Articles | Volume 17, issue 5
https://doi.org/10.5194/bg-17-1213-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-1213-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe
Angelica Feurdean
CORRESPONDING AUTHOR
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Institute of Physical Geography, Goethe University,
Altenhöferallee 1, 60438 Frankfurt am Main, Germany
Department of Geology, Babeş-Bolyai University, Kogălniceanu
1, 400084 Cluj-Napoca, Romania
Boris Vannière
CNRS Chrono-environnement UMR 6249 and MSHE USR 3124, Université
Bourgogne Franche-Comté, 25000 Besançon, France
Walter Finsinger
ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
Dan Warren
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Simon C. Connor
CNRS Chrono-environnement UMR 6249 and MSHE USR 3124, Université
Bourgogne Franche-Comté, 25000 Besançon, France
Matthew Forrest
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Johan Liakka
Nansen Environmental and Remote Sensing Center, Bjerknes Centre for
Climate Research, Thormøhlensgate 47, 5006 Bergen, Norway
Andrei Panait
Department of Geology, Babeş-Bolyai University, Kogălniceanu
1, 400084 Cluj-Napoca, Romania
Christian Werner
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Institute of Meteorology and
Climate Research, Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
Maja Andrič
Institute of Archaeology, ZRC SAZU, Novi trg 2, 1000, Ljubljana,
Slovenia
Premysl Bobek
Laboratory of Paleoecology, Institute of Botany of the Czech Academy
of Sciences, Lidická 25/27, 602 00 Brno, Czech Republic
Vachel A. Carter
Department of Botany, Faculty of Science, Charles University,
Benátská 2, 128 01 Prague, Czech Republic
Basil Davis
Institute of Earth Surface Dynamics, University of Lausanne, 1015
Lausanne, Switzerland
Andrei-Cosmin Diaconu
Department of Geology, Babeş-Bolyai University, Kogălniceanu
1, 400084 Cluj-Napoca, Romania
Elisabeth Dietze
Organic
Geochemistry, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Polar Terrestrial Environmental Systems Group, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Ingo Feeser
Institute of Pre- and Protohistoric Archaeology, University of Kiel,
Johanna-Mestorf-Straße 2–6, 24118 Kiel, Germany
Gabriela Florescu
Department of Geology, Babeş-Bolyai University, Kogălniceanu
1, 400084 Cluj-Napoca, Romania
Department of Botany, Faculty of Science, Charles University,
Benátská 2, 128 01 Prague, Czech Republic
Mariusz Gałka
Department of Geobotany and Plant Ecology, Faculty of Biology and
Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
Thomas Giesecke
Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC, Utrecht, the Netherlands
Susanne Jahns
Heritage Management and Archaeological Museum of the State of
Brandenburg, Wünsdorfer Platz 4–5, 15806 Zossen, Germany
Eva Jamrichová
Laboratory of Paleoecology, Institute of Botany of the Czech Academy
of Sciences, Lidická 25/27, 602 00 Brno, Czech Republic
Katarzyna Kajukało
Laboratory for Climate Change Ecology, Adam Mickiewicz
University, Krygowskiego 10, 61-680 Poznań, Poland
Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
Jed Kaplan
Institute of Geography, Augsburg University, Alter Postweg 118,
86159 Augsburg, Germany
Monika Karpińska-Kołaczek
Laboratory for Climate Change Ecology, Adam Mickiewicz
University, Krygowskiego 10, 61-680 Poznań, Poland
Piotr Kołaczek
Laboratory for Climate Change Ecology, Adam Mickiewicz
University, Krygowskiego 10, 61-680 Poznań, Poland
Petr Kuneš
Department of Botany, Faculty of Science, Charles University,
Benátská 2, 128 01 Prague, Czech Republic
Dimitry Kupriyanov
Faculty of Geography, Lomonosov Moscow State University,
Leninskie gory 1, 119991 Moscow, Russia
Mariusz Lamentowicz
Laboratory for Climate Change Ecology, Adam Mickiewicz
University, Krygowskiego 10, 61-680 Poznań, Poland
Carsten Lemmen
Institute of Coastal Research,
Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
Enikö K. Magyari
Research Group for Paleontology, Department of Environmental and Landscape Geography, Eötvös Loránd University,
Pázmány Péter stny. 1/C, 1117 Budapest, Hungary
Katarzyna Marcisz
Laboratory for Climate Change Ecology, Adam Mickiewicz
University, Krygowskiego 10, 61-680 Poznań, Poland
Elena Marinova
Laboratory for Archaeobotany, State Office for Cultural Heritage Baden-Württemberg Referat
84.1, Fischersteig 9, 78343
Gaienhofen-Hemmenhofen, Germany
Aidin Niamir
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Elena Novenko
Faculty of Geography, Lomonosov Moscow State University,
Leninskie gory 1, 119991 Moscow, Russia
Department of Quaternary Research, Institute of Geography, Russian
Academy of Sciences, Staromonetny Lane 29, 119017 Moscow, Russia
Milena Obremska
Institute of Geological Sciences, Polish Academy of Sciences, Twarda
51/55, 00-818 Warsaw, Poland
Anna Pędziszewska
Laboratory of Palaeoecology and Archaeobotany, Department of Plant
Ecology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59,
80-308 Gdańsk, Poland
Mirjam Pfeiffer
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Anneli Poska
Department of Geology, Tallinn University of Technology, Ehitajate
tee 5, 19086 Tallinn, Estonia
Department of Physical Geography and Ecosystem Science, Lund
University, Sölvegatan 12, 22362 Lund, Sweden
Manfred Rösch
Institut für Ur- und Frühgeschichte und Vorderasiatische
Archäologie, Universiät Heidelberg, Sandgasse 7, 69117 Heidelberg, Germany
Michal Słowiński
Past Landscape Dynamics Laboratory, Institute of
Geography and Spatial Organization, Polish Academy of Sciences, Twarda
51/55, 00-818 Warsaw, Poland
Miglė Stančikaitė
Institute of Geology and Geography, Nature Research Centre,
Akademijos Str. 2, Vilnius 08412, Lithuania
Marta Szal
Department of Paleobotany, Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
Joanna Święta-Musznicka
Laboratory of Palaeoecology and Archaeobotany, Department of Plant
Ecology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59,
80-308 Gdańsk, Poland
Ioan Tanţău
Department of Geology, Babeş-Bolyai University, Kogălniceanu
1, 400084 Cluj-Napoca, Romania
Martin Theuerkauf
Institute of Botany and Landscape Ecology, University of Greifswald,
Soldmannstraße 15, 17489 Greifswald, Germany
Spassimir Tonkov
Laboratory of Palynology, Faculty of Biology, Sofia University St.
Kliment Ohridski, Dragan Tsankov 8, 1164 Sofia, Bulgaria
Orsolya Valkó
MTA-ÖK Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány str. 2–4, 2163 Vácrátót, Hungary
Jüri Vassiljev
Department of Geology, Tallinn University of Technology, Ehitajate
tee 5, 19086 Tallinn, Estonia
Siim Veski
Department of Geology, Tallinn University of Technology, Ehitajate
tee 5, 19086 Tallinn, Estonia
Ildiko Vincze
Research Group for Paleontology, Department of Environmental and Landscape Geography, Eötvös Loránd University,
Pázmány Péter stny. 1/C, 1117 Budapest, Hungary
Agnieszka Wacnik
W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46,
31-512 Kraków, Poland
Julian Wiethold
Laboratoire archéobotaniques, Direction Grand Est, Institut national de recherches archéologiques preventives (Inrap), 12 rue de
Méric, 57063 Metz, France
Thomas Hickler
Senckenberg Biodiversity and Climate Research Centre (BiK-F),
Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Related authors
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Jan Nitzbon, Moritz Langer, Luca Alexander Müller-Ißberner, Elisabeth Dietze, and Martin Werner
EGUsphere, https://doi.org/10.5194/egusphere-2024-4011, https://doi.org/10.5194/egusphere-2024-4011, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Using model simulations, we show that the larger seasonal temperature amplitude during the mid Holocene and last interglaical led to marked surficial thaw during warm summers, while cold winters allowed for permafrost persistence at depth and more active thermal contraction cracking. We argue that past interglacial climates have limited suitability as analogues for future permafrost dynamics, for which a trajectory of unprecedented thaw magnitude since at least 400000 years is anticipated.
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025, https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry–climate–vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Mateus Dantas de Paula, Tatiana Reichert, Laynara Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3259, https://doi.org/10.5194/egusphere-2024-3259, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study explores how plant roots, with different forms and functions, rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root-fungal interactions should be considered in vegetation models.
Blessing Kavhu, Matthew Forrest, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3595, https://doi.org/10.5194/egusphere-2024-3595, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We developed a model to predict global wildfire patterns by examining weather, vegetation, and human activities. This tool helps forecast seasonal fire risks across diverse regions and focuses on seasonal changes, unlike existing models. Its simplicity makes it valuable for climate and fire management planning, as well as for use in global climate studies, helping communities better prepare for and adapt to rising wildfire threats.
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz
Biogeosciences, 21, 5143–5172, https://doi.org/10.5194/bg-21-5143-2024, https://doi.org/10.5194/bg-21-5143-2024, 2024
Short summary
Short summary
The study combines palaeoecological, dendrochronological, remote sensing and historical data to detect the impact of forest management and climate change on peatlands. Due to these changes, the peatland studied in this paper and the pine monoculture surrounding it have become vulnerable to water deficits and various types of disturbance, such as fires and pest infestations. As a result of forest management, there has also been a complete change in the vegetation composition of the peatland.
Basil A. S. Davis, Marc Fasel, Jed O. Kaplan, Emmanuele Russo, and Ariane Burke
Clim. Past, 20, 1939–1988, https://doi.org/10.5194/cp-20-1939-2024, https://doi.org/10.5194/cp-20-1939-2024, 2024
Short summary
Short summary
During the last ice age (21 000 yr BP) in Europe, the composition and extent of forest and its associated climate remain unclear, with models indicating more forest north of the Alps and a warmer and somewhat wetter climate than suggested by the data. A new compilation of pollen records with improved dating suggests greater agreement with model climates but still suggests models overestimate forest cover, especially in the west.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-2592, https://doi.org/10.5194/egusphere-2024-2592, 2024
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they’ve changed from 1901 to 2018. We found that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation has increased, especially in the tropics, while N limitation has decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter Verburg, and Yuki Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-2551, https://doi.org/10.5194/egusphere-2024-2551, 2024
Short summary
Short summary
An interdisciplinary collaboration of 35 international researchers from 34 institutions highlighting nine recent findings in biosphere research. Within these themes, they discuss issues arising from climate change and other anthropogenic stressors, and highlight the co-benefits of nature-based solutions and ecosystem services. They discuss recent findings in the context of global trade and international policy frameworks, and highlight lessons for local implementation of nature-based solutions.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1914, https://doi.org/10.5194/egusphere-2024-1914, 2024
Short summary
Short summary
Under climate change, the conditions for wildfires to form are becoming more frequent in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a crucial platform for future developments.
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1794, https://doi.org/10.5194/egusphere-2024-1794, 2024
Short summary
Short summary
Nitrogen concentrations in tree tissues (leaves, branches, stems, and roots) control photosynthesis, growth and respiration, and thus influence vegetation carbon uptake. Our novel database allows us to identify the controls of tree tissue nitrogen concentrations in boreal and temperate forests, such as tree age/size, species and climate. Changes therein will affect tissue N concentrations and thus also vegetation carbon uptake.
Dana A. Lapides, W. Jesse Hahm, Matthew Forrest, Daniella M. Rempe, Thomas Hickler, and David N. Dralle
Biogeosciences, 21, 1801–1826, https://doi.org/10.5194/bg-21-1801-2024, https://doi.org/10.5194/bg-21-1801-2024, 2024
Short summary
Short summary
Water stored in weathered bedrock is rarely incorporated into vegetation and Earth system models despite increasing recognition of its importance. Here, we add a weathered bedrock component to a widely used vegetation model. Using a case study of two sites in California and model runs across the United States, we show that more accurately representing subsurface water storage and hydrology increases summer plant water use so that it better matches patterns in distributed data products.
Walter Finsinger, Christian Bigler, Christoph Schwörer, and Willy Tinner
Biogeosciences, 21, 1629–1638, https://doi.org/10.5194/bg-21-1629-2024, https://doi.org/10.5194/bg-21-1629-2024, 2024
Short summary
Short summary
Rate-of-change records based on compositional data are ambiguous as they may rise irrespective of the underlying trajectory of ecosystems. We emphasize the importance of characterizing both the direction and the rate of palaeoecological changes in terms of key features of ecosystems rather than solely on community composition. Past accelerations of community transformation may document the potential of ecosystems to rapidly recover important ecological attributes and functions.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Angelica Feurdean, Richard S. Vachula, Diana Hanganu, Astrid Stobbe, and Maren Gumnior
Biogeosciences, 20, 5069–5085, https://doi.org/10.5194/bg-20-5069-2023, https://doi.org/10.5194/bg-20-5069-2023, 2023
Short summary
Short summary
This paper presents novel results of laboratory-produced charcoal forms from various grass, forb and shrub taxa from the Eurasian steppe to facilitate more robust interpretations of fuel sources and fire types in grassland-dominated ecosystems. Advancements in identifying fuel sources and changes in fire types make charcoal analysis relevant to studies of plant evolution and fire management.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023, https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Short summary
We examined 71 pollen records (12.3 ka to present) in the eastern Mediterranean, reconstructing climate changes. Over 9000 years, winters gradually warmed due to orbital factors. Summer temperatures peaked at 4.5–5 ka, likely declining because of ice sheets. Moisture increased post-11 kyr, remaining high from 10–6 kyr before a slow decrease. Climate models face challenges in replicating moisture transport.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Anne Dallmeyer, Anneli Poska, Laurent Marquer, Andrea Seim, and Marie-José Gaillard
Clim. Past, 19, 1531–1557, https://doi.org/10.5194/cp-19-1531-2023, https://doi.org/10.5194/cp-19-1531-2023, 2023
Short summary
Short summary
We compare past tree cover changes in Europe during the last 8000 years simulated with two dynamic global vegetation models and inferred from pollen data. The major model–data mismatch is related to the much earlier onset of anthropogenic deforestation in the data compared to the prescribed land use in the models. We show that land use, and not climate, is the main driver of the Holocene forest decline. The model–data agreement depends on the model tuning, challenging model–data comparisons.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Knut Kaiser, Martin Theuerkauf, and Falk Hieke
E&G Quaternary Sci. J., 72, 127–161, https://doi.org/10.5194/egqsj-72-127-2023, https://doi.org/10.5194/egqsj-72-127-2023, 2023
Short summary
Short summary
The ongoing ecological conversion of mountain forests in the Erzgebirge conceptually also requires a historical perspective on the very long-term vegetation and land-use dynamics. We collected and evaluated 121 pollen diagrams. Pollen indications of a local prehistoric human impact also in the higher altitudes find archaeological parallels in the region. The pollen data show that immediately before the medieval clearing, forests were mainly dominated by beech and fir and complemented by spruce.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Mary Robles, Odile Peyron, Guillemette Ménot, Elisabetta Brugiapaglia, Sabine Wulf, Oona Appelt, Marion Blache, Boris Vannière, Lucas Dugerdil, Bruno Paura, Salomé Ansanay-Alex, Amy Cromartie, Laurent Charlet, Stephane Guédron, Jacques-Louis de Beaulieu, and Sébastien Joannin
Clim. Past, 19, 493–515, https://doi.org/10.5194/cp-19-493-2023, https://doi.org/10.5194/cp-19-493-2023, 2023
Short summary
Short summary
Quantitative climate reconstructions based on pollen and brGDGTs reveal, for the Late Glacial, a warm Bølling–Allerød and a marked cold Younger Dryas in Italy, showing no latitudinal differences in terms of temperatures across Italy. In terms of precipitation, no latitudinal differences are recorded during the Bølling–Allerød, whereas 40–42° N appears as a key junction point between wetter conditions in southern Italy and drier conditions in northern Italy during the Younger Dryas.
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023, https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are released by vegetation and have a major impact on atmospheric chemistry and aerosol formation. Non-interacting vegetation constrains the majority of numerical models used to estimate global BVOC emissions, and thus, the effects of changing vegetation on emissions are not addressed. In this work, we replace the offline vegetation with dynamic vegetation states by linking a chemistry–climate model with a global dynamic vegetation model.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
Leeli Amon, Friederike Wagner-Cremer, Jüri Vassiljev, and Siim Veski
Clim. Past, 18, 2143–2153, https://doi.org/10.5194/cp-18-2143-2022, https://doi.org/10.5194/cp-18-2143-2022, 2022
Short summary
Short summary
The spring onset and growing season dynamics during the Late Glacial period in the Baltic region were reconstructed using the micro-phenology based on dwarf birch subfossil leaf cuticles. The comparison of pollen- and chironomid-inferred past temperature estimations with spring onset, growth degree day, and plant macrofossil data shows coherent patterns during the cooler Older Dryas and warmer Bølling–Allerød periods but more complicated climate dynamics during the Younger Dryas cold reversal.
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395, https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Short summary
Despite rapidly intensifying wildfire seasons in Siberian boreal forests, little is known about long-term relationships between changes in vegetation and shifts in wildfire activity. Using lake sediment proxies, we reconstruct such environmental changes over the past 10,800 years in Central Yakutia. We find that a more open forest may facilitate increased amounts of vegetation burning. The present-day dense larch forest might yet be mediating the current climate-driven wildfire intensification.
Hao-Cheng Yu, Yinglong Joseph Zhang, Lars Nerger, Carsten Lemmen, Jason C. S. Yu, Tzu-Yin Chou, Chi-Hao Chu, and Chuen-Teyr Terng
EGUsphere, https://doi.org/10.5194/egusphere-2022-114, https://doi.org/10.5194/egusphere-2022-114, 2022
Preprint archived
Short summary
Short summary
We develop a new data assimilative approach by combining two parallel frameworks: PDAF and ESMF. This allows maximum flexibility and easy implementation of data assimilation for fully coupled earth system model applications. It is also validated by using a simple benchmark and applied to a realistic case simulation around Taiwan. The real case test shows significant improvement for temperature, velocity and surface elevation before, during and after typhoon events.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi, Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, Richard Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, Mary E. Edwards, Angelica Feurdean, David Foster, Konrad Gajewski, Mariusz Gałka, Michelle Garneau, Thomas Giesecke, Graciela Gil Romera, Martin P. Girardin, Dana Hoefer, Kangyou Huang, Jun Inoue, Eva Jamrichová, Nauris Jasiunas, Wenying Jiang, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Piotr Kołaczek, Niina Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, Fang Li, Jianyong Li, Olga Lisitsyna, José Antonio López-Sáez, Reyes Luelmo-Lautenschlaeger, Gabriel Magnan, Eniko Katalin Magyari, Alekss Maksims, Katarzyna Marcisz, Elena Marinova, Jenn Marlon, Scott Mensing, Joanna Miroslaw-Grabowska, Wyatt Oswald, Sebastián Pérez-Díaz, Ramón Pérez-Obiol, Sanna Piilo, Anneli Poska, Xiaoguang Qin, Cécile C. Remy, Pierre J. H. Richard, Sakari Salonen, Naoko Sasaki, Hieke Schneider, William Shotyk, Migle Stancikaite, Dace Šteinberga, Normunds Stivrins, Hikaru Takahara, Zhihai Tan, Liva Trasune, Charles E. Umbanhowar, Minna Väliranta, Jüri Vassiljev, Xiayun Xiao, Qinghai Xu, Xin Xu, Edyta Zawisza, Yan Zhao, Zheng Zhou, and Jordan Paillard
Earth Syst. Sci. Data, 14, 1109–1124, https://doi.org/10.5194/essd-14-1109-2022, https://doi.org/10.5194/essd-14-1109-2022, 2022
Short summary
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Jack Longman, Daniel Veres, Aritina Haliuc, Walter Finsinger, Vasile Ersek, Daniela Pascal, Tiberiu Sava, and Robert Begy
Clim. Past, 17, 2633–2652, https://doi.org/10.5194/cp-17-2633-2021, https://doi.org/10.5194/cp-17-2633-2021, 2021
Short summary
Short summary
Peatlands are some of the best environments for storing carbon; thus, comprehending how much carbon can be stored and how amounts have changed through time is important to understand carbon cycling. We analysed nine peatlands from central–eastern Europe to look at how carbon storage in mountain bogs has changed over the last 10 000 years. We conclude that human activity is the main driver of changes in storage levels over the past 4000 years; prior to this, climate was the primary driver.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Sascha Scherer, Benjamin Höpfer, Katleen Deckers, Elske Fischer, Markus Fuchs, Ellen Kandeler, Jutta Lechterbeck, Eva Lehndorff, Johanna Lomax, Sven Marhan, Elena Marinova, Julia Meister, Christian Poll, Humay Rahimova, Manfred Rösch, Kristen Wroth, Julia Zastrow, Thomas Knopf, Thomas Scholten, and Peter Kühn
SOIL, 7, 269–304, https://doi.org/10.5194/soil-7-269-2021, https://doi.org/10.5194/soil-7-269-2021, 2021
Short summary
Short summary
This paper aims to reconstruct Middle Bronze Age (MBA) land use practices in the northwestern Alpine foreland (SW Germany, Hegau). We used a multi-proxy approach including biogeochemical proxies from colluvial deposits in the surroundings of a MBA settlement, on-site archaeobotanical and zooarchaeological data and off-site pollen data. From our data we infer land use practices such as plowing, cereal growth, forest farming and use of fire that marked the beginning of major colluvial deposition.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Lucas Dugerdil, Sébastien Joannin, Odile Peyron, Isabelle Jouffroy-Bapicot, Boris Vannière, Bazartseren Boldgiv, Julia Unkelbach, Hermann Behling, and Guillemette Ménot
Clim. Past, 17, 1199–1226, https://doi.org/10.5194/cp-17-1199-2021, https://doi.org/10.5194/cp-17-1199-2021, 2021
Short summary
Short summary
Since the understanding of Holocene climate change appears to be a relevant issue for future climate change, the paleoclimate calibrations have to be improved. Here, surface samples from Mongolia and Siberia were analyzed to provide new calibrations for pollen and biomarker climate models. These calibrations appear to be more powerful than global calibrations, especially in an arid central Asian context. These calibrations will improve the understanding of monsoon Holocene oscillations.
Fabian Welc, Jerzy Nitychoruk, Leszek Marks, Krzysztof Bińka, Anna Rogóż-Matyszczak, Milena Obremska, and Abdelfattah Zalat
Clim. Past, 17, 1181–1198, https://doi.org/10.5194/cp-17-1181-2021, https://doi.org/10.5194/cp-17-1181-2021, 2021
Short summary
Short summary
Młynek Lake, located near the village of Janiki Wielkie (in the Warmia and Masuria region of north-east Poland) has been selected for multi-faceted palaeoenvironmental research based on a precise radiocarbon scale. Bottom sediments of this reservoir also contain unique information about anthropogenic activity and climate changes during last 2400 years.
Dushyant Kumar, Mirjam Pfeiffer, Camille Gaillard, Liam Langan, and Simon Scheiter
Biogeosciences, 18, 2957–2979, https://doi.org/10.5194/bg-18-2957-2021, https://doi.org/10.5194/bg-18-2957-2021, 2021
Short summary
Short summary
In this paper, we investigated the impact of climate change and rising CO2 on biomes using a vegetation model in South Asia, an often neglected region in global modeling studies. Understanding these impacts guides ecosystem management and biodiversity conservation. Our results indicate that savanna regions are at high risk of woody encroachment and transitioning into the forest, and the bioclimatic envelopes of biomes need adjustments to account for shifts caused by climate change and CO2.
Michal Hájek, Borja Jiménez-Alfaro, Ondřej Hájek, Lisa Brancaleoni, Marco Cantonati, Michele Carbognani, Anita Dedić, Daniel Dítě, Renato Gerdol, Petra Hájková, Veronika Horsáková, Florian Jansen, Jasmina Kamberović, Jutta Kapfer, Tiina Hilkka Maria Kolari, Mariusz Lamentowicz, Predrag Lazarević, Ermin Mašić, Jesper Erenskjold Moeslund, Aaron Pérez-Haase, Tomáš Peterka, Alessandro Petraglia, Eulàlia Pladevall-Izard, Zuzana Plesková, Stefano Segadelli, Yuliya Semeniuk, Patrícia Singh, Anna Šímová, Eva Šmerdová, Teemu Tahvanainen, Marcello Tomaselli, Yuliya Vystavna, Claudia Biţă-Nicolae, and Michal Horsák
Earth Syst. Sci. Data, 13, 1089–1105, https://doi.org/10.5194/essd-13-1089-2021, https://doi.org/10.5194/essd-13-1089-2021, 2021
Short summary
Short summary
We developed an up-to-date European map of groundwater pH and Ca (the major determinants of diversity of wetlands) based on 7577 measurements. In comparison to the existing maps, we included much a larger data set from the regions rich in endangered wetland habitats, filled the apparent gaps in eastern and southeastern Europe, and applied geospatial modelling. The latitudinal and altitudinal gradients were rediscovered with much refined regional patterns, as is associated with bedrock variation.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Mirjam Pfeiffer, Dushyant Kumar, Carola Martens, and Simon Scheiter
Biogeosciences, 17, 5829–5847, https://doi.org/10.5194/bg-17-5829-2020, https://doi.org/10.5194/bg-17-5829-2020, 2020
Short summary
Short summary
Lags caused by delayed vegetation response to changing environmental conditions can lead to disequilibrium vegetation states. Awareness of this issue is relevant for ecosystem conservation. We used the aDGVM vegetation model to quantify the difference between transient and equilibrium vegetation states in Africa during the 21st century for two potential climate trajectories. Lag times increased over time and vegetation was non-analog to any equilibrium state due to multi-lag composite states.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue
Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, https://doi.org/10.5194/gmd-13-3299-2020, 2020
Short summary
Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.
Lutz Schirrmeister, Elisabeth Dietze, Heidrun Matthes, Guido Grosse, Jens Strauss, Sebastian Laboor, Mathias Ulrich, Frank Kienast, and Sebastian Wetterich
E&G Quaternary Sci. J., 69, 33–53, https://doi.org/10.5194/egqsj-69-33-2020, https://doi.org/10.5194/egqsj-69-33-2020, 2020
Short summary
Short summary
Late Pleistocene Yedoma deposits of Siberia and Alaska are prone to degradation with warming temperatures.
Multimodal grain-size distributions of >700 samples indicate varieties of sediment production, transport, and deposition.
These processes were disentangled using robust endmember modeling analysis.
Nine robust grain-size endmembers characterize these deposits.
The data set was finally classified using cluster analysis.
The polygenetic Yedoma origin is proved.
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Matthew Forrest, Holger Tost, Jos Lelieveld, and Thomas Hickler
Geosci. Model Dev., 13, 1285–1309, https://doi.org/10.5194/gmd-13-1285-2020, https://doi.org/10.5194/gmd-13-1285-2020, 2020
Short summary
Short summary
We have integrated the LPJ-GUESS dynamic global vegetation model into the EMAC atmospheric chemistry-enabled GCM (general circulation model). This combined framework will enable the investigation of many land–atmosphere interactions and feedbacks with state-of-the-art simulation models. Initial results show that using the climate produced by EMAC together with LPJ-GUESS produces an acceptable representation of the global vegetation.
Simon Scheiter, Glenn R. Moncrieff, Mirjam Pfeiffer, and Steven I. Higgins
Biogeosciences, 17, 1147–1167, https://doi.org/10.5194/bg-17-1147-2020, https://doi.org/10.5194/bg-17-1147-2020, 2020
Short summary
Short summary
Current rates of climate and atmospheric change are likely higher than during the last millions of years. Vegetation cannot keep pace with these changes and lags behind climate. We used a vegetation model to study how these lags are influenced by CO2 and fire in Africa. Our results indicate that vegetation is most sensitive to CO2 change under current and near-future conditions and that vegetation will be committed to further change even if CO2 emissions are reduced and the climate stabilizes.
Pierre Sabatier, Marie Nicolle, Christine Piot, Christophe Colin, Maxime Debret, Didier Swingedouw, Yves Perrette, Marie-Charlotte Bellingery, Benjamin Chazeau, Anne-Lise Develle, Maxime Leblanc, Charlotte Skonieczny, Yoann Copard, Jean-Louis Reyss, Emmanuel Malet, Isabelle Jouffroy-Bapicot, Maëlle Kelner, Jérôme Poulenard, Julien Didier, Fabien Arnaud, and Boris Vannière
Clim. Past, 16, 283–298, https://doi.org/10.5194/cp-16-283-2020, https://doi.org/10.5194/cp-16-283-2020, 2020
Short summary
Short summary
High-resolution multiproxy analysis of sediment core from a high-elevation lake on Corsica allows us to reconstruct past African dust inputs to the western Mediterranean area over the last 3 millennia. Millennial variations of Saharan dust input have been correlated with the long-term southward migration of the Intertropical Convergence Zone, while short-term variations were associated with the North Atlantic Oscillation and total solar irradiance after and before 1070 cal BP, respectively.
Lucas Dugerdil, Sébastien Joannin, Odile Peyron, Isabelle Jouffroy-Bapicot, Boris Vannière, Bazartseren Boldgiv, and Guillemette Ménot
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-475, https://doi.org/10.5194/bg-2019-475, 2020
Preprint withdrawn
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Fang Li, Maria Val Martin, Meinrat O. Andreae, Almut Arneth, Stijn Hantson, Johannes W. Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, Erik Kluzek, Xiaohong Liu, Stephane Mangeon, Joe R. Melton, Daniel S. Ward, Anton Darmenov, Thomas Hickler, Charles Ichoku, Brian I. Magi, Stephen Sitch, Guido R. van der Werf, Christine Wiedinmyer, and Sam S. Rabin
Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, https://doi.org/10.5194/acp-19-12545-2019, 2019
Short summary
Short summary
Fire emissions are critical for atmospheric composition, climate, carbon cycle, and air quality. We provide the first global multi-model fire emission reconstructions for 1700–2012, including carbon and 33 species of trace gases and aerosols, based on the nine state-of-the-art global fire models that participated in FireMIP. We also provide information on the recent status and limitations of the model-based reconstructions and identify the main uncertainty sources in their long-term changes.
Lina Teckentrup, Sandy P. Harrison, Stijn Hantson, Angelika Heil, Joe R. Melton, Matthew Forrest, Fang Li, Chao Yue, Almut Arneth, Thomas Hickler, Stephen Sitch, and Gitta Lasslop
Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, https://doi.org/10.5194/bg-16-3883-2019, 2019
Short summary
Short summary
This study compares simulated burned area of seven global vegetation models provided by the Fire Model Intercomparison Project (FireMIP) since 1900. We investigate the influence of five forcing factors: atmospheric CO2, population density, land–use change, lightning and climate.
We find that the anthropogenic factors lead to the largest spread between models. Trends due to climate are mostly not significant but climate strongly influences the inter-annual variability of burned area.
Elisabeth Dietze and Michael Dietze
E&G Quaternary Sci. J., 68, 29–46, https://doi.org/10.5194/egqsj-68-29-2019, https://doi.org/10.5194/egqsj-68-29-2019, 2019
Short summary
Short summary
Sedimentary deposits provide insights into past Earth surface dynamics via the size distribution of mineral grains documenting the erosion, transport and deposition history. This study introduces structured procedures to decipher the distinct grain-size distributions of sediment samples that were mixed during/after deposition, using the free statistical tool EMMAgeo. Compared with other algorithms, EMMAgeo is unique as it provides uncertainty estimates and allows expert knowledge to be included.
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
Short summary
Weather, humans, and vegetation control the occurrence of fires. In this study we find that global fire–vegetation models underestimate the strong increase of burned area with higher previous-season plant productivity in comparison to satellite-derived relationships.
Bernhard Aichner, Florian Ott, Michał Słowiński, Agnieszka M. Noryśkiewicz, Achim Brauer, and Dirk Sachse
Clim. Past, 14, 1607–1624, https://doi.org/10.5194/cp-14-1607-2018, https://doi.org/10.5194/cp-14-1607-2018, 2018
Short summary
Short summary
Abundances of plant biomarkers are compared with pollen data in a 3000-year climate archive covering the Late Glacial to Holocene transition in northern Poland. Both parameters synchronously show the rapid onset (12680–12600 yr BP) and termination
(11580–11490 yr BP) of the Younger Dryas cold interval in the study area. This demonstrates the suitability of such proxies to record pronounced changes in vegetation cover without significant delay.
Manuel Schmid, Todd A. Ehlers, Christian Werner, Thomas Hickler, and Juan-Pablo Fuentes-Espoz
Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, https://doi.org/10.5194/esurf-6-859-2018, 2018
Short summary
Short summary
We present a numerical modeling study into the interactions between transient climate and vegetation cover with hillslope and fluvial processes. We use a state-of-the-art landscape evolution model library (Landlab) and design model experiments to investigate the effect of climate change and the associated changes in surface vegetation cover on main basin metrics. This paper is a companion paper to Part 1 (this journal), which investigates the effect of climate change on surface vegetation cover.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Gustaf Granath, Håkan Rydin, Jennifer L. Baltzer, Fia Bengtsson, Nicholas Boncek, Luca Bragazza, Zhao-Jun Bu, Simon J. M. Caporn, Ellen Dorrepaal, Olga Galanina, Mariusz Gałka, Anna Ganeva, David P. Gillikin, Irina Goia, Nadezhda Goncharova, Michal Hájek, Akira Haraguchi, Lorna I. Harris, Elyn Humphreys, Martin Jiroušek, Katarzyna Kajukało, Edgar Karofeld, Natalia G. Koronatova, Natalia P. Kosykh, Mariusz Lamentowicz, Elena Lapshina, Juul Limpens, Maiju Linkosalmi, Jin-Ze Ma, Marguerite Mauritz, Tariq M. Munir, Susan M. Natali, Rayna Natcheva, Maria Noskova, Richard J. Payne, Kyle Pilkington, Sean Robinson, Bjorn J. M. Robroek, Line Rochefort, David Singer, Hans K. Stenøien, Eeva-Stiina Tuittila, Kai Vellak, Anouk Verheyden, James Michael Waddington, and Steven K. Rice
Biogeosciences, 15, 5189–5202, https://doi.org/10.5194/bg-15-5189-2018, https://doi.org/10.5194/bg-15-5189-2018, 2018
Short summary
Short summary
Peat constitutes a long-term archive for climate reconstruction by using the isotopic composition of carbon and oxygen. We analysed isotopes in two peat moss species across North America and Eurasia. Peat (moss tissue) isotope composition was predicted by soil moisture and isotopic composition of the rainwater but differed between species. Our results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
Vachel A. Carter, Jacqueline J. Shinker, and Jonathon Preece
Clim. Past, 14, 1195–1212, https://doi.org/10.5194/cp-14-1195-2018, https://doi.org/10.5194/cp-14-1195-2018, 2018
Short summary
Short summary
Between 4200 and 4000 cal yr BP, paleoecological evidence suggests a megadrought occurred in the central Rocky Mountains and western Great Plains. Modern climate analogues were used to explore potential climate mechanisms responsible for the ecological changes. Analogues illustrate that warm and dry conditions persisted through the growing season as a result of anomalously higher-than-normal heights centred over the Great Plains which suppressed moisture transport to the region.
Derek T. Robinson, Alan Di Vittorio, Peter Alexander, Almut Arneth, C. Michael Barton, Daniel G. Brown, Albert Kettner, Carsten Lemmen, Brian C. O'Neill, Marco Janssen, Thomas A. M. Pugh, Sam S. Rabin, Mark Rounsevell, James P. Syvitski, Isaac Ullah, and Peter H. Verburg
Earth Syst. Dynam., 9, 895–914, https://doi.org/10.5194/esd-9-895-2018, https://doi.org/10.5194/esd-9-895-2018, 2018
Short summary
Short summary
Understanding the complexity behind the rapid use of Earth’s resources requires modelling approaches that couple human and natural systems. We propose a framework that comprises the configuration, frequency of interaction, and coordination of communication between models along with eight lessons as guidelines to increase the success of coupled human–natural systems modelling initiatives. We also suggest a way to expedite model coupling and increase the longevity and interoperability of models.
Johan Liakka and Marcus Lofverstrom
Clim. Past, 14, 887–900, https://doi.org/10.5194/cp-14-887-2018, https://doi.org/10.5194/cp-14-887-2018, 2018
Short summary
Short summary
This study highlights the counterintuitive result that continental ice sheets can also induce a warming, in particular in the Arctic region. The warming is explained by an increased northward heat transport, resulting from interactions between the atmospheric circulation and ice sheet topography. There is thus an important feedback between ice sheets and temperature, which can help to explain the differences in ice distribution between the Last Glacial Maximum and earlier glacial periods.
Marcus Lofverstrom and Johan Liakka
The Cryosphere, 12, 1499–1510, https://doi.org/10.5194/tc-12-1499-2018, https://doi.org/10.5194/tc-12-1499-2018, 2018
Carsten Lemmen, Richard Hofmeister, Knut Klingbeil, M. Hassan Nasermoaddeli, Onur Kerimoglu, Hans Burchard, Frank Kösters, and Kai W. Wirtz
Geosci. Model Dev., 11, 915–935, https://doi.org/10.5194/gmd-11-915-2018, https://doi.org/10.5194/gmd-11-915-2018, 2018
Short summary
Short summary
To describe coasts in a computer model, many processes have to be represented, from the air to the water to the ocean floor, from different scientific disciplines. No existing computer model adequately addresses this complexity. We present the Modular System for Shelves and Coasts (MOSSCO), which embraces this diversity and flexibly connects several tens of individual process models. MOSSCO also makes it easier to bring local knowledge to the Earth system level.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Margreet J. E. van Marle, Silvia Kloster, Brian I. Magi, Jennifer R. Marlon, Anne-Laure Daniau, Robert D. Field, Almut Arneth, Matthew Forrest, Stijn Hantson, Natalie M. Kehrwald, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stéphane Mangeon, Chao Yue, Johannes W. Kaiser, and Guido R. van der Werf
Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, https://doi.org/10.5194/gmd-10-3329-2017, 2017
Short summary
Short summary
Fire emission estimates are a key input dataset for climate models. We have merged satellite information with proxy datasets and fire models to reconstruct fire emissions since 1750 AD. Our dataset indicates that, on a global scale, fire emissions were relatively constant over time. Since roughly 1950, declining emissions from savannas were approximately balanced by increased emissions from tropical deforestation zones.
Behnaz Pirzamanbein, Anneli Poska, and Johan Lindström
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-51, https://doi.org/10.5194/cp-2017-51, 2017
Manuscript not accepted for further review
Short summary
Short summary
Realistic maps of past land cover needed to study environmental changes and human impacts are rare. A recent statistical method, Pirzamanbein et al. (2015), produces continuous maps of past land cover from pollen assemblage. These maps incorporate auxiliary data raising questions regarding both the method's sensitivity to the choice of auxiliary data and the unaffected transmission of observational data. In this paper, the sensitivity of the method is examined. The tests confirm robust results.
Sam S. Rabin, Joe R. Melton, Gitta Lasslop, Dominique Bachelet, Matthew Forrest, Stijn Hantson, Jed O. Kaplan, Fang Li, Stéphane Mangeon, Daniel S. Ward, Chao Yue, Vivek K. Arora, Thomas Hickler, Silvia Kloster, Wolfgang Knorr, Lars Nieradzik, Allan Spessa, Gerd A. Folberth, Tim Sheehan, Apostolos Voulgarakis, Douglas I. Kelley, I. Colin Prentice, Stephen Sitch, Sandy Harrison, and Almut Arneth
Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, https://doi.org/10.5194/gmd-10-1175-2017, 2017
Short summary
Short summary
Global vegetation models are important tools for understanding how the Earth system will change in the future, and fire is a critical process to include. A number of different methods have been developed to represent vegetation burning. This paper describes the protocol for the first systematic comparison of global fire models, which will allow the community to explore various drivers and evaluate what mechanisms are important for improving performance. It also includes equations for all models.
Lutz Schirrmeister, Georg Schwamborn, Pier Paul Overduin, Jens Strauss, Margret C. Fuchs, Mikhail Grigoriev, Irina Yakshina, Janet Rethemeyer, Elisabeth Dietze, and Sebastian Wetterich
Biogeosciences, 14, 1261–1283, https://doi.org/10.5194/bg-14-1261-2017, https://doi.org/10.5194/bg-14-1261-2017, 2017
Short summary
Short summary
We investigate late Pleistocene permafrost at the Buor Khaya Peninsula (Laptev Sea, Siberia) for cryolithological, geochemical, and geochronological parameters. The sequences were composed of ice-oversaturated silts and fine-grained sands with 0.2 to 24 wt% of organic matter. The deposition was between 54.1 and 9.7 kyr BP. Due to coastal erosion, the biogeochemical signature of the deposits represents the terrestrial end-member, and is related to organic matter deposited in the marine realm.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Johan Liakka, Marcus Löfverström, and Florence Colleoni
Clim. Past, 12, 1225–1241, https://doi.org/10.5194/cp-12-1225-2016, https://doi.org/10.5194/cp-12-1225-2016, 2016
Short summary
Short summary
The present study explains why Scandinavia was ice-covered 20 000 years ago, while Siberia was mostly ice free. The authors show that the ice-sheet extent in Eurasia was to a large extent controlled by atmospheric circulation changes due to the ice sheet in North America. As the North American ice sheet becomes larger, it induces a cooling in Europe and a warming in Siberia: this climatic pattern forces the Eurasian ice sheet to migrate westward until it is centered over Scandinavia.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
M. Forrest, J. T. Eronen, T. Utescher, G. Knorr, C. Stepanek, G. Lohmann, and T. Hickler
Clim. Past, 11, 1701–1732, https://doi.org/10.5194/cp-11-1701-2015, https://doi.org/10.5194/cp-11-1701-2015, 2015
Short summary
Short summary
We simulated Late Miocene (11-7 Million years ago) vegetation using two plausible CO2 concentrations: 280ppm CO2 and 450ppm CO2. We compared the simulated vegetation to existing plant fossil data for the whole Northern Hemisphere. Our results suggest that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
M. H. Vermeulen, B. J. Kruijt, T. Hickler, and P. Kabat
Earth Syst. Dynam., 6, 485–503, https://doi.org/10.5194/esd-6-485-2015, https://doi.org/10.5194/esd-6-485-2015, 2015
Short summary
Short summary
We compared a process-based ecosystem model (LPJ-GUESS) with EC measurements to test whether observed interannual variability (IAV) in carbon and water fluxes can be reproduced because it is important to understand the driving mechanisms of IAV. We show that the model's mechanistic process representation for photosynthesis at low temperatures and during drought could be improved, but other process representations are still lacking in order to fully reproduce the observed IAV.
J. Liakka, J. T. Eronen, H. Tang, and F. T. Portmann
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-4535-2014, https://doi.org/10.5194/cpd-10-4535-2014, 2014
Preprint withdrawn
D. Wårlind, B. Smith, T. Hickler, and A. Arneth
Biogeosciences, 11, 6131–6146, https://doi.org/10.5194/bg-11-6131-2014, https://doi.org/10.5194/bg-11-6131-2014, 2014
C. Buendía, S. Arens, T. Hickler, S. I. Higgins, P. Porada, and A. Kleidon
Biogeosciences, 11, 3661–3683, https://doi.org/10.5194/bg-11-3661-2014, https://doi.org/10.5194/bg-11-3661-2014, 2014
B. Smith, D. Wårlind, A. Arneth, T. Hickler, P. Leadley, J. Siltberg, and S. Zaehle
Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, https://doi.org/10.5194/bg-11-2027-2014, 2014
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
E. Dietze, F. Maussion, M. Ahlborn, B. Diekmann, K. Hartmann, K. Henkel, T. Kasper, G. Lockot, S. Opitz, and T. Haberzettl
Clim. Past, 10, 91–106, https://doi.org/10.5194/cp-10-91-2014, https://doi.org/10.5194/cp-10-91-2014, 2014
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
L. Sadori, E. Ortu, O. Peyron, G. Zanchetta, B. Vannière, M. Desmet, and M. Magny
Clim. Past, 9, 1969–1984, https://doi.org/10.5194/cp-9-1969-2013, https://doi.org/10.5194/cp-9-1969-2013, 2013
B. Vannière, M. Magny, S. Joannin, A. Simonneau, S. B. Wirth, Y. Hamann, E. Chapron, A. Gilli, M. Desmet, and F. S. Anselmetti
Clim. Past, 9, 1193–1209, https://doi.org/10.5194/cp-9-1193-2013, https://doi.org/10.5194/cp-9-1193-2013, 2013
S. Joannin, B. Vannière, D. Galop, O. Peyron, J. N. Haas, A. Gilli, E. Chapron, S. B. Wirth, F. Anselmetti, M. Desmet, and M. Magny
Clim. Past, 9, 913–933, https://doi.org/10.5194/cp-9-913-2013, https://doi.org/10.5194/cp-9-913-2013, 2013
A. Simonneau, E. Chapron, B. Vannière, S. B. Wirth, A. Gilli, C. Di Giovanni, F. S. Anselmetti, M. Desmet, and M. Magny
Clim. Past, 9, 825–840, https://doi.org/10.5194/cp-9-825-2013, https://doi.org/10.5194/cp-9-825-2013, 2013
S. Joannin, E. Brugiapaglia, J.-L. de Beaulieu, L. Bernardo, M. Magny, O. Peyron, S. Goring, and B. Vannière
Clim. Past, 8, 1973–1996, https://doi.org/10.5194/cp-8-1973-2012, https://doi.org/10.5194/cp-8-1973-2012, 2012
Related subject area
Paleobiogeoscience: Terrestrial Record
Assessing the impact of forest management and climate on a peatland under Scots pine monoculture using a multidisciplinary approach
The optimum fire window: applying the fire–productivity hypothesis to Jurassic climate states
Late Quaternary palaeoenvironmental evolution and sea level oscillation of Santa Catarina Island (southern Brazil)
Diatom responses and geochemical feedbacks to environmental changes at Lake Rauchuagytgyn (Far East Russian Arctic)
The emergence of the tropical rainforest biome in the Cretaceous
Faded landscape: unravelling peat initiation and lateral expansion at one of northwest Europe's largest bog remnants
Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene: combining hydroacoustic profiling and down-core analyses
Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record
The transformation of the forest steppe in the lower Danube Plain of southeastern Europe: 6000 years of vegetation and land use dynamics
Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies
Stable isotope signatures of Holocene syngenetic permafrost trace seabird presence in the Thule District (NW Greenland)
Preliminary evaluation of the potential of tree-ring cellulose content as a novel supplementary proxy in dendroclimatology
A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging
The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): interim results from the SCOPSCO deep drilling project
Yedoma Ice Complex of the Buor Khaya Peninsula (southern Laptev Sea)
Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)
First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania)
Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka
Age–depth model of the past 630 kyr for Lake Ohrid (FYROM/Albania) based on cyclostratigraphic analysis of downhole gamma ray data
Spatiotemporal patterns of tundra fires: late-Quaternary charcoal records from Alaska
A 22 570-year record of vegetational and climatic change from Wenhai Lake in the Hengduan Mountains biodiversity hotspot, Yunnan, Southwest China
Comment on "Possible source of ancient carbon in phytolith concentrates from harvested grasses" by G. M. Santos et al. (2012)
Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation – Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance
Mariusz Bąk, Mariusz Lamentowicz, Piotr Kołaczek, Daria Wochal, Paweł Matulewski, Dominik Kopeć, Martyna Wietecha, Dominika Jaster, and Katarzyna Marcisz
Biogeosciences, 21, 5143–5172, https://doi.org/10.5194/bg-21-5143-2024, https://doi.org/10.5194/bg-21-5143-2024, 2024
Short summary
Short summary
The study combines palaeoecological, dendrochronological, remote sensing and historical data to detect the impact of forest management and climate change on peatlands. Due to these changes, the peatland studied in this paper and the pine monoculture surrounding it have become vulnerable to water deficits and various types of disturbance, such as fires and pest infestations. As a result of forest management, there has also been a complete change in the vegetation composition of the peatland.
Teuntje P. Hollaar, Claire M. Belcher, Micha Ruhl, Jean-François Deconinck, and Stephen P. Hesselbo
Biogeosciences, 21, 2795–2809, https://doi.org/10.5194/bg-21-2795-2024, https://doi.org/10.5194/bg-21-2795-2024, 2024
Short summary
Short summary
Fires are limited in year-round wet climates (tropical rainforests; too wet), and in year-round dry climates (deserts; no fuel). This concept, the intermediate-productivity gradient, explains the global pattern of fire activity. Here we test this concept for climate states of the Jurassic (~190 Myr ago). We find that the intermediate-productivity gradient also applies in the Jurassic despite the very different ecosystem assemblages, with fires most frequent at times of high seasonality.
Lidia A. Kuhn, Karin A. F. Zonneveld, Paulo A. Souza, and Rodrigo R. Cancelli
Biogeosciences, 20, 1843–1861, https://doi.org/10.5194/bg-20-1843-2023, https://doi.org/10.5194/bg-20-1843-2023, 2023
Short summary
Short summary
This study investigated changes in coastal ecosystems that reflect environmental changes over the past 6500 years on Brazil's largest oceanic island. This study was motivated by the need to understand the natural evolution of coastal areas to predict future changes. The results highlight the sensitivity of this ecosystem to changes caused by relative sea level variations. As such, it contributes to the debate about potential effects of current climate change induced by global sea level changes.
Boris K. Biskaborn, Amy Forster, Gregor Pfalz, Lyudmila A. Pestryakova, Kathleen Stoof-Leichsenring, Jens Strauss, Tim Kröger, and Ulrike Herzschuh
Biogeosciences, 20, 1691–1712, https://doi.org/10.5194/bg-20-1691-2023, https://doi.org/10.5194/bg-20-1691-2023, 2023
Short summary
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Clément Coiffard, Haytham El Atfy, Johan Renaudie, Robert Bussert, and Dieter Uhl
Biogeosciences, 20, 1145–1154, https://doi.org/10.5194/bg-20-1145-2023, https://doi.org/10.5194/bg-20-1145-2023, 2023
Short summary
Short summary
Eighty-million-year-old fossil leaf assemblages suggest a widespread distribution of tropical rainforest in northeastern Africa.
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Stuart A. Vyse, Ulrike Herzschuh, Gregor Pfalz, Lyudmila A. Pestryakova, Bernhard Diekmann, Norbert Nowaczyk, and Boris K. Biskaborn
Biogeosciences, 18, 4791–4816, https://doi.org/10.5194/bg-18-4791-2021, https://doi.org/10.5194/bg-18-4791-2021, 2021
Short summary
Short summary
Lakes act as important stores of organic carbon and inorganic sediment material. This study provides a first investigation into carbon and sediment accumulation and storage within an Arctic glacial lake from Far East Russia. It shows that major shifts are related to palaeoclimate variation that affects the development of the lake and its surrounding catchment. Spatial differences to other lake systems from other regions may reflect variability in processes controlled by latitude and altitude.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Matthew L. Trumper, Daniel Griffin, Sarah E. Hobbie, Ian M. Howard, David M. Nelson, Peter B. Reich, and Kendra K. McLauchlan
Biogeosciences, 17, 4509–4522, https://doi.org/10.5194/bg-17-4509-2020, https://doi.org/10.5194/bg-17-4509-2020, 2020
Short summary
Short summary
We developed century-scale records of wood nitrogen isotopes (δ15N) from 16 trees across a long-term savanna fire experiment. Results show similar long-term trajectories in three out of four burn treatments. Lack of evidence to support our hypotheses underscores the complexity of nitrogen dynamics inferred from wood δ15N. This is the first study to our knowledge to investigate multi-decadal effects of fire at different return intervals on wood δ15N, a potential proxy of nitrogen availability.
Sebastian Wetterich, Thomas A. Davidson, Anatoly Bobrov, Thomas Opel, Torben Windirsch, Kasper L. Johansen, Ivan González-Bergonzoni, Anders Mosbech, and Erik Jeppesen
Biogeosciences, 16, 4261–4275, https://doi.org/10.5194/bg-16-4261-2019, https://doi.org/10.5194/bg-16-4261-2019, 2019
Short summary
Short summary
The effects of seabird presence on permafrost peat evolution in NW Greenland were studied by tracing changes in stable C and N isotope composition along the path from bird sources into permafrost peat. The permafrost growth was triggered by organic matter and nutrient input since the neoglacial cooling and concurrent polynya establishment. The study deals with the complex response of biologic and permafrost dynamics to High Arctic climatic and oceanographic conditions of the Late Holocene.
Malin M. Ziehmer, Kurt Nicolussi, Christian Schlüchter, and Markus Leuenberger
Biogeosciences, 15, 1047–1064, https://doi.org/10.5194/bg-15-1047-2018, https://doi.org/10.5194/bg-15-1047-2018, 2018
Short summary
Short summary
Cellulose content (CC (%)) series from two high-Alpine species, Larix decidua Mill. (European larch, LADE) and Pinus cembra L. (Swiss stone pine, PICE) are investigated in modern wood samples and Holocene wood remains from the Early and mid-Holocene. Trends in modern and Holocene time series as well as climate–cellulose relationships for modern trees in the Alps show high potential for CC (%) to be established as novel supplementary proxy in dendroclimatology.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Lutz Schirrmeister, Georg Schwamborn, Pier Paul Overduin, Jens Strauss, Margret C. Fuchs, Mikhail Grigoriev, Irina Yakshina, Janet Rethemeyer, Elisabeth Dietze, and Sebastian Wetterich
Biogeosciences, 14, 1261–1283, https://doi.org/10.5194/bg-14-1261-2017, https://doi.org/10.5194/bg-14-1261-2017, 2017
Short summary
Short summary
We investigate late Pleistocene permafrost at the Buor Khaya Peninsula (Laptev Sea, Siberia) for cryolithological, geochemical, and geochronological parameters. The sequences were composed of ice-oversaturated silts and fine-grained sands with 0.2 to 24 wt% of organic matter. The deposition was between 54.1 and 9.7 kyr BP. Due to coastal erosion, the biogeochemical signature of the deposits represents the terrestrial end-member, and is related to organic matter deposited in the marine realm.
Heike Hildegard Zimmermann, Elena Raschke, Laura Saskia Epp, Kathleen Rosmarie Stoof-Leichsenring, Georg Schwamborn, Lutz Schirrmeister, Pier Paul Overduin, and Ulrike Herzschuh
Biogeosciences, 14, 575–596, https://doi.org/10.5194/bg-14-575-2017, https://doi.org/10.5194/bg-14-575-2017, 2017
Short summary
Short summary
Organic matter stored in permafrost will start decomposing due to climate warming. To better understand its composition in ice-rich Yedoma, we analyzed ancient sedimentary DNA, pollen and non-pollen palynomorphs throughout an 18.9 m long permafrost core. The combination of both proxies allow an interpretation both of regional floristic changes and of the local environmental conditions at the time of deposition.
Niklas Leicher, Giovanni Zanchetta, Roberto Sulpizio, Biagio Giaccio, Bernd Wagner, Sebastien Nomade, Alexander Francke, and Paola Del Carlo
Biogeosciences, 13, 2151–2178, https://doi.org/10.5194/bg-13-2151-2016, https://doi.org/10.5194/bg-13-2151-2016, 2016
Laura Sadori, Andreas Koutsodendris, Konstantinos Panagiotopoulos, Alessia Masi, Adele Bertini, Nathalie Combourieu-Nebout, Alexander Francke, Katerina Kouli, Sébastien Joannin, Anna Maria Mercuri, Odile Peyron, Paola Torri, Bernd Wagner, Giovanni Zanchetta, Gaia Sinopoli, and Timme H. Donders
Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, https://doi.org/10.5194/bg-13-1423-2016, 2016
Short summary
Short summary
Lake Ohrid (FYROM/Albania) is the deepest, largest and oldest lake in Europe. To understand the climatic and environmental evolution of its area, a palynological study was undertaken for the last 500 ka. We found a correspondence between forested/non-forested periods and glacial-interglacial cycles of marine isotope stratigraphy. Our record shows a progressive change from cooler and wetter to warmer and dryer interglacial conditions. This shift is also visible in glacial vegetation.
H. Baumgarten, T. Wonik, D. C. Tanner, A. Francke, B. Wagner, G. Zanchetta, R. Sulpizio, B. Giaccio, and S. Nomade
Biogeosciences, 12, 7453–7465, https://doi.org/10.5194/bg-12-7453-2015, https://doi.org/10.5194/bg-12-7453-2015, 2015
Short summary
Short summary
Gamma ray (GR) fluctuations and K values from downhole logging data obtained in the sediments of Lake Ohrid correlate with the global climate reference record (LR04 stack from δ18O) (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles and document warm, humid and cold, drier periods. A robust age model for the downhole logging data over the past 630kyr was established and will play a crucial role for other working groups.
M. L. Chipman, V. Hudspith, P. E. Higuera, P. A. Duffy, R. Kelly, W. W. Oswald, and F. S. Hu
Biogeosciences, 12, 4017–4027, https://doi.org/10.5194/bg-12-4017-2015, https://doi.org/10.5194/bg-12-4017-2015, 2015
Short summary
Short summary
Tundra fires may have increased as a result of anthropogenic climate change. To evaluate this hypothesis in the context of natural variability, we reconstructed fire history of the late Quaternary in the Alaskan tundra. Fire-return intervals are spatially variable, ranging from 1648 to 6045 years at our sites. The rarity of historical fires implies that increased fire frequency may greatly alter the structure and function of tundra ecosystems.
Y. F. Yao, X. Y. Song, A. H. Wortley, S. Blackmore, and C. S. Li
Biogeosciences, 12, 1525–1535, https://doi.org/10.5194/bg-12-1525-2015, https://doi.org/10.5194/bg-12-1525-2015, 2015
L. A. Sullivan and J. F. Parr
Biogeosciences, 10, 977–980, https://doi.org/10.5194/bg-10-977-2013, https://doi.org/10.5194/bg-10-977-2013, 2013
G. Brügmann, J. Krause, T. C. Brachert, B. Stoll, U. Weis, O. Kullmer, I. Ssemmanda, and D. F. Mertz
Biogeosciences, 9, 4803–4817, https://doi.org/10.5194/bg-9-4803-2012, https://doi.org/10.5194/bg-9-4803-2012, 2012
Cited articles
Adámek, M., Hadincová, V., and Wild, J.: Long-term effect of wildfires
on temperate Pinus sylvestris forests: Vegetation dynamics and ecosystem
resilience, Forest Ecol. Manage., 380, 285–295,
https://doi.org/10.1016/j.foreco.2016.08.051, 2016.
Adolf, C., Wunderle, S., Colombaroli, D., Weber, H., Gobet, E., Heiri, O.,
van Leeuwen, J. F. N. C., Bigler, C., Connor, S. E., Galka, M., La Mantia, T.,
Makhortykh, S., Svitavska-Svobodova, H., Vanniere, B., and Tinner, W.: The
sedimentary and remote-sensing reflection of biomass burning in Europe.
Global Ecol. Biogeogr., 27, 199–212, https://doi.org/10.1111/geb.12682,
2018.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in 10 global burned
area, Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108,
2017.
Archibald, S., Lehmann, C. E. R., Belcher, C. M., Bond, W. J., Bradstock, R.
A., Daniau, A. L., Dexter, K. G., Forrestel, E. J., Greve, M., He, T.,
Higgins, S. I., Hoffmann, W. A., Lamont, B. B., McGlinn, D. J., Moncrieff,
G. R., Osborne, C. P., Pausas, J. G., Price, O., Ripley, B. S., Rogers, B.
M., Schwilk, D. W., Simon, M. F., Turetsky, M. R., Van Der Werf, G. R., and
Zanne, A.: Biological and geophysical feedbacks with fire in the Earth
system. Environ. Res. Lett., 13, 033003,
https://doi.org/10.1088/1748-9326/aa9ead, 2018.
Bartlein, P. J. and Shafer, S. L.: Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis, Geosci. Model Dev., 12, 3889–3913, https://doi.org/10.5194/gmd-12-3889-2019, 2019.
Beckage, B., Platt, W. J., and Gross, L. J.: Vegetation, fire, and feedbacks: A
disturbance mediated model of savannas, Am. Nat., 174, 805–818,
https://doi.org/10.1086/648458, 2019.
Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M. C.: Causal relationships versus emergent patterns in the global controls of fire frequency, Biogeosciences, 11, 5087–5101, https://doi.org/10.5194/bg-11-5087-2014, 2014.
Blarquez, O., Vannière, B., Marlon, J. R., Daniau, A.-L., Power, M. J.,
Brewer, S., and Bartlein, P. J.: Paleofire An R package to analyse
sedimentary charcoal records from the Global Charcoal Database to
reconstruct past biomass burning, Comput. Geosci., 72, 255–261,
https://doi.org/10.1016/j.cageo.2014.07.020, 2014.
Blarquez, O., Ali, A. A.,
Girardin, M. P., Grondin, P., Fréchette, B., Bergeron, Y., and Hély,
C.: Regional paleofire regimes affected by non-uniform climate, vegetation
and human drivers, Sci. Rep.-UK, 5, 13356, https://doi.org/10.1038/srep13356, 2015.
Bobek, P., Svitavská, H., Pokorný, P., Šamonil, P., Kuneš,
P., Kozáková, R., Abraham, V., Klinerová, T., Švarcová,
M. G., Jamrichov,á, E., Krauseová, E., and Wild, J.: Divergent
fire history trajectories in Central European temperate forests revealed a
pronounced influence of broadleaved trees on fire dynamics, Quaternary
Sci. Rev., 222, 105865, https://doi.org/10.1016/j.quascirev.2019.105865, 2019.
Bond, W. J. and Keeley, J. E.: Fire as a global herbivore: the ecology
and evolution of flammable ecosystems, Trends Ecol. Evol., 20,
387–394, https://doi.org/10.1016/j.tree.2005.04.025, 2005.
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison,
S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A.,
Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C.,
Swetnam, T. W., van der Werf, G. R., and Pyne, S. J.: Fire in the Earth
System, Science, 324, 481–484, https://doi.org/10.1126/science.1163886,
2009.
Carter, V. A., Moravcová, A., Chiverrell, R. C., Clear, J. L.,
Finsinger, W., Dreslerová, D., Halsall, K., and Kuneš, P.:
Holocene-scale fire dynamics of central European temperate spruce-beech
forests, Quaternary Sci. Rev., 191, 15–30,
https://doi.org/10.1016/j.quascirev.2018.05.001, 2018.
Central East European Database: CEE-GCD-2020_Feurdean_et_al_2020, available at: https://www.paleofire.org/index.php?p=exportceed, last access: 24 February 2020.
Chapman, J.: Climatic and human impact on the environment? A question of
scale, Quaternary Int., 496, 3–13,
https://doi.org/10.1016/j.quaint.2017.08.010, 2017.
Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler,
D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M.,
and Stewart, M. F.: Global frequency and distribution of lightning as observed
from space by the Optical Transient Detector, J. Geophys.
Res.-Atmos., 108, ACL 4-1–ACL 4-15,
https://doi.org/10.1029/2002JD002347, 2003.
Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., and Krebs,
P.: Reconstructing past fire regimes: methods, applications, and relevance
to fire management and conservation, Quaternary Sci. Rev., 28,
555–576, https://doi.org/10.1016/j.quascirev.2008.11.005, 2009.
Daniau, A. L., Bartlein, P. J., Harrison, S. P., Prentice, I. C., Brewer, S.,
Friedlingstein, P., Harrison-Prentice, T. I., Inoue, J., Izumi, K., Marlon,
J. R., Mooney, S., Power, M. J., Stevenson, J., Tinner, W., Andrič, M.,
Atanassova, J., Behling, H., Black, M., Blarquez, O., Brown, K. J.,
Carcaillet, C., Colhoun, E. A., Colombaroli, D., Davis, B. A. S., D'Costa, D.,
Dodson, J., Dupont, L., Eshetu, Z., Gavin, D. G., Genries, A., Haberle, S.,
Hallett, D. J., Hope, G., Horn, S. P., Kassa, T. G., Katamura, F., Kennedy,
L. M., Kershaw, P., Krivonogov, S., Long, C., Magri, D., Marinova, E.,
McKenzie, G. M., Moreno, P. I., Moss, P., Neumann, F. H., Norström, E.,
Paitre, C., Rius, D., Roberts, N., Robinson, G. S., Sasaki, N., Scott, L.,
Takahara, H., Terwilliger, V., Thevenon, F., Turner, R., Valsecchi, V. G.,
Vannière, B., Walsh, M., Williams, N., and Zhang, Y.: Predictability of
biomass burning in response to climate changes, Global Biogeochem.
Cy., 26, GB4007, https://doi.org/10.1029/2011GB004249, 2012.
Davis, B. A. S. and Brewer, S.: Orbital forcing and role of the latitudinal
insolation/ temperature gradient, Clim. Dynam., 32, 143–165,
https://doi.org/10.1007/s00382-008-0480-9, 2009.
Diaconu, A. C., Tóth, M., Lamentowicz, M., Heiri, O., Kuske, E.,
Tanţău, I., Panait, A., Braun, M., and Feurdean, A.: How warm? How
wet? Hydroclimate reconstruction of the past 7500 years in northern
Carpathians, Romania, Palaeogeogr. Palaeocl.,
482, 1–12, https://doi.org/10.1016/j.palaeo.2017.05.007, 2017.
Dietze, E., Theuerkauf, M., Bloom, K., Brauer, A., Dörfler, W., Feeser,
I., Feurdean, A., Gedminienė, L., Giesecke, T., Jahns, S.,
Karpińska-Kołaczek, M., Kołaczek, P., Lamentowicz, M., Latałowa,
M., Marcisz, K., Obremska, M., Pędziszewska, A., Poska, A., Rehfeld, K.,
Stančikaitė, M., Stivrins, N., Święta-Musznicka, J., Szal,
M., Vassiljev, J., Veski, S., Wacnik, A., Weisbrodt, D., Wiethold, J.,
Vannière, B., and Słowiński, M.: Holocene fire activity during
low-natural flammability periods reveals scale-dependent cultural human-fire
relationships in Europe, Quaternary Sci. Rev., 201, 44–56,
https://doi.org/10.1016/j.quascirev.2018.10.005, 2018.
Feurdean, A., Perşoiu, A., Tanţău, I., Stevens, T., Magyari,
E. K., Onac, B. P., Marković, S., Andrič, M., Connor, S.,
Fărcaş, S., Gałka, M., Gaudeny, T., Hoek, W., Kolaczek, P.,
Kuneš, P., Lamentowicz, M., Marinova, E., Michczyńska, D. J.,
Perşoiu, I., Płociennik, M., Słowiński, M., Stancikaite, M.,
Sumegi, P., Svensson, A., Tămaş, T., Timar, A., Tonkov, S., Toth,
M., Veski, S., Willis, K. J., and Zernitskaya, V.: Climate
variabilityand associated vegetation response throughout Central and Eastern
Climate variability and associated vegetation response throughout Central
and Eastern Europe (CEE) between 60 and 8 ka, Quaternary Sci. Rev.,
106, 206–224, https://doi.org/10.1016/j.quascirev.2014.06.003, 2014.
Feurdean, A., Veski, S., Florescu, G., Vannière, B., Pfeiffer, M.,
O'Hara, R. B., Stivrins, N., Amon, L., Heinsalu, A., Vassiljev, J., and
Hickler, T.: Broadleaf deciduous forest counterbalanced the direct effect of
climate on Holocene fire regime in hemiboreal/boreal region (NE Europe),
Quaternary Sci. Rev., 169, 378–390,
https://doi.org/10.1016/j.quascirev.2017.05.024, 2017.
Forkel, M., Dorigo, W., Lasslop, G., Teubner, I., Chuvieco, E., and Thonicke, K.: A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1), Geosci. Model Dev., 10, 4443–4476, https://doi.org/10.5194/gmd-10-4443-2017, 2017.
Frejaville, T. and Curt, T.: Seasonal changes in the human alteration of
fire regimes beyond the climate forcing, Environ. Res. Lett.,
12, 035006, https://doi.org/10.1088/1748-9326/aa5d23,
2017.
Fréjaville, T., Curt, T., and Carcaillet, C.: Tree cover and seasonal
precipitation drive understorey flammability in alpine mountain forests,
J. Biogeogr., 43, 1869–1880, https://doi.org/10.1111/jbi.12745,
2016.
Fyfe, R. M., Woodbridge, J., and Roberts N.: From forest to farmland:
pollen inferred land cover change across Europe using the pseudobiomization
approach, Glob. Change Biol., 21, 1197–1212,
https://doi.org/10.1111/gcb.12776, 2015.
Gavin, D. G., Hu, F. S., Lertzman, K., and Corbett, P.: Weak climatic control of standscale fire history during the late Holocene, Ecology, 87, 1722–1732, https://doi.org/10.1890/0012-9658(2006)87[1722:WCCOSF]2.0.CO;2, 2006.
Giesecke, T., Brewer, S., Finsinger, W., Leydet, M., and Bradshaw, R. H.:
Patterns and dynamics of European vegetation change over the last 15,000
years, J. Biogeogr., 44, 1441–1456,
https://doi.org/10.1111/jbi.12974, 2017.
Girardin, M. P., Ali, A. A., Carcaillet, C., Blarquez, O., Hély, C.,
Terrier, A., Genries, A., and Bergeron, Y.: Vegetation limits the impact of a
warm climate on boreal wildfires, New Phytol., 199, 1001–1011,
https://doi.org/10.1111/nph.12322, 2013.
Grooth, W. J., Cantin, A. S., Flannigan, M. D., Soja, A. J., Gowman, L. M., and
Newbery, A.: A comparison of Canadian and Russian boreal forest fie regimes,
Forest Ecol. Manage., 294, 23–34,
https://doi.org/10.1016/j.foreco.2012.07.033, 2013.
Hájková, P., Pařil, P., Petr, L., Chattová, B., Grygar,
T. M., and Heiri, O.: A first chironomid-based summer temperature
reconstruction (13–5 ka BP) around 49∘ N in inland Europe
compared with local lake development, Quaternary Sci. Rev., 141,
94–111, https://doi.org/10.1016/j.quascirev.2016.04.001, 2016.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642,
https://doi.org/10.1002/joc.3711, 2014.
Hastie, T. J. and Tibshirani, R. J.: Generalized additive models, Vol. 43 of
Monographs on Statistics and Applied Probability, Taylor and Francis Group, Chapman & Hall/CRC,
1990.
He, F.: Simulating transient climate evolution of the last deglaciation with
CCSM3, PhD thesis, University of Wisconsin-Madison, available at:
https://www.researchgate.net/publication/263618839_Simulating_transient_climate_evolution_of_the_last_deglaciation_with_CCSM3 (last access: 24 February 2020), 2011.
Heiri, O., Ilyashuk, B., Millet, L., Samartin, S., and Lotter, A. F.:
Stacking of discontinuous regional paleoclimate records: chironomid-based
summer temperaturesfrom the Alpine region, Holocene, 25, 137–149,
https://doi.org/10.1177/0959683614556382, 2015.
Hirota, M., Holmgren, M., and Van Nes, E. H., and Scheffer, M.: Global
resilience of tropical forest and savanna to critical transitions,
Science, 334, 232–235, https://doi.org/10.1126/science.1210657, 2011.
Jamrichová, E., Petr, L., Jiménez‐Alfaro, B., Jankovská, V., Dudová, L., Pokorný, P., Kołaczek, P., Zernitskaya, V., Čierniková, M., Břízová, E., and Syrovátka, V.: Pollen-inferred
millennial changes in landscape patterns at a major biogeographical interface
within Europe, J. Biogeogr., 44, 2386–2397,
https://doi.org/10.1111/jbi.13038, 2017.
Jepsen, M. R., Kuemmerle, T., Müller, D., Erb, K., Verburg, P. H.,
Haberl, H., Vesterager, J. P., Andrič, M., Antrop, M., Austrheim, G.,
Björn, I., Bondeau, A., Bürgi, M., Bryson, J., Caspar, G., Cassar,
L. F., Conrad, E., Chromý, P., Daugirdas, V., Van Eetvelde, V.,
Elena-Rosselló, R., Gimmi, U., Izakovicova, Z., Jančák, V.,
Jansson, U., Kladnik, D., Kozak, J., Konkoly-Gyuró, E., Krausmann, F.,
Mander, Ü., McDonagh, J., Pärn, J., Niedertscheider, M., Nikodemus,
O., Ostapowicz, K., Pérez-Sobaa, M., Pinto-Correia, T., Ribokas, G.,
Rounsevell, M., Schistou, D., Schmit, C., Terkenli, T. S., Tretvik, A. M.,
Trzepacz, P., Vadineanu A., Walz, A., Zhllima, E., and Reenberg, A.:
Transitions in European land-management regimes between 1800 and 2010, Land
Use Policy, 49, 53–64, https://doi.org/10.1016/j.landusepol.2015.07.003,
2015.
Kaplan, J. O., Pfeiffer, M., Kolen, J. C. A., and Davis, B. A. S.: Large Scale
Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe, PLOS
ONE, 11, e0166726, https://doi.org/10.1371/journal.pone.0166726, 2016.
Khabarov, N., Krasovskii, A., and Obersteiner, M.: Forest fires and
adaptation options in Europe, Reg. Environ. Change, 16, 21–30,
https://doi.org/10.1007/s10113-014-0621-0, 2016.
Kloster, S., Brücher, T., Brovkin, V., and Wilkenskjeld, S.: Controls on fire activity over the Holocene, Clim. Past, 11, 781–788, https://doi.org/10.5194/cp-11-781-2015, 2015.
Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of human population density on fire frequency at the global scale, Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-1085-2014, 2014.
Leverkus, A. B., Murillo, P. G., Dona, V. J., and Pausas, J. G.: Wildfire:
opportunity for restoration?, Science, 363, 134–135,
https://doi.org/10.1126/science.aaw2134, 2019.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R.,
Kutzbach, J., and Cheng, J.: Transient Simulation of Last Deglaciation with a
New Mechanism for Bølling-Allerød Warming, Science, 325, 310–314,
https://doi.org/10.1126/science.1171041, 2009.
Marcisz, K., Gałka, M., Pietrala, P., Miotk-Szpiganowicz, G., Obremska,
M., Tobolski, K., and Lamentowicz, M.: Fire activity and hydrological
dynamics in the past 5700 years reconstructed from Sphagnum peatlands along
the oceanic–continental climatic gradient in northern Poland, Quaternary Sci. Rev., 177, 145–157,
https://doi.org/10.1016/j.quascirev.2017.10.018, 2017.
Marlon, J. R., Kelly, R., Daniau, A.-L., Vannière, B., Power, M. J., Bartlein, P., Higuera, P., Blarquez, O., Brewer, S., Brücher, T., Feurdean, A., Romera, G. G., Iglesias, V., Maezumi, S. Y., Magi, B., Courtney Mustaphi, C. J., and Zhihai, T.: Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons, Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, 2016.
Marquer, L., Gaillard, M. J., Sugita, S., Poska, A., Trondman, A. K., Mazier,
F., Nielsen, A. B., Fyfe, R. M., Jönsson, A. M., Smith, B., Kaplan, J. O.,
Alenius, T., Birks, H. J. B., Bjune, A. E., Christiansen, J., Dodson, J.,
Edwards, K. J., Giesecke, T., Herzschuh, U., Kangur, M., Koff, T., Latałowa, M., Lechterbeck, J., Olofsson, J., and Seppä, H.: Quantifying the
effects of land use and climate on Holocene vegetation in Europe, Quaternary Sci. Rev., 171, 20–37,
https://doi.org/10.1016/j.quascirev.2017.07.001, 2017.
Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A., and Watkins,
J. W.: A climatic stratification of the environment of Europe, Global Ecol.
Biogeogr., 14, 549–563,
https://doi.org/10.1111/j.1466-822X.2005.00190.x, 2005.
Molinari, C., Lehsten, V., Blarquez, O., Carcaillet, C., Davis, B. A.,
Kaplan, J. O., Clear, J., and Bradshaw, R. H.: The climate, the fuel and the land
use: Long-term regional variability of biomass burning in boreal forests,
Glob. Change Biol., 24, 4929–4945, https://doi.org/10.1111/gcb.14380, 2018.
Pausas, J. G. and Paula, S.: Fuel shapes the fire–climate relationship:
evidence from Mediterranean ecosystems, Global Ecol. Biogeogr., 21,
1074–82, https://doi.org/10.1111/j.1466-8238.2012.00769.x, 2012.
Pausas, J. G. and Ribeiro, E.: The global fire–productivity relationship.
Global Ecol. Biogeogr., 22, 728–736,
https://doi.org/10.1111/geb.12043, 2013.
Pfeiffer, M., Spessa, A., and Kaplan, J. O.: A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0), Geosci. Model Dev., 6, 643–685, https://doi.org/10.5194/gmd-6-643-2013, 2013.
Pidwirny, M.: Actual and Potential Evapotranspiration, Fundamentals of
Physical Geography, 2nd Edn., University of British Columbia, Okanagan, Canada, 2006.
Power, M. J., Marlon, J., Ortiz, N., Bartlein, P. J., Harrison, S. P., Mayle,
F. E., Ballouche, A., Bradshaw, R. H. W., Carcaillet C., Cordova, C., Mooney,
S., Moreno, P. I., Prentice, I. C., Thonicke, K., Tinner, W., Whitlock, C.,
Zhang, Y., Zhao, Y., Ali, A. A., Anderson, R. S., Beer, R., Behling, H.,
Briles, C., Brown, K. J., Brunelle, A., Bush, M., Camill, P., Chu, G. Q.,
Clark, J., Colombaroli, D., Connor, S., Daniau, A. L., Daniels, M., Dodson,
J., Doughty, E., Edwards, M. E., Finsinger, W., Foster, D., Frechette, J.,
Gaillard, M. J., Gavin, D. G., Gobet, E., Haberle, S., Hallett, D. J., Higuera,
P., Hope, G., Horn, S., Inoue, J., Kaltenrieder, P., Kennedy, L., Kong,
Z. C., Larsen, C., Long, C. J., Lynch, J., Lynch, E. A., McGlone, M., Meeks,
S., Mensing, S., Meyer, G., Minckley, T., Mohr, J., Nelson, D.M., New, J.,
Newnham, R., Noti, R., Oswald, W., Pierce, J., Richard, P. J. H., Rowe, C.,
Sanchez Goñi, M. F., Shuman, B. N., Takahara, H., Toney, J., Turney, C.,
Urrego-Sanchez, D. H., Umbanhowar, C., Vandergoes, M., Vanniere, B., Vescovi,
E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J., and Zhang, J. H.:
Changes in fire regimes since the Last Glacial Maximum: an assessment based
on a global synthesis and analysis of charcoal data, Clim. Dynam., 30,
887–907, https://doi.org/10.1007/s00382-007-0334-x, 2008.
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.
Rius, D., Vannière, B., Galop, D., and Richard, H.: Holocene fire regime
changes from multiple-site sedimentary charcoal analyses in the Lourdes
basin (Pyrenees, France), Quaternary Sci. Rev., 30, 1696–709,
https://doi.org/10.1016/j.quascirev.2011.03.014, 2011.
Roberts, N., Fyfe, R. M., Woodbridge, J., Gaillard, M. J., Davis, B. A.,
Kaplan, J. O., Marquer, L., Mazier, F., Nielsen, A. B., Sugita, S., and
Trondman, A. K.: Europe's lost forests: a pollen-based synthesis for the last
11,000 years, Sci. Rep.-UK, 158, 716,
https://doi.org/10.1038/s41598-017-18646-7, 2018.
Rogers, B. M., Soja, A. J., Goulden, M. L., and Randerson, J. T.: Influence of
tree species on continental differences in boreal fires and climate
feedbacks, Nat. Geosci., 8, 228–234, https://doi.org/10.1038/ngeo2352,
2015.
Rösch, M., Kleinmann, A., Lechterbeck, J., and Wick, L.: Botanical
off-site and on-site data as indicators of different land use systems: a
discussion with examples from Southwest Germany, Veg. Hist.
Archaeobot., 23, 121–133, https://doi.org/10.1007/s00334-014-0437-3, 2014.
Ryan, K. C.: Dynamic interactions between forest structure and fire
behavior in boreal ecosystems, Silva Fenn., 36, 13–39,
https://doi.org/10.14214/sf.548, 2002.
Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H., and Chapin III, F. S.:
Thresholds for Boreal Biome Transitions, P. Natl. Acad. Sci. USA, 109, 21384–21389,
https://doi.org/10.1073/pnas.1219844110, 2012
Scheiter, S., Higgins, S. I., Osborne, C. P., Bradshaw, C., Lunt, D., Ripley,
B. S., Taylor, L. L., and Beerling, D. J.: Fire and fire-adapted vegetation
promoted C4 expansion in the late Miocene, New Phytol., 195, 653–666,
https://doi.org/10.1111/j.1469-8137.2012.04202.x, 2012.
Simpson, G. L.: Modelling palaeoecological time series using generalized
additive models, Frontiers in Ecology and Evolution, 6, 149,
https://doi.org/10.3389/fevo.2018.00149, 2018.
Słowiński, M., Lamentowicz, M., Łuców, D., Barabach, J., Brykała,
D., Tyszkowski, S., Pieńczewska, A., Śnieszko, Z., Dietze, E.,
Jażdżewski, K., Obremska, M., Ott, F., Brauer, A., and Marcisz, K.:
Paleoecological and historical data as an important tool in ecosystem
management, J. Environ. Manage., 236, 755–768, https://doi.org/10.1016/j.jenvman.2019.02.002, 2019.
Sturtevant, B. R., Miranda, B. R., Yang, J., He, H. S., Gustafson, E. J., and
Scheller, R. M.: Studying Fire Mitigation Strategies in Multi-Ownership Landscapes: Balancing the Management of Fire-Dependent Ecosystems and Fire Risk, Ecosystems, 12, 445,
https://doi.org/10.1007/s10021-009-9234-8, 2009.
Teuling, A. J., Taylor, C. M., Meirink, J. F., Melsen, L. A., Miralles, D. G.,
Van Heerwaarden, C. C., Vautard, R., Stegehuis, A. I., Nabuurs, G. J., and de
Arellano, J. V. G.: Observational evidence for cloud cover enhancement over
western European forests, Nat. Commun., 8, 14065,
https://doi.org/10.1038/ncomms14065, 2017.
Thornthwaite, C. W.: An approach toward a rational classification of
climate, Geogr. Rev., 38, 55–94,
1948.
Tóth, M., Magyari, E. K., Buczkó, K., Braun, M., Panagiotopoulos, K.,
and Heiri, O.: Chironomid-inferred Holocene temperature changes in the South
Carpathians (Romania), Holocene, 25, 569–582,
https://doi.org/10.1177/0959683614565953, 2015.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van Nes, E. H., Staal, A., Hantson, S., Holmgren, M., Pueyo, S., and Bernardi,
R. E.: Fire forbids fifty-fifty forest, PLoS ONE, 13, e0191027,
https://doi.org/10.1371/journal.pone.0191027, 2018.
Vannière, B., Blarquez, O., Rius, D., Doyen, E., Brücher, T., Colombaroli, D., Connor, S., Feurdean, A., Hickler, T.,
Kaltenrieder, P., Lemmen, C., Leys, B., Massa, C., and Olofsson, J.:
7000-year human legacy of elevation-dependent European fire regimes,
Quaternary Sci. Rev., 132, 206–212,
https://doi.org/10.1016/j.quascirev.2015.11.012, 2016.
Veski, S, Seppä, H., Stančikaitė, M., Zernitskaya, V., Reitalu,
T., Gryguc, G., Heinsalu, A., Stivrins, N., Amon, L., Vassiljev, J., and
Heiri, O.: Quantitative summer and winter temperature reconstructions from
pollen and chironomid data between 15 and 8 ka BP in the Baltic-Belarus
area, Quaternary Int., 388, 4–11,
https://doi.org/10.1016/j.quaint.2014.10.059, 2015.
Wagenmakers, E. J. and Farrell, S.: AIC model selection using Akaike weights,
Psychon. B. Rev., 11, 192–196, 2004.
Whitlock, C. and Larsen, C.: Charcoal as a fire proxy, in: Tracking environmental change using lake
sediments, edited by: Smol, J. P.,
Birks, H. J. B., and Last, W. M., Vol. 3: terrestrial, algal, and siliceous indicators, Kluwer
Academic Publishers, 75–97, https://doi.org/10.1007/0-306-47668-1, 2001.
Whitlock, C., Colombaroli, D., Conedera, M., and Tinner, W.: Land-use
history as a guide for forest conservation and management, Conserv.
Biol., 32, 84–97, https://doi.org/10.1111/cobi.12960, 2017.
Wood, S. N.: Generalized Additive Models: An Introduction with R,
2nd Edn., Taylor and Francis Group, Chapman and Hall/CRC, https://doi.org/10.1201/9781315370279,
2017.
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation...
Altmetrics
Final-revised paper
Preprint