyth, Heidi M. Sosik, Michael Twardowski, Kenneth Voss, Jeremy Werdell, Marcel Wernand, and Giuseppe Zibordi
Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, https://doi.org/10.5194/essd-8-235-2016, 2016
Short summary
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Nicolas Mayot, Fabrizio D'Ortenzio, Maurizio Ribera d'Alcalà, Héloïse Lavigne, and Hervé Claustre
Biogeosciences, 13, 1901–1917, https://doi.org/10.5194/bg-13-1901-2016, https://doi.org/10.5194/bg-13-1901-2016, 2016
Short summary
Short summary
The present manuscript provides an analysis of the interannual variability of the phytoplankton seasonality in the Mediterranean Sea, based on 16 years of ocean color data. Important interannual variabilities at regional scale were highlighted and related to environmental factors. Our results demonstrate also that seasonal patterns retrieved from satellite allow to identify the evolution of an oceanic area and to summarize the huge quantity of information that the satellite data offer.
R. Sauzède, H. Lavigne, H. Claustre, J. Uitz, C. Schmechtig, F. D'Ortenzio, C. Guinet, and S. Pesant
Earth Syst. Sci. Data, 7, 261–273, https://doi.org/10.5194/essd-7-261-2015, https://doi.org/10.5194/essd-7-261-2015, 2015
H. Lavigne, F. D'Ortenzio, M. Ribera D'Alcalà, H. Claustre, R. Sauzède, and M. Gacic
Biogeosciences, 12, 5021–5039, https://doi.org/10.5194/bg-12-5021-2015, https://doi.org/10.5194/bg-12-5021-2015, 2015
Short summary
Short summary
The spatiotemporal variability in the vertical distribution of the chlorophyll concentration in the Mediterranean Sea is investigated. Results are based on a large database of fluorescence profiles intercalibrated from ocean color satellite data. They indicate that two types of chlorophyll seasonality coexist in the Mediterranean Sea. The shape of the chlorophyll profile is very dynamic during winter, and the deep chlorophyll maximum is a dominant feature of Mediterranean chlorophyll profile.
P. Coupel, A. Matsuoka, D. Ruiz-Pino, M. Gosselin, D. Marie, J.-É. Tremblay, and M. Babin
Biogeosciences, 12, 991–1006, https://doi.org/10.5194/bg-12-991-2015, https://doi.org/10.5194/bg-12-991-2015, 2015
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
C. Guinet, X. Xing, E. Walker, P. Monestiez, S. Marchand, B. Picard, T. Jaud, M. Authier, C. Cotté, A. C. Dragon, E. Diamond, D. Antoine, P. Lovell, S. Blain, F. D'Ortenzio, and H. Claustre
Earth Syst. Sci. Data, 5, 15–29, https://doi.org/10.5194/essd-5-15-2013, https://doi.org/10.5194/essd-5-15-2013, 2013
Related subject area
Biogeochemistry: Bio-Optics
Chromophoric dissolved organic matter dynamics revealed through the optimization of an optical–biogeochemical model in the northwestern Mediterranean Sea
Estimating the seasonal impact of optically significant water constituents on surface heating rates in the western Baltic Sea
Variability of light absorption coefficients by different size fractions of suspensions in the southern Baltic Sea
Spatial and temporal dynamics of suspended sediment concentrations in coastal waters of the South China Sea, off Sarawak, Borneo: ocean colour remote sensing observations and analysis
Comment on “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by K. Michaelian and A. Simeonov (2015)
A limited effect of sub-tropical typhoons on phytoplankton dynamics
The suspended small-particle layer in the oxygen-poor Black Sea: a proxy for delineating the effective N2-yielding section
Diel quenching of Southern Ocean phytoplankton fluorescence is related to iron limitation
A global end-member approach to derive aCDOM(440) from near-surface optical measurements
Floodwater impact on Galveston Bay phytoplankton taxonomy, pigment composition and photo-physiological state following Hurricane Harvey from field and ocean color (Sentinel-3A OLCI) observations
Diurnal regulation of photosynthetic light absorption, electron transport and carbon fixation in two contrasting oceanic environments
Carbon Flux Explorer optical assessment of C, N and P fluxes
Phytoplankton size class in the East China Sea derived from MODIS satellite data
An estuarine-tuned quasi-analytical algorithm (QAA-V): assessment and application to satellite estimates of SPM in Galveston Bay following Hurricane Harvey
Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index
Modelling ocean-colour-derived chlorophyll a
Optical properties of size fractions of suspended particulate matter in littoral waters of Québec
Methods to retrieve the complex refractive index of aquatic suspended particles: going beyond simple shapes
Changes in optical characteristics of surface microlayers hint to photochemically and microbially mediated DOM turnover in the upwelling region off the coast of Peru
Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization
Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors
Autonomous profiling float observations of the high-biomass plume downstream of the Kerguelen Plateau in the Southern Ocean
A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment
Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications
Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea
Absorption and fluorescence properties of chromophoric dissolved organic matter of the eastern Bering Sea in the summer with special reference to the influence of a cold pool
A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space
Influence of the Changjiang River on the light absorption properties of phytoplankton from the East China Sea
On the consistency of MODIS chlorophyll $a$ products in the northern South China Sea
Contribution to a bio-optical model for remote sensing of Lena River water
Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting
Biogeochemical origins of particles obtained from the inversion of the volume scattering function and spectral absorption in coastal waters
Apparent optical properties of the Canadian Beaufort Sea – Part 1: Observational overview and water column relationships
Apparent optical properties of the Canadian Beaufort Sea – Part 2: The 1% and 1 cm perspective in deriving and validating AOP data products
Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding
Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space
Variations of net primary productivity and phytoplankton community composition in the Indian sector of the Southern Ocean as estimated from ocean color remote sensing data
Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean
Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data
Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics
Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance
Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient
Characterization of the bio-optical anomaly and diurnal variability of particulate matter, as seen from scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea
MODIS observed phytoplankton dynamics in the Taiwan Strait: an absorption-based analysis
Global variability of phytoplankton functional types from space: assessment via the particle size distribution
Optical Characterization of an Eddy-induced Diatom Bloom West of the Island of Hawaii
The dissolved yellow substance and the shades of blue in the Mediterranean Sea
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
Justyna Meler, Dagmara Litwicka, and Monika Zabłocka
Biogeosciences, 20, 2525–2551, https://doi.org/10.5194/bg-20-2525-2023, https://doi.org/10.5194/bg-20-2525-2023, 2023
Short summary
Short summary
We present a variability of absorption properties by different size fractions of particles suspended in the Baltic Sea waters. The light absorption coefficient by all suspended particles (ap), detritus (ad) and phytoplankton (aph) was determined for four size fractions: pico-particles, ultra-particles, nano-particles and micro-particles. We have shown the proportions of particles from the size classes (micro-, nano-, ultra- and pico-particles) in the total ap, ad and aph.
Jenny Choo, Nagur Cherukuru, Eric Lehmann, Matt Paget, Aazani Mujahid, Patrick Martin, and Moritz Müller
Biogeosciences, 19, 5837–5857, https://doi.org/10.5194/bg-19-5837-2022, https://doi.org/10.5194/bg-19-5837-2022, 2022
Short summary
Short summary
This study presents the first observation of water quality changes over space and time in the coastal systems of Sarawak, Malaysian Borneo, using remote sensing technologies. While our findings demonstrate that the southwestern coast of Sarawak is within local water quality standards, historical patterns of water quality degradation that were detected can help to alert local authorities and enhance management and monitoring strategies of coastal waters in this region.
Lars Olof Björn
Biogeosciences, 19, 1013–1019, https://doi.org/10.5194/bg-19-1013-2022, https://doi.org/10.5194/bg-19-1013-2022, 2022
Short summary
Short summary
The origin and evolution of life do not contradict the laws of thermodynamics, but we have no proof that it is an inevitable consequence of these laws. We do not know if the first life arose under illumination or in darkness in the deep ocean or in the Earth's crust. We have no proof that it arose due to a
thermodynamic imperative of dissipating the prevailing solar spectrum, as there are other ways for entropy increase in solar radiation. The biosphere may instead delay entropy production.
Fei Chai, Yuntao Wang, Xiaogang Xing, Yunwei Yan, Huijie Xue, Mark Wells, and Emmanuel Boss
Biogeosciences, 18, 849–859, https://doi.org/10.5194/bg-18-849-2021, https://doi.org/10.5194/bg-18-849-2021, 2021
Short summary
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
Rafael Rasse, Hervé Claustre, and Antoine Poteau
Biogeosciences, 17, 6491–6505, https://doi.org/10.5194/bg-17-6491-2020, https://doi.org/10.5194/bg-17-6491-2020, 2020
Short summary
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
Christina Schallenberg, Robert F. Strzepek, Nina Schuback, Lesley A. Clementson, Philip W. Boyd, and Thomas W. Trull
Biogeosciences, 17, 793–812, https://doi.org/10.5194/bg-17-793-2020, https://doi.org/10.5194/bg-17-793-2020, 2020
Short summary
Short summary
Measurements of phytoplankton health still require the use of research vessels and are thus costly and sparse. In this paper we propose a new way to assess the health of phytoplankton using simple fluorescence measurements, which can be made autonomously. In the Southern Ocean, where the most limiting nutrient for phytoplankton is iron, we found a relationship between iron limitation and the depression of fluorescence under high light, the so-called non-photochemical quenching of fluorescence.
Stanford B. Hooker, Atsushi Matsuoka, Raphael M. Kudela, Youhei Yamashita, Koji Suzuki, and Henry F. Houskeeper
Biogeosciences, 17, 475–497, https://doi.org/10.5194/bg-17-475-2020, https://doi.org/10.5194/bg-17-475-2020, 2020
Short summary
Short summary
A Kd(λ) and aCDOM(440) data set spanned oceanic, coastal, and inland waters. The algorithmic approach, based on Kd end-member pairs, can be used globally. End-members with the largest spectral span had an accuracy of 1.2–2.4 % (RMSE). Validation was influenced by subjective
nonconservativewater masses. The influence of subcategories was confirmed with an objective cluster analysis.
Bingqing Liu, Eurico J. D'Sa, and Ishan D. Joshi
Biogeosciences, 16, 1975–2001, https://doi.org/10.5194/bg-16-1975-2019, https://doi.org/10.5194/bg-16-1975-2019, 2019
Short summary
Short summary
An approach using bio-optical field and ocean color (Sentinel-3A OLCI) data combined with inversion models allowed for the first time an assessment of phytoplankton response (changes in taxonomy, pigment composition and physiological state) to a large hurricane-related floodwater perturbation in a turbid estuary. The study revealed the transition in phytoplankton community species as well as the spatiotemporal distributions of phytoplankton diagnostic pigments in the floodwater-impacted bay.
Nina Schuback and Philippe D. Tortell
Biogeosciences, 16, 1381–1399, https://doi.org/10.5194/bg-16-1381-2019, https://doi.org/10.5194/bg-16-1381-2019, 2019
Short summary
Short summary
Understanding the dynamics of primary productivity requires mechanistic insight into the coupling of light absorption, electron transport and carbon fixation in response to environmental variability. Measuring such rates over diurnal timescales in contrasting regions allowed us to gain information on the regulation of photosynthetic efficiencies, with implications for the interpretation of bio-optical data, and the parameterization of models needed to monitor productivity over large scales.
Hannah L. Bourne, James K. B. Bishop, Todd J. Wood, Timothy J. Loew, and Yizhuang Liu
Biogeosciences, 16, 1249–1264, https://doi.org/10.5194/bg-16-1249-2019, https://doi.org/10.5194/bg-16-1249-2019, 2019
Short summary
Short summary
The biological carbon pump, the process by which carbon-laden particles sink out of the surface ocean, is dynamic and fast. The use of autonomous observations will better inform carbon export simulations. The Carbon Flux Explorer (CFE) was developed to optically measure hourly variations of particle flux. We calibrate the optical measurements of the CFE against C and N flux using samples collected during a coastal California cruise in June 2017. Our results yield well-correlated calibrations.
Hailong Zhang, Shengqiang Wang, Zhongfeng Qiu, Deyong Sun, Joji Ishizaka, Shaojie Sun, and Yijun He
Biogeosciences, 15, 4271–4289, https://doi.org/10.5194/bg-15-4271-2018, https://doi.org/10.5194/bg-15-4271-2018, 2018
Short summary
Short summary
The PSC model was re-tuned for regional application in the East China Sea, and successfully applied to MODIS data. We investigated previously unknown temporal–spatial patterns of the PSC in the ECS and analyzed their responses to environmental factors. The results show the PSC varied across both spatial and temporal scales, and was probably affected by the water column stability, upwelling, and Kuroshio. In addition, human activity and riverine discharge may impact the PSC dynamics.
Ishan D. Joshi and Eurico J. D'Sa
Biogeosciences, 15, 4065–4086, https://doi.org/10.5194/bg-15-4065-2018, https://doi.org/10.5194/bg-15-4065-2018, 2018
Short summary
Short summary
The standard quasi-analytical algorithm (QAA) was tuned for various ocean color sensors as QAA-V and optimized for and evaluated in a variety of waters from highly absorbing and turbid to relatively clear shelf waters. The QAA-V-derived optical properties of total absorption and backscattering coefficients showed an obvious improvement when compared to the standard QAA and were used to examine suspended particulate matter dynamics in Galveston Bay following flooding due to Hurricane Harvey.
Yasmina Loozen, Karin T. Rebel, Derek Karssenberg, Martin J. Wassen, Jordi Sardans, Josep Peñuelas, and Steven M. De Jong
Biogeosciences, 15, 2723–2742, https://doi.org/10.5194/bg-15-2723-2018, https://doi.org/10.5194/bg-15-2723-2018, 2018
Short summary
Short summary
Nitrogen (N) is an essential nutrient for plant growth. It would be interesting to detect it using satellite data. The goal was to investigate if it is possible to remotely sense the canopy nitrogen concentration and content of Mediterranean trees using a product calculated from satellite reflectance data, the MERIS Terrestrial Chlorophyll Index (MTCI). The tree plots were located in Catalonia, NE Spain. The relationship between MTCI and canopy N was present but dependent on the type of trees.
Stephanie Dutkiewicz, Anna E. Hickman, and Oliver Jahn
Biogeosciences, 15, 613–630, https://doi.org/10.5194/bg-15-613-2018, https://doi.org/10.5194/bg-15-613-2018, 2018
Short summary
Short summary
This study provides a demonstration that a biogeochemical/ecosystem/optical computer model which explicitly captures how light is radiated at the surface of the ocean and can be used as a laboratory to explore products (such as Chl a) that are derived from satellite measurements of ocean colour. It explores uncertainties that arise from data input used to derive the algorithms for the products, and issues arising from the interplay between optically important constituents in the ocean.
Gholamreza Mohammadpour, Jean-Pierre Gagné, Pierre Larouche, and Martin A. Montes-Hugo
Biogeosciences, 14, 5297–5312, https://doi.org/10.5194/bg-14-5297-2017, https://doi.org/10.5194/bg-14-5297-2017, 2017
Short summary
Short summary
The mass-specific absorption coefficients of total suspended particulate matter (aSPM*) had relatively low (high) values in areas of of the St. Lawrence Estuary influenced by marine (freshwater) waters and dominated by large-sized (small-sized) and organic-rich (mineral-rich) particulates.
The inorganic content of particulates was correlated with size-fractionated aSPM* values at a wavelength of 440 nm and the spectral slope of aSPM* as computed within the spectral range 400–710 nm.
Albert-Miquel Sánchez and Jaume Piera
Biogeosciences, 13, 4081–4098, https://doi.org/10.5194/bg-13-4081-2016, https://doi.org/10.5194/bg-13-4081-2016, 2016
Short summary
Short summary
In this paper, several methods for the retrieval of the refractive indices are used in three different examples modeling different shapes and particle size distributions. The error associated with each method is discussed and analyzed. It is finally demonstrated that those inverse methods using a genetic algorithm provide optimal estimations relative to other techniques that, although faster, are less accurate.
Luisa Galgani and Anja Engel
Biogeosciences, 13, 2453–2473, https://doi.org/10.5194/bg-13-2453-2016, https://doi.org/10.5194/bg-13-2453-2016, 2016
G. E. Kim, M.-A. Pradal, and A. Gnanadesikan
Biogeosciences, 12, 5119–5132, https://doi.org/10.5194/bg-12-5119-2015, https://doi.org/10.5194/bg-12-5119-2015, 2015
Short summary
Short summary
Light absorption by colored detrital material (CDM) was included in a fully coupled Earth system model. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. Concurrently, total biomass decreased leaving more nutrients in the water. Regional changes were analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth.
J. A. Gamon, O. Kovalchuck, C. Y. S. Wong, A. Harris, and S. R. Garrity
Biogeosciences, 12, 4149–4159, https://doi.org/10.5194/bg-12-4149-2015, https://doi.org/10.5194/bg-12-4149-2015, 2015
Short summary
Short summary
NDVI and PRI sensors (SRS, Decagon Inc.) exhibited complementary responses during spring photosynthetic activation in evergreen and deciduous stands. In evergreens, PRI was most strongly influenced by changing chlorophyll:carotenoid pool sizes over the several weeks of the study, while it was most affected by xanthophyll cycle pigment activity at the diurnal timescale. These automated PRI and NDVI sensors offer new ways to explore environmental and physiological constraints on photosynthesis.
M. Grenier, A. Della Penna, and T. W. Trull
Biogeosciences, 12, 2707–2735, https://doi.org/10.5194/bg-12-2707-2015, https://doi.org/10.5194/bg-12-2707-2015, 2015
Short summary
Short summary
Four bio-profilers were deployed in the high-biomass plume downstream of the Kerguelen Plateau (KP; Southern Ocean) to examine the conditions favouring phytoplankton accumulation. Regions of very high Chla accumulation were mainly associated with surface waters from the northern KP. Light limitation seems to have a limited influence on production. A cyclonic eddy was associated with a significant export of organic matter and a subsequent dissolved inorganic carbon storage in the ocean interior.
I. Cetinić, M. J. Perry, E. D'Asaro, N. Briggs, N. Poulton, M. E. Sieracki, and C. M. Lee
Biogeosciences, 12, 2179–2194, https://doi.org/10.5194/bg-12-2179-2015, https://doi.org/10.5194/bg-12-2179-2015, 2015
Short summary
Short summary
The ratio of simple optical properties measured from underwater autonomous platforms, such as floats and gliders, is used as a new tool for studying phytoplankton distribution in the North Atlantic Ocean. The resolution that optical instruments carried by autonomous platforms provide allows us to study phytoplankton patchiness and its drivers in the oceanic systems.
B. Heim, E. Abramova, R. Doerffer, F. Günther, J. Hölemann, A. Kraberg, H. Lantuit, A. Loginova, F. Martynov, P. P. Overduin, and C. Wegner
Biogeosciences, 11, 4191–4210, https://doi.org/10.5194/bg-11-4191-2014, https://doi.org/10.5194/bg-11-4191-2014, 2014
M. Kahru and R. Elmgren
Biogeosciences, 11, 3619–3633, https://doi.org/10.5194/bg-11-3619-2014, https://doi.org/10.5194/bg-11-3619-2014, 2014
E. J. D'Sa, J. I. Goes, H. Gomes, and C. Mouw
Biogeosciences, 11, 3225–3244, https://doi.org/10.5194/bg-11-3225-2014, https://doi.org/10.5194/bg-11-3225-2014, 2014
A. Matsuoka, M. Babin, D. Doxaran, S. B. Hooker, B. G. Mitchell, S. Bélanger, and A. Bricaud
Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, https://doi.org/10.5194/bg-11-3131-2014, 2014
S. Q. Wang, J. Ishizaka, H. Yamaguchi, S. C. Tripathy, M. Hayashi, Y. J. Xu, Y. Mino, T. Matsuno, Y. Watanabe, and S. J. Yoo
Biogeosciences, 11, 1759–1773, https://doi.org/10.5194/bg-11-1759-2014, https://doi.org/10.5194/bg-11-1759-2014, 2014
S. L. Shang, Q. Dong, C. M. Hu, G. Lin, Y. H. Li, and S. P. Shang
Biogeosciences, 11, 269–280, https://doi.org/10.5194/bg-11-269-2014, https://doi.org/10.5194/bg-11-269-2014, 2014
H. Örek, R. Doerffer, R. Röttgers, M. Boersma, and K. H. Wiltshire
Biogeosciences, 10, 7081–7094, https://doi.org/10.5194/bg-10-7081-2013, https://doi.org/10.5194/bg-10-7081-2013, 2013
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
X. Zhang, Y. Huot, D. J. Gray, A. Weidemann, and W. J. Rhea
Biogeosciences, 10, 6029–6043, https://doi.org/10.5194/bg-10-6029-2013, https://doi.org/10.5194/bg-10-6029-2013, 2013
D. Antoine, S. B. Hooker, S. Bélanger, A. Matsuoka, and M. Babin
Biogeosciences, 10, 4493–4509, https://doi.org/10.5194/bg-10-4493-2013, https://doi.org/10.5194/bg-10-4493-2013, 2013
S. B. Hooker, J. H. Morrow, and A. Matsuoka
Biogeosciences, 10, 4511–4527, https://doi.org/10.5194/bg-10-4511-2013, https://doi.org/10.5194/bg-10-4511-2013, 2013
S. Bélanger, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, https://doi.org/10.5194/bg-10-4087-2013, 2013
A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, and M. Babin
Biogeosciences, 10, 917–927, https://doi.org/10.5194/bg-10-917-2013, https://doi.org/10.5194/bg-10-917-2013, 2013
S. Takao, T. Hirawake, S. W. Wright, and K. Suzuki
Biogeosciences, 9, 3875–3890, https://doi.org/10.5194/bg-9-3875-2012, https://doi.org/10.5194/bg-9-3875-2012, 2012
R. Röttgers and B. P. Koch
Biogeosciences, 9, 2585–2596, https://doi.org/10.5194/bg-9-2585-2012, https://doi.org/10.5194/bg-9-2585-2012, 2012
A. Sadeghi, T. Dinter, M. Vountas, B. Taylor, M. Altenburg-Soppa, and A. Bracher
Biogeosciences, 9, 2127–2143, https://doi.org/10.5194/bg-9-2127-2012, https://doi.org/10.5194/bg-9-2127-2012, 2012
A. Matsuoka, A. Bricaud, R. Benner, J. Para, R. Sempéré, L. Prieur, S. Bélanger, and M. Babin
Biogeosciences, 9, 925–940, https://doi.org/10.5194/bg-9-925-2012, https://doi.org/10.5194/bg-9-925-2012, 2012
B. B. Taylor, E. Torrecilla, A. Bernhardt, M. H. Taylor, I. Peeken, R. Röttgers, J. Piera, and A. Bracher
Biogeosciences, 8, 3609–3629, https://doi.org/10.5194/bg-8-3609-2011, https://doi.org/10.5194/bg-8-3609-2011, 2011
G. Dall'Olmo, E. Boss, M. J. Behrenfeld, T. K. Westberry, C. Courties, L. Prieur, M. Pujo-Pay, N. Hardman-Mountford, and T. Moutin
Biogeosciences, 8, 3423–3439, https://doi.org/10.5194/bg-8-3423-2011, https://doi.org/10.5194/bg-8-3423-2011, 2011
H. Loisel, V. Vantrepotte, K. Norkvist, X. Mériaux, M. Kheireddine, J. Ras, M. Pujo-Pay, Y. Combet, K. Leblanc, G. Dall'Olmo, R. Mauriac, D. Dessailly, and T. Moutin
Biogeosciences, 8, 3295–3317, https://doi.org/10.5194/bg-8-3295-2011, https://doi.org/10.5194/bg-8-3295-2011, 2011
S. Shang, Q. Dong, Z. Lee, Y. Li, Y. Xie, and M. Behrenfeld
Biogeosciences, 8, 841–850, https://doi.org/10.5194/bg-8-841-2011, https://doi.org/10.5194/bg-8-841-2011, 2011
T. S. Kostadinov, D. A. Siegel, and S. Maritorena
Biogeosciences, 7, 3239–3257, https://doi.org/10.5194/bg-7-3239-2010, https://doi.org/10.5194/bg-7-3239-2010, 2010
F. Nencioli, G. Chang, M. Twardowski, and T. D. Dickey
Biogeosciences, 7, 151–162, https://doi.org/10.5194/bg-7-151-2010, https://doi.org/10.5194/bg-7-151-2010, 2010
A. Morel and B. Gentili
Biogeosciences, 6, 2625–2636, https://doi.org/10.5194/bg-6-2625-2009, https://doi.org/10.5194/bg-6-2625-2009, 2009
Cited articles
Álvarez, E., Morán, X. A. G., López-Urrutia, Á., and
Nogueira, E.: Size-dependent photoacclimation of the phytoplankton community
in temperate shelf waters (southern Bay of Biscay), Mar. Ecol. Prog. Ser., 543, 73–87, https://doi.org/10.3354/meps11580, 2016.
Anderson, G. C.: Subsurface Chlorophyll Maximum in the Northeast Pacific
Ocean, Limnol. Oceanogr., 14, 386–391, 1969.
Antoine, D., Morel, A., and André, J.-M.: Algal pigment distribution and
primary production in the eastern Mediterranean as derived from coastal zone
color scanner observations, J. Geophys. Res., 100,
16193–16209, 1995.
Arai, R., Nishiyamal, N., Nakatani, N., and Okuno, T.: Measurement Method of
Nutrient using Principal Component Regression, in: OCEANS 2008-MTS/IEEE Kobe
Techno-Ocean, IEEE, 1–6, 2008.
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A.,
and Tremblay, J.-É.: Parameterization of vertical chlorophyll a in the Arctic
Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal,
and annual primary production estimates, Biogeosciences, 10, 4383–4404,
https://doi.org/10.5194/bg-10-4383-2013, 2013.
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE, https://doi.org/10.17882/42182,
2018.
Arrigo, K. R., Matrai, P. A., and Van Dijken, G. L.: Primary productivity in
the Arctic Ocean: Impacts of complex optical properties and subsurface
chlorophyll maxima on large-scale estimates, J. Geophys. Res.-Oceans, 116, 1–15, https://doi.org/10.1029/2011JC007273, 2011.
Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., and Stramski, D.: Light
scattering properties of marine particles in coastal and open ocean waters
as related to the particle mass concentration, Limnol. Oceanogr.,
48, 843–859, https://doi.org/10.4319/lo.2003.48.2.0843, 2003.
Balch, W. M., Drapeau, D. T., Fritz, J. J., Bowler, B. C., and Nolan, J.:
Optical backscattering in the Arabian Sea – continuous underway measurements
of particulate inorganic and organic carbon, Deep-Sea Res. Pt. I, 48, 2423–2452,
https://doi.org/10.1016/S0967-0637(01)00025-5, 2001.
Barbieux, M., Uitz, J., Bricaud, A., Organelli, E., Poteau, A., Schmechtig,
C., Gentili, B., Penkerc'h, C., Leymarie, E., D'Ortenzio, F., and Claustre,
H.: Assessing the Variability in the Relationship Between the Particulate
Backscattering Coefficient and the Chlorophyll a Concentration From a Global
Biogeochemical-Argo Database, J. Geophys. Res.-Oceans,
123, 1229–1250, https://doi.org/10.1002/2017JC013030, 2017.
Beckmann, A. and Hense, I.: Beneath the surface: Characteristics of oceanic
ecosystems under weak mixing conditions – A theoretical investigation,
Prog. Oceanogr, 75, 771–796, https://doi.org/10.1016/j.pocean.2007.09.002,
2007.
Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.: Carbon-based
ocean productivity and phytoplankton physiology from space, Global
Biogeochem.l Cy., 19, 1–14, https://doi.org/10.1029/2004GB002299, 2005.
Behrenfeld, M. J., O'Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J.
R., Halsey, K. H., Milligan, A. J., Siegel, D. A., and Brown, M. B.:
Revaluating ocean warming impacts on global phytoplankton, Nat. Clim.
Change, 6, 323–330, https://doi.org/10.1038/nclimate2838, 2015.
Bethoux, J. P., Morin, P., Madec, C., and Gentili, B.: Phosphorus and
nitrogen behaviour in the Mediterranean Sea, Deep-Sea Res., 39, 1641–1654,
https://doi.org/10.1016/0198-0149(92)90053-V, 1992.
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability
in algal biomass and primary production in the Mediterranean Sea, as derived
from 4 years of SeaWiFS observations, Global Biogeochem. Cy.,
18, 1–17, https://doi.org/10.1029/2003GB002034, 2004.
Boss, E., Picheral, M., Leeuw, T., Chase, A., Karsenti, E., Gorsky, G.,
Taylor, L., Slade, W., Ras, J., and Claustre, H.: The characteristics of
particulate absorption, scattering and attenuation coefficients in the
surface ocean; Contribution of the Tara Oceans expedition, Methods in
Oceanography, 7, 52–62, https://doi.org/10.1016/j.mio.2013.11.002, 2013.
Bouman, H., Ulloa, O., Scanlan, D. J., Zwirglmaier, K., Li, W. K. W., Platt,
T., Stuart, V., Barlow, R., Leth, O., Clementson, L., Lutz, V. A., Fukasawa,
M., Watanabe, S., and Sathyendranath, S.: Oceanographic Basis of the Global
Surface Distribution of Prochlorococcus Ecotypes, Science, 312,
918–921, https://doi.org/10.1126/science.39.1002.398, 2006.
Bricaud, A., Bosc, E., and Antoine, D.: Algal biomass and sea surface
temperature in the Mediterranean Basin Intercomparison of data from various
satellite sensors, and implications for primary production estimates, Remote
Sens. Environ., 81, 163–178,
https://doi.org/10.1016/S0034-4257(01)00335-2, 2002.
Briggs, N., Perry, M. J., Cetinić, I., Lee, C., D'Asaro, E., Gray, A. M.,
and Rehm, E.: High-resolution observations of aggregate flux during a
sub-polar North Atlantic spring bloom, Deep-Sea Res. Pt. I, 58, 1031–1039,
https://doi.org/10.1016/j.dsr.2011.07.007, 2011.
Brunet, C., Casotti, R., Vantrepotte, V., Corato, F., and Conversano, F.:
Picophytoplankton diversity and photoacclimation in the Strait of Sicily
(Mediterranean Sea) in summer, I. Mesoscale variations, Aquat. Microb.
Ecol., 44, 127–141, https://doi.org/10.3354/ame044127, 2006.
Casotti, R., Landolfi, A., Brunet, C., D'Ortenzio, F., Mangoni, O., and
Ribera d'Alcalá, M.: Composition and dynamics of the phytoplankton of
the Ionian Sea (eastern Mediterranean), J. Geophys. Res.,
108, 1–19, https://doi.org/10.1029/2002JC001541, 2003.
Cetinić, I., Perry, M. J., Briggs, N. T., Kallin, E., D'Asaro, E. A., and
Lee, C. M.: Particulate organic carbon and inherent optical properties
during 2008 North Atlantic Bloom Experiment, J. Geophys. Res., 117, 1–18, https://doi.org/10.1029/2011JC007771, 2012.
Cetinić, I., Perry, M. J., D'Asaro, E., Briggs, N., Poulton, N., Sieracki, M.
E., and Lee, C. M.: A simple optical index shows spatial and temporal
heterogeneity in phytoplankton community composition during the 2008 North
Atlantic Bloom Experiment, Biogeosciences, 12, 2179–2194,
https://doi.org/10.5194/bg-12-2179-2015, 2015.
Chiswell, S. M.: Annual cycles and spring blooms in phytoplankton: Don't
abandon Sverdrup completely, Mar. Ecol. Prog. Ser., 443, 39–50,
https://doi.org/10.3354/meps09453, 2011.
Christaki, U., Giannakourou, A., Van Wambeke, F., and Grégori, G.:
Nanoflagellate predation on auto- and heterotrophic picoplankton in the
oligotrophic Mediterranean Sea, J. Plankton Res., 23,
1297–1310, https://doi.org/10.1093/plankt/23.11.1297, 2001.
Claustre, H., Morel, A., Babin, M., Cailliau, C., Marie, D., Marty, J.-C.,
Tailliez, D., and Vaulot, D.: Variability in particle attenuation and
chlorophyll fluorescence in the tropical Pacific?: Scales, patterns, and
biogeochemical implications, J. Geophys. Res., 104,
3401–3422, 1999.
Claustre, H., Bishop, J., Boss, E., Bernard, S., Berthon, J.-F., Coatanoan,
C., Johnson, K. S., Lotiker, A., Ulloa, O., Perry, M. J., D'Ortenzio, F.,
Hembise Fanton D'Andon, O., and Uitz, J.: Bio-optical profiling floats as new
observational tools for biogeochemical and ecosystem studies: Potential
synergies with ocean color remote sensing, in: “Proceedings of the
OceanObs'09: Sustained Ocean Observations and Information for Society”
Conference, edited by: Hall, J., Harrison, D. E., and Stammer, D., ESA Publ.
WPP-306, 21–25 September 2010, Venice, Italy, 2010.
Clegg, M. R., Gaedke, U., Boehrer, B., and Spijkerman, E.: Complementary
ecophysiological strategies combine to facilitate survival in the hostile
conditions of a deep chlorophyll maximum, Oecologia, 169, 609–622,
https://doi.org/10.1007/s00442-011-2225-4, 2012.
Cleveland, J. S., Perry, M. J., Kiefer, D. A., and Talbot, M. C.: Maximal
quantum yield of photosynthesis in the northwest Sargasso Sea, J.
Mar. Res., 47, 869–886, 1989.
Cloern, J. E.: The relative importance of light and nutrient limitation of
phytoplankton growth: A simple index of coastal ecosystem sensitivity to
nutrient enrichment, Aquat. Ecology, 33, 3–16,
https://doi.org/10.1023/A:1009952125558, 1999.
Cloern, J. E., Grenz, C., and Videgar-Lucas, L.: An empirical model of the
phytoplankton chlorophyll: carbon ration-the conversion factor between
productivity and growth rate., Limnol. Oceanogr., 40,
1313–1321, 1995.
Crombet, Y., Leblanc, K., Quéguiner, B., Moutin, T., Rimmelin, P., Ras, J.,
Claustre, H., Leblond, N., Oriol, L., and Pujo-Pay, M.: Deep silicon maxima
in the stratified oligotrophic Mediterranean Sea, Biogeosciences, 8, 459–475,
https://doi.org/10.5194/bg-8-459-2011, 2011.
Cullen, J. J.: The Deep Chlorophyll Maximum: Comparing Vertical Profiles of
Chlorophyll a, Can. J. Fish. Aquat. Sci., 39,
791–803, https://doi.org/10.1139/f82-108, 1982.
Cullen, J. J. and Eppley, R. W.: Chlorophyll Maximum Layers of the
Southern-California Bight and Possible Mechanisms of their Formation and
Maintenance, Oceanol. Acta, 4, 23–32, 1981.
de Boyer Montégut, C.: Mixed layer depth over the global ocean: An
examination of profile data and a profile-based climatology, J. Geophys. Res., 109, 1–20, https://doi.org/10.1029/2004JC002378, 2004.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the
Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148,
https://doi.org/10.5194/bg-6-139-2009, 2009.
D'Ortenzio, F., Lavigne, H., Besson, F., Claustre, H., Coppola, L., Garcia,
N., Laës-Huon, A., Le Reste, S., Malardé, D., Migon, C., Morin, P.,
Mortier, L., Poteau, A., Prieur, L., Raimbault, P., and Testor, P.: Observing
mixed layer depth, nitrate and chlorophyll concentrations in the
northwestern Mediterranean: Acombined satellite and NO3 profiling floats
experiment, Geophys. Res. Lett., 41, 6443–6451,
https://doi.org/10.1002/2014GL061020, 2014.
Dall'Olmo, G. and Mork, K. A.: Carbon export by small particles in the
Norwegian Sea, Geophys. Res. Lett., 41, 2921–2927,
https://doi.org/10.1002/2014GL059244, 2014.
Dubinsky, Z. and Stambler, N.: Photoacclimation processes in phytoplankton:
Mechanisms, consequences, and applications, Aquat. Microb. Ecol.,
56, 163–176, https://doi.org/10.3354/ame01345, 2009.
Dugdale, R. C. and Wilkerson, F. P.: Nutrient sources and primary production
in the Eastern Mediterranean, in: Oceanologica Acta, edited by: Minas, H. J.
and Nival, P., 179–184, 1988.
Estrada, M., Marrasé, C., Latasa, M., Berdalet, E., Delgado, M., and
Riera, T.: Variability of deep chlorophyll maximum in the Northwestern
Mediterranean, Mar. Ecol. Prog. Ser., 92, 289–300,
https://doi.org/10.3354/meps092289, 1993.
Falkowski, P. G. and Laroche, J.: Acclimation to spectral irradiance in
algae, J. Phycol., 27, 8–14,
https://doi.org/10.1111/j.0022-3646.1991.00008.x, 1991.
Falkowski, P. G., Dubinsky, Z., and Wyman, K.: Growth-irradiance
relationships in phytoplankton, Limnol. Oceanogr., 30, 311–321, 1985.
Fasham, M. J. R., Platt, T., Irwin, B., and Jones, K.: Factors affecting the
spatial pattern of the deep chlorophyll maximum in the region of the Azores
front, Prog. Oceanogr., 14, 129–165,
https://doi.org/10.1016/0079-6611(85)90009-6, 1985.
Fennel, K. and Boss, E.: Subsurface maxima of phytoplankton and chlorophyll:
Steady-state solutions from a simple model, Limnol. Oceanogr.,
48, 1521–1534, https://doi.org/10.4319/lo.2003.48.4.1521, 2003.
Flory, E. N., Hill, P. S., Milligan, T. G., and Grant, J.: The relationship
between floc area and backscatter during a spring phytoplankton bloom, Deep-Sea Res. Pt. I, 51, 213–223,
https://doi.org/10.1016/j.dsr.2003.09.012, 2004.
Furuya, K.: Subsurface chlorophyll maximum in the tropical and subtropical
western Pacific Ocean: Vertical profiles of phytoplankton biomass and its
relationship with chlorophyll a and particulate organic carbon, Mar.
Biol., 107, 529–539, https://doi.org/10.1007/bf01313438, 1990.
Gačić, M., Civitarese, G., Miserocchi, S., Cardin, V., Crise, A., and
Mauri, E.: The open-ocean convection in the Southern Adriatic: A controlling
mechanism of the spring phytoplankton bloom, Cont. Shelf Res.,
22, 1897–1908, https://doi.org/10.1016/S0278-4343(02)00050-X, 2002.
Garczarek, L., Dufresne, A., Rousvoal, S., West, N. J., Mazard, S., Marie,
D., Claustre, H., Raimbault, P., Post, A. F., Scanlan, D. J., and Partensky,
F.: High vertical and low horizontal diversity of Prochlorococcus ecotypes
in the Mediterranean Sea in summer, FEMS Microbiol. Ecol., 60,
189–206, https://doi.org/10.1111/j.1574-6941.2007.00297.x, 2007.
Gardner, W. D., Richardson, M. J., and Smith, W. O.: Seasonal patterns of
water column particulate organic carbon and fluxes in the Ross Sea,
Antarctica, Deep-Sea Res. Pt. II, 47,
3423–3449, https://doi.org/10.1016/S0967-0645(00)00074-6, 2000.
Geider, R. J.: Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and
growth of phytoplankton, New Phytol., 106, 1–34, 1987.
Geider, R. J.: Quantitative phytoplankton physiology: implications for
primary production and phytoplankton growth, ICES Marine Science Symposium,
197, 52–62, 1993.
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: Dynamic model of
phytoplankton growth and acclimation: Responses of the balanced growth rate
and the chlorophyll a: carbon ratio to light, nutrient-limitation and
temperature, Mar. Ecol. Prog. Ser., 148, 187–200,
https://doi.org/10.3354/meps148187, 1997.
Golub, G. H. and Van Loan, C. F.: Matrix Computations, The Johns, Baltimore,
USA and London, UK, 1996.
Gong, X., Jiang, W., Wang, L., Gao, H., Boss, E., Yao, X., Kao, S.-J., and
Shi, J.: Analytical solution of the nitracline with the evolution of
subsurface chlorophyll maximum in stratified water columns, Biogeosciences,
14, 2371–2386, https://doi.org/10.5194/bg-14-2371-2017, 2017.
Gordon, H. R. and McCluney, W. R.: Estimation of the Depth of Sunlight
Penetration in the Sea for Remote Sensing, Appl. Optics, 14, 413–416,
https://doi.org/10.1364/AO.14.000413, 1975.
Gutiérrez-Rodríguez, A., Latasa, M., Estrada, M., Vidal, M., and
Marrasé, C.: Carbon fluxes through major phytoplankton groups during the
spring bloom and post-bloom in the Northwestern Mediterranean Sea, Deep-Sea
Res. Pt. I, 57, 486–500,
https://doi.org/10.1016/j.dsr.2009.12.013, 2010.
Hickman, A. E., Moore, C. M., Sharples, J., Lucas, M. I., Tilstone, G. H.,
Krivtsov, V., and Holligan, P. M.: Primary production and nitrate uptake
within the seasonal thermocline of a stratified shelf sea, Mar. Ecol. Prog. Ser., 463, 39–57, https://doi.org/10.3354/meps09836, 2012.
Hill, V. J., Matrai, P. A., Olson, E., Suttles, S., Steele, M., Codispoti,
L. A., and Zimmerman, R. C.: Synthesis of integrated primary production in
the Arctic Ocean: II. In situ and remotely sensed estimates, Prog.
Oceanogr., 110, 107–125, https://doi.org/10.1016/j.pocean.2012.11.005, 2013.
Hodges, B. A. and Rudnick, D. L.: Simple models of steady deep maxima in
chlorophyll and biomass, Deep-Sea Res. Pt. I, 51, 999–1015, https://doi.org/10.1016/j.dsr.2004.02.009, 2004.
Holm-Hansen, O. and Hewes, C. D.: Deep chlorophyll a maxima (DCMs) in
Antarctic waters: I. Relationships between DCMs and the physical, chemical,
and optical conditions in the upper water column, Polar Biol., 27,
699–710, https://doi.org/10.1007/s00300-004-0641-1, 2004.
Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M. S., and Claustre,
H.: Relationship between photosynthetic parameters and different proxies of
phytoplankton biomass in the subtropical ocean, Biogeosciences, 4, 853–868,
https://doi.org/10.5194/bg-4-853-2007, 2007.
Ignatiades, L., Psarra, S., Zervakis, V., Pagou, K., Souvermezoglou, E.,
Assimakopoulou, G., and Gotsis-Skretas, O.: Phytoplankton size-based dynamics
in the Aegean Sea (Eastern Mediterranean), J. Marine Syst.,
36, 11–28, https://doi.org/10.1016/S0924-7963(02)00132-X, 2002.
Johnson, K. and Claustre, H.: Bringing Biogeochemistry into the Argo Age,
Eos, 1–7, https://doi.org/10.1029/2016EO062427, 2016.
Johnson, K., Berelson, W., Boss, E., Chase, Z., Claustre, H., Emerson, S.,
Gruber, N., Körtzinger, A., Perry, M. J., and Riser, S.: Observing
Biogeochemical Cycles at Global Scales with Profiling Floats and Gliders:
Prospects for a Global Array, Oceanography, 22, 216–225,
https://doi.org/10.5670/oceanog.2009.81, 2009.
Johnson, K. S. and Coletti, L. J.: In situ ultraviolet spectrophotometry for
high resolution and long-term monitoring of nitrate, bromide and bisulfide
in the ocean, Deep-Sea Res. Pt. I,
49, 1291–1305, https://doi.org/10.1016/S0967-0637(02)00020-1, 2002.
Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C.
M., Riser, S. C., Swift, D. D., Williams, N. L., Boss, E., Haëntjens,
N., Talley, L. D., and Sarmiento, J. L.: Biogeochemical sensor performance in
the SOCCOM profiling float array, J. Geophys. Res.-Oceans,
122, 6416–6436, https://doi.org/10.1002/2017JC012838, 2017.
Kiefer, D. A., Olson, R. J., and Holm-Hansen, O.: Another look at the nitrite
and chlorophyll maxima in the central North Pacific, Deep-Sea Research and
Oceanographic Abstracts, 23, 1199–1208,
https://doi.org/10.1016/0011-7471(76)90895-0, 1976.
Kimor, B., Berman, T., and Schneller, A.: Phytoplankton assemblages in the
deep chlorophyll maximum layers off the Mediterranean coast of Israel,
J. Plankton Res., 34, 433–443,
https://doi.org/10.1016/0198-0254(87)90913-7, 1987.
Klausmeier, C. A. and Litchman, E.: Algal games: The vertical distribution
of phytoplankton in poorly mixed water columns, Limnol. Oceanogr.,
46, 1998–2007, https://doi.org/10.4319/lo.2001.46.8.1998, 2001.
Krom, M. D., Kress, N., Brenner, S., and Gordon, L. I.: Phosphorus Limitation
of Primary Productivity in the Eastern Mediterranean-Sea, Limnol. Oceanogr., 36, 424–432, https://doi.org/10.4319/lo.1991.36.3.0424, 1991.
Krom, M. D., Emeis, K. C., and Van Cappellen, P.: Why is the Eastern
Mediterranean phosphorus limited?, Prog. Oceanogr., 85,
236–244, https://doi.org/10.1016/j.pocean.2010.03.003, 2010.
Lacour, L., Ardyna, M., Stec, K. F., Claustre, H., Prieur, L., Poteau, A.,
Ribera D'Alcala, M., and Iudicone, D.: Unexpected winter phytoplankton blooms
in the North Atlantic subpolar gyre, Nat. Geosci., 10, 836–839,
https://doi.org/10.1038/NGEO3035, 2017.
Latasa, M., Gutiérrez-rodríguez, A., Cabello, A. M., and Scharek,
R.: Influence of light and nutrients on the vertical distribution of marine
phytoplankton groups in the deep chlorophyll maximum, Planet Ocean, 80,
57–62, https://doi.org/10.3989/scimar.04316.01A, 2016.
Lavigne, H., D'Ortenzio, F., Migon, C., Claustre, H., Testor, P.,
D'Alcalà, M. R., Lavezza, R., Houpert, L., and Prieur, L.: Enhancing the
comprehension of mixed layer depth control on the Mediterranean
phytoplankton phenology, J. Geophys. Res.-Oceans, 118,
3416–3430, https://doi.org/10.1002/jgrc.20251, 2013.
Lavigne, H., D'Ortenzio, F., Ribera D'Alcalà, M., Claustre, H.,
Sauzède, R., and Gacic, M.: On the vertical distribution of the
chlorophyll a concentration in the Mediterranean Sea: a basin-scale and
seasonal approach, Biogeosciences, 12, 5021–5039,
https://doi.org/10.5194/bg-12-5021-2015, 2015.
Leblanc, K., Quéguiner, B., Diaz, F., Cornet, V., Michel-Rodriguez, M.,
Durrieu de Madron, X., Bowler, C., Malviya, S., Thyssen, M., Grégori, G.,
Rembauville, M., Grosso, O., Poulain, J., de Vargas, C., Pujo-Pay, M., and
Conan, P.: Nanoplanktonic diatoms are globally overlooked but play a role in
spring blooms and carbon export, Nat. Commun., 9, 1–12,
https://doi.org/10.1038/s41467-018-03376-9, 2018.
Letelier, R. M., Karl, D. M., Abbott, M. R., and Bidigare, R. R.: Light
driven seasonal patterns of chlorophyll and nitrate in the lower euphotic
zone of the North Pacific Subtropical Gyre, Limnol. Oceanogr.,
49, 508–519, https://doi.org/10.4319/lo.2004.49.2.0508, 2004.
Lewis, M. R., Cullen, J. J., and Platt, T.: Phytoplankton and thermal
structure in the upper ocean: Consequences of nonuniformity in chlorophyll
profile, J. Geophys. Res.-Oceans, 88, 2565–2570,
https://doi.org/10.1029/JC088iC04p02565, 1983.
Li, Q. P. and Hansell, D. A.: Mechanisms controlling vertical variability of
subsurface chlorophyll maxima in a mode-water eddy, J. Marine
Res., 74, 175–199, https://doi.org/10.1357/002224016819594827, 2016.
Loisel, H. and Morel, A.: Light scattering and chlorophyll concentration in
case 1 waters: A reexamination, Limnol. Oceanogr., 43, 847–858,
https://doi.org/10.4319/lo.1998.43.5.0847, 1998.
Longhurst, A. R. and Glen Harrison, W.: The biological pump: Profiles of
plankton production and consumption in the upper ocean, Prog.
Oceanogr., 22, 47–123, https://doi.org/10.1016/0079-6611(89)90010-4, 1989.
Marty, J. C., Chiavérini, J., Pizay, M. D., and Avril, B.: Seasonal and
interannual dynamics of nutrients and phytoplankton pigments in the western
Mediterranean Sea at the DYFAMED time-series station (1991–1999), Deep-Sea
Res. Pt. II, 49, 1965–1985,
https://doi.org/10.1016/S0967-0645(02)00022-X, 2002.
Marty, J. C., Garcia, N., and Raimbault, P.: Phytoplankton dynamics and
primary production under late summer conditions in the NW Mediterranean Sea,
Deep-Sea Res. Pt. I, 55, 1131–1149,
https://doi.org/10.1016/j.dsr.2008.05.001, 2008.
Mayot, N., D'Ortenzio, F., Uitz, J., Gentili, B., Ras, J., Vellucci, V.,
Golbol, M., Antoine, D., and Claustre, H.: Influence of the phytoplankton
community structure on the spring and annual primary production in the
Northwestern Mediterranean Sea, J. Geophys. Res.-Oceans,
122, 1–17, https://doi.org/10.1002/2016JC012668, 2017a.
Mayot, N., D'Ortenzio, F., Taillandier, V., Prieur, L., Pasqueron de
Fommervault, O., Claustre, H., Bosse, A., Testor, P., and Conan, P.: Physical
and biogeochemical controls of the phytoplankton blooms in North-Western
Mediterranean Sea: A multiplatform approach over a complete annual cycle
(2012-2013 DEWEX experiment), J. Geophys. Res.-Oceans, 122,
https://doi.org/10.1002/2016JC012052, 2017b.
Mignot, A., Claustre, H., D'Ortenzio, F., Xing, X., Poteau, A., and Ras, J.:
From the shape of the vertical profile of in vivo fluorescence to
Chlorophyll-a concentration, Biogeosciences, 8, 2391–2406,
https://doi.org/10.5194/bg-8-2391-2011, 2011.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing, X.:
Understanding the seasonal dynamics of phytoplankton biomass and the deep
chlorophyll maximum in oligotrophic environments: A Bio-Argo float
investigation, Global Biogeochem. Cy., 28, 1–21,
https://doi.org/10.1002/2013GB004781, 2014.
Mignot, A., Ferrari, R., and Claustre, H.: Floats with bio-optical sensors
reveal what processes trigger the North Atlantic bloom, Nat.
Commun., 9, 1–9, https://doi.org/10.1038/s41467-017-02143-6, 2018.
Mikaelyan, A. S. and Belyaeva, G. A.: Chlorophyll a content in cells of
Antarctic phytoplankton, Polar Biol., 15, 437–445,
https://doi.org/10.1007/BF00239721, 1995.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Marine
Syst., 20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999.
Moore, L. R. and Chisholm, S. W.: Photophysiology of the marine
cyanobacterium Prochlorococcus: Ecotypic differences among cultured
isolates, Limnol. Oceanogr., 44, 628–638,
https://doi.org/10.4319/lo.1999.44.3.0628, 1999.
Morel, A. and Ahn, Y.: Optics of heterotrophic nanoftagellates and ciliates:
A tentative assessment of their scattering role in oceanic waters compared
to those of bacterial and algal cells, J. Marine Res., 49,
177–202, 1991.
Morel, A. and André, J.-M.: Pigment distribution and Primary Production
in the Western Mediterranean as Derived and Modeled From Coastal Zone Color
Scanner Observations, J. Geophys. Res., 96, 12685–12698,
https://doi.org/10.1029/91JC00788, 1991.
Morel, A. and Berthon, J.-F.: Surface pigments, algal biomass profiles, and
potential production of the euphotic layer: Relationships reinvestigated in
view of remote-sensing applications, Limnol. Oceanogr., 34,
1545–1562, https://doi.org/10.4319/lo.1989.34.8.1545, 1989.
Morel, A. and Bricaud, A.: Inherent optical properties of algal cells
including picoplankton: theoretical and experimental results, Can.
B. Fish. Aquat. Sci., 214, 521–559, 1986.
Morris, A. W. and Riley, J. P.: The determination of nitrate in sea water,
Anal. Chim. Acta, 29, 272–279, https://doi.org/10.1016/S0003-2670(00)88614-6,
1963.
NREL: SOLPOS 2.0 Documentation, Technical Report, 2000.
Organelli, E., Claustre, H., Bricaud, A., Schmechtig, C., Poteau, A., Xing,
X., Prieur, L., D'Ortenzio, F., Dall'Olmo, G., and Vellucci, V.: A novel near
real-time quality-control procedure for radiometric profiles measured by
Bio-Argo floats: protocols and performances, J. Atmos.
Ocean. Tech., 33, 937–951, https://doi.org/10.1175/JTECH-D-15-0193.1, 2016.
Organelli, E., Claustre, H., Bricaud, A., Barbieux, M., Uitz, J.,
D'Ortenzio, F., and Dall'Olmo, G.: Bio-optical anomalies in the world's
oceans: An investigation on the diffuse attenuation coefficients for
downward irradiance derived fromBiogeochemical Argo float measurements,
J. Geophys. Res.-Oceans, 122, 2017–2033,
https://doi.org/10.1002/2016JC012629, 2017a.
Organelli, E., Barbieux, M., Claustre, H., Schmechtig, C., Poteau, A.,
Bricaud, A., Boss, E., Briggs, N., Dall'Olmo, G., D'Ortenzio, F., Leymarie,
E., Mangin, A., Obolensky, G., Penkerc'h, C., Prieur, L., Roesler, C., Serra,
R., Uitz, J., and Xing, X.: Two databases derived from BGC-Argo float
measurements for marine biogeochemical and bio-optical applications, Earth
Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, 2017b.
Parslow, J. S., Boyd, P. W., Rintoul, S. R., and Griffiths, F. B.: A
persistent subsurface chlorophyll maximum in the Interpolar Frontal Zone
south of Australia: Seasonal progression and implications for
phytoplankton-light-nutrient interactions, J. Geophys. Res.-Oceans, 106, 31543–31557, https://doi.org/10.1029/2000JC000322, 2001.
Pasqueron de Fommervault, O., D'Ortenzio, F., Mangin, A., Serra, R., Migon,
C., Claustre, H., Lavigne, H., Ribera d'Alcala, M., Prieur, L., Taillandier,
V., Schmechtig, C., Poteau, A., Leymarie, E., Dufour, A., Besson, F., and
Obolensky, G.: Seasonal variability of nutrient concentrations in the
Mediterranean Sea: Contribution of Bio-Argo floats, J. Geophys. Res.-Oceans, 120, 8528–8550, https://doi.org/10.1002/2015JC011103, 2015a.
Pasqueron de Fommervault, O., Migon, C., D'Ortenzio, F., Ribera
d'Alcalà, M., and Coppola, L.: Temporal variability of nutrient
concentrations in the northwestern Mediterranean sea (DYFAMED time-series
station), Deep-Sea Res. Pt. I, 100,
1–12, https://doi.org/10.1016/j.dsr.2015.02.006, 2015b.
Pearson, K.: On lines and planes of closest fit to systems of points in
space, Philos. Mag., 2, 559–572,
https://doi.org/10.1080/14786440109462720, 1901.
Perez, V., Fernandez, E., Maranon, E., Moran, X. A. G., and Zubkov, M. V.:
Vertical distribution of phytoplankton biomass, production and growth in the
Atlantic subtropical gyres, Deep-Sea Res. Pt. I, 53, 1616–1634,
https://doi.org/10.1016/j.dsr.2006.07.008, 2006.
Pollehne, F., Klein, B., and Zeitzschel, B.: Low light adaptation and export
production in the deep chlorophyll maximum layer in the northern Indian
Ocean, Deep-Sea Res. Pt. II, 40,
737–752, https://doi.org/10.1016/0967-0645(93)90055-R, 1993.
Psarra, S., Tselepides, A., and Ignatiades, L.: Primary productivity in the
oligotrophic Cretan Sea (NE Mediterranean): seasonal and interannual
variability, Prog. Oceanogr., 46, 187–204,
https://doi.org/10.1016/S0079-6611(00)00018-5, 2000.
Pujo-Pay, M., Conan, P., Oriol, L., Cornet-Barthaux, V., Falco, C.,
Ghiglione, J.-F., Goyet, C., Moutin, T., and Prieur, L.: Integrated survey of
elemental stoichiometry (C, N, P) from the western to eastern Mediterranean
Sea, Biogeosciences, 8, 883–899, https://doi.org/10.5194/bg-8-883-2011, 2011.
Quéguiner, B., Tréguer, P., Peeken, I., and Scharek, R.:
Biogeochemical dynamics and the silicon cycle in the Atlantic sector of the
Southern Ocean during austral spring 1992, Deep-Sea Res. Pt. II, 44, 69–89,
https://doi.org/10.1016/S0967-0645(96)00066-5, 1997.
Raimbault, P., Coste, B., Boulhadid, M., and Boudjellal, B.: Origin of high
phytoplankton concentration in deep chlorophyll maximum (DCM) in a frontal
region of the Southwestern Mediterranean Sea (algerian current), Deep-Sea
Res. Pt. I, 40, 791–804, https://doi.org/10.1016/0967-0637(93)90072-B, 1993.
Roesler, C., Uitz, J., Claustre, H., Boss, E., Xing, X., Organelli, E.,
Briggs, N., Bricaud, A., Schmechtig, C., Poteau, A., D'Ortenzio, F., Ras,
J., Drapeau, S., Haëntjens, N., and Barbieux, M.: Recommendations for
obtaining unbiased chlorophyll estimates from in situ chlorophyll
fluorometers: A global analysis of WET Labs ECO sensors, Limnol. Oceanogr.-Meth., 15, 572–585, https://doi.org/10.1002/lom3.10185, 2017.
Roesler, C. S. and Barnard, A. H.: Optical proxy for phytoplankton biomass
in the absence of photophysiology: Rethinking the absorption line height,
Methods in Oceanography, 7, 79–94, https://doi.org/10.1016/j.mio.2013.12.003, 2013.
Ryabov, A. B.: Phytoplankton competition in deep biomass maximum,
Theor. Ecol., 5, 373–385, https://doi.org/10.1007/s12080-012-0158-0, 2012.
Sakamoto, C. M., Johnson, K. S., and Coletti, L. J.: Improved algorithm for
the computation of nitrate concentrations in seawater using an in situ
ultraviolet spectrophotometer, Limnol. Oceanogr.-Meth., 7,
132–143, https://doi.org/10.4319/lom.2009.7.132, 2009.
Sakamoto, C. M., Johnson, K. S., Coletti, L. J., and Jannasch, H. W.:
Pressure correction for the computation of nitrate concentrations in
seawater using an in situ ultraviolet spectrophotometer, Limnol. Oceanogr.-Meth., 15, 897–902, https://doi.org/10.1002/lom3.10209, 2017.
Sathyendranath, S., Stuart, V., Nair, A., Oka, K., Nakane, T., Bouman, H.,
Forget, M. H., Maass, H., and Platt, T.: Carbon-to-chlorophyll ratio and
growth rate of phytoplankton in the sea, Mar. Ecol. Prog. Ser.,
383, 73–84, https://doi.org/10.3354/meps07998, 2009.
Schmechtig, C., Poteau, A., Claustre, H., D'Ortenzio, F., and Boss, E.:
Processing Bio-Argo chlorophyll a concentration at the DAC Level, Argo Data
Management, 1–22, https://doi.org/10.13155/39468, 2015.
Schmechtig, C., Thierry, V., and The Bio-Argo Team: Argo Quality Control
Manual for Biogeochemical Data, Argo Data Management, 1–54,
https://doi.org/10.13155/40879, 2016a.
Schmechtig, C., Poteau, A., Claustre, H., D'Ortenzio, F., Dall'Olmo, G., and
Boss, E.: Processing Bio-Argo particle backscattering at the DAC level
Version, Argo Data Management, 1–13, https://doi.org/10.13155/39459, 2016b.
Severin, T., Kessouri, F., Rembauville, M., Sánchez-Pérez, E. D.,
Oriol, L., Caparros, J., Pujo-Pay, M., Ghiglione, Jean-François
D'Ortenzio, F., Taillandier, V., Mayot, N., Durrieu De Madron, X., Ulses, C.
Estournel, C., and Conan, P.: Open-ocean convection process: a driver
of the winter nutrient supply and the spring phytoplankton distribution in
the Northwestern Mediterranean Sea, J. Geophys. Res., 122, 4587–4601,
https://doi.org/10.1002/2014JC010094, 2017.
Siegel, D. A., Maritorena, S., Nelson, N. B., and Behrenfeld, M. J.:
Independence and interdependencies among global ocean color properties:
Reassessing the bio-optical assumption, J. Geophys. Res.-Oceans, 110, 1–14, https://doi.org/10.1029/2004JC002527, 2005.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera
d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open Mediterranean
Sea: a review, Biogeosciences, 7, 1543–1586,
https://doi.org/10.5194/bg-7-1543-2010, 2010.
Stramski, D. and Kiefer, D. A.: Light scattering by microorganisms in the
open ocean, Prog. Oceanogr., 28, 343–383,
https://doi.org/10.1016/0079-6611(91)90032-H, 1991.
Stramski, D., Reynolds, R. A., Kahru, M., and Mitchell, B. G.: Estimation of
Particulate Organic Carbon in the Ocean from Satellite Remote Sensing,
Science, 285, 239–242, 1999.
Stramski, D., Bricaud, A., and Morel, A.: Modeling the inherent optical
properties of the ocean based on the detailed composition of the planktonic
community, Appl. Optics, 40, 2929–2945, https://doi.org/10.1364/AO.40.002929,
2001.
Stramski, D., Boss, E., Bogucki, D., and Voss, K. J.: The role of seawater
constituents in light backscattering in the ocean, Prog. Oceanogr.,
61, 27–56, https://doi.org/10.1016/j.pocean.2004.07.001, 2004.
Taillandier, V., Wagener, T., D'Ortenzio, F., Mayot, N., Legoff, H., Ras, J.,
Coppola, L., Pasqueron de Fommervault, O., Schmechtig, C., Diamond, E.,
Bittig, H., Lefevre, D., Leymarie, E., Poteau, A., and Prieur, L.:
Hydrography and biogeochemistry dedicated to the Mediterranean BGC-Argo
network during a cruise with RV Tethys 2 in May 2015, Earth Syst. Sci. Data,
10, 627–641, https://doi.org/10.5194/essd-10-627-2018, 2018.
Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and
Civitarese, G.: The Mediterranean Sea system: a review and an introduction to
the special issue, Ocean Sci., 9, 789–803,
https://doi.org/10.5194/os-9-789-2013, 2013.
Tripathy, S. C., Pavithran, S., Sabu, P., Pillai, H. U. K., Dessai, D. R. G.,
and Anilkumar, N.: Deep chlorophyll maximum and primary productivity in
Indian ocean sector of the southern ocean: Case study in the subtropical and
polar front during austral summer 2011, Deep-Sea Res. Pt. II, 118, 240–249, https://doi.org/10.1016/j.dsr2.2015.01.004,
2015.
Uitz, J., Claustre, H., Morel, A., and Hooker, S. B.: Vertical distribution
of phytoplankton communities in open ocean: An assessment based on surface
chlorophyll, J. Geophys. Res., 111, 1–23,
https://doi.org/10.1029/2005JC003207, 2006.
Uitz, J., Claustre, H., Griffiths, F. B., Ras, J., Garcia, N., and Sandroni,
V.: A phytoplankton class-specific primary production model applied to the
Kerguelen Islands region (Southern Ocean), Deep-Sea Res. Pt. I, 56, 541–560,
https://doi.org/10.1016/j.dsr.2008.11.006, 2009.
Vaillancourt, R. D., Brown, C. W., Guillard, R. R. L., and Balch, W. M.:
Light backscattering properties of marine phytoplankton: relationships to
cell size, chemical composition and taxonomy, J. Plankton Res.,
26, 191–212, https://doi.org/10.1093/plankt/fbh012, 2004.
Videau, C., Sournia, A., Prieur, L., and Fiala, M.: Phytoplankton and primary
production characteristics at selected sites in the geostrophic Almeria-Oran
front system (SW Mediterranean Sea), J. Marine Syst., 5,
235–250, https://doi.org/10.1016/0924-7963(94)90049-3, 1994.
Westberry, T. K., Schultz, P., Behrenfeld, M. J., Dunne, J. P., Hiscock, M.
R., Maritorena, S., Sarmiento, J. L., and Siegel, D. A.: Annual cycles of
phytoplankton biomass in the subarctic Atlantic and Pacific Ocean, Global
Biogeochem. Cy., 30(2), 175–190, https://doi.org/10.1002/2015GB005276, 2016.
Weston, K., Fernand, L., Mills, D. K., Delahunty, R., and Brown, J.: Primary
production in the deep chlorophyll maximum of the central North Sea, J.
Plankton Res., 27, 909–922, https://doi.org/10.1093/plankt/fbi064, 2005.
Whitmire, A. L., Pegau, W. S., Karp-Boss, L., Boss, E., and Cowles, T. J.:
Spectral backscattering properties of marine phytoplankton cultures, Opt.
Express, 18, 15073–15093, https://doi.org/10.1364/OE.18.015073, 2010.
Winn, C. D., Campbell, L., Christian, J. R., Letelier, R. M., Hebel, D. V,
Dore, J. E., Fujieki, L., and Karl, D. M.: Seasonal variability in the
phytoplankton community of the North Pacific Subtropical Gyre, Global
Biogeochem. Cy., 9, 605–620, https://doi.org/10.1029/95gb02149, 1995.
Xing, X., Morel, A., Claustre, H., Antoine, D., D'Ortenzio, F., Poteau, A.,
and Mignot, A.: Combined processing and mutual interpretation of radiometry
and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a
retrieval, J. Geophys. Res., 116, 1–14,
https://doi.org/10.1029/2010JC006899, 2011.
Xing, X., Claustre, H., Blain, S., D'Ortenzio, F., Antoine, D., Ras, J., and
Guinet, C.: Quenching correction for in vivo chlorophyll fluorescence
acquired by autonomous platforms: A case study with instrumented elephant
seals in the Kerguelen region (Southern Ocean), Limnol. Oceanogr.-Meth., 10, 483–495, https://doi.org/10.4319/lom.2012.10.483, 2012.
Zielinski, O., Voß, D., Saworski, B., Fiedler, B., and Körtzinger,
A.: Computation of nitrate concentrations in turbid coastal waters using an
in situ ultraviolet spectrophotometer, J. Sea Res., 65,
456–460, https://doi.org/10.1016/j.seares.2011.04.002, 2011.
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll...
Altmetrics
Final-revised paper
Preprint