Articles | Volume 17, issue 12
https://doi.org/10.5194/bg-17-3183-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-3183-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England)
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, the
Netherlands
Miriam Glendell
The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
Jeroen Meersmans
TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University
of Liège, 5030 Gembloux, Belgium
Frédérique Kirkels
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, the
Netherlands
Jack J. Middelburg
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, the
Netherlands
Francien Peterse
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, the
Netherlands
Related authors
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
EGUsphere, https://doi.org/10.5194/egusphere-2024-1648, https://doi.org/10.5194/egusphere-2024-1648, 2024
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
EGUsphere, https://doi.org/10.5194/egusphere-2024-1648, https://doi.org/10.5194/egusphere-2024-1648, 2024
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023, https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Short summary
We applied participatory methods to create a hybrid equation-based Bayesian network (BN) model to increase stakeholder understanding of catchment-scale resilience to the impacts of both climatic and socio-economic stressors to a 2050 time horizon. Our holistic systems-thinking approach enabled stakeholders to gain new perspectives on how future scenarios may influence their specific sectors and how their sector impacted other sectors and environmental conditions within the catchment system.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Frédérique M. S. A. Kirkels, Hugo J. de Boer, Paulina Concha Hernández, Chris R. T. Martes, Marcel T. J. van der Meer, Sayak Basu, Muhammed O. Usman, and Francien Peterse
Biogeosciences, 19, 4107–4127, https://doi.org/10.5194/bg-19-4107-2022, https://doi.org/10.5194/bg-19-4107-2022, 2022
Short summary
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell
Hydrol. Earth Syst. Sci., 26, 1261–1293, https://doi.org/10.5194/hess-26-1261-2022, https://doi.org/10.5194/hess-26-1261-2022, 2022
Short summary
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Gerrit Müller, Jack J. Middelburg, and Appy Sluijs
Earth Syst. Sci. Data, 13, 3565–3575, https://doi.org/10.5194/essd-13-3565-2021, https://doi.org/10.5194/essd-13-3565-2021, 2021
Short summary
Short summary
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition of river waters and particles results from processes in their catchment, such as erosion, weathering, environmental pollution, nutrient and carbon cycling, Earth-spanning databases of river composition are needed for studies of these processes on a global scale. While extensive resources on water and nutrient composition exist, we provide a database of river particle composition.
Liang Yu, Joachim C. Rozemeijer, Hans Peter Broers, Boris M. van Breukelen, Jack J. Middelburg, Maarten Ouboter, and Ype van der Velde
Hydrol. Earth Syst. Sci., 25, 69–87, https://doi.org/10.5194/hess-25-69-2021, https://doi.org/10.5194/hess-25-69-2021, 2021
Short summary
Short summary
The assessment of the collected water quality information is for the managers to find a way to improve the water environment to satisfy human uses and environmental needs. We found groundwater containing high concentrations of nutrient mixes with rain water in the ditches. The stable solutes are diluted during rain. The change in nutrients over time is determined by and uptaken by organisms and chemical processes. The water is more enriched with nutrients and looked
dirtierduring winter.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Emily Dearing Crampton-Flood, Lars J. Noorbergen, Damian Smits, R. Christine Boschman, Timme H. Donders, Dirk K. Munsterman, Johan ten Veen, Francien Peterse, Lucas Lourens, and Jaap S. Sinninghe Damsté
Clim. Past, 16, 523–541, https://doi.org/10.5194/cp-16-523-2020, https://doi.org/10.5194/cp-16-523-2020, 2020
Short summary
Short summary
The mid-Pliocene warm period (mPWP; 3.3–3.0 million years ago) is thought to be the last geological interval with similar atmospheric carbon dioxide concentrations as the present day. Further, the mPWP was 2–3 °C warmer than present, making it a good analogue for estimating the effects of future climate change. Here, we construct a new precise age model for the North Sea during the mPWP, and provide a detailed reconstruction of terrestrial and marine climate using a multi-proxy approach.
Wim Joost van Hoek, Lauriane Vilmin, Arthur H. W. Beusen, José M. Mogollón, Xiaochen Liu, Joep J. Langeveld, Alexander F. Bouwman, and Jack J. Middelburg
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-205, https://doi.org/10.5194/gmd-2019-205, 2019
Revised manuscript not accepted
Short summary
Short summary
In this study we present CARBON-DISC 1.0. It couples the global water balance model PCR-GLOBWB with global carbon inputs from the Integrated Model to Assess the Global Environment (IMAGE) at a 0.5° resolution and calculates gridcell-to-gridcell transport, C transformations, C emissions, C burial and primary production on a monthly timestep and without calibration.
Joep Langeveld, Alexander F. Bouwman, Wim Joost van Hoek, Lauriane Vilmin, Arthur H. W. Beusen, José M. Mogollón, and Jack J. Middelburg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-238, https://doi.org/10.5194/bg-2019-238, 2019
Preprint withdrawn
Short summary
Short summary
We compiled a global database on annual average dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in soil solutions. We use this database to construct the first global models and maps on DOC in soil pore water. Highest concentrations in shallow soils occur in forests of cooler, humid zones. Highest concentrations in deeper soils are calculated for Histosols. Our research enables a spatially explicit first estimation of dissolved carbon in soil solution on the global scale.
Charlotte Miller, Jemma Finch, Trevor Hill, Francien Peterse, Marc Humphries, Matthias Zabel, and Enno Schefuß
Clim. Past, 15, 1153–1170, https://doi.org/10.5194/cp-15-1153-2019, https://doi.org/10.5194/cp-15-1153-2019, 2019
Short summary
Short summary
Here we reconstruct vegetation and precipitation, in eastern South Africa, over the last 32 000 years, by measuring the stable carbon and hydrogen isotope composition of plant waxes from Mfabeni peat bog (KwaZulu-Natal). Our results indicate that the late Quaternary climate in eastern South Africa did not respond directly to orbital forcing or to changes in sea-surface temperatures. Our findings stress the influence of the Southern Hemisphere westerlies in driving climate change in the region.
Nicole M. J. Geerlings, Eva-Maria Zetsche, Silvia Hidalgo-Martinez, Jack J. Middelburg, and Filip J. R. Meysman
Biogeosciences, 16, 811–829, https://doi.org/10.5194/bg-16-811-2019, https://doi.org/10.5194/bg-16-811-2019, 2019
Short summary
Short summary
Multicellular cable bacteria form long filaments that can reach lengths of several centimeters. They affect the chemistry and mineralogy of their surroundings and vice versa. How the surroundings affect the cable bacteria is investigated. They show three different types of biomineral formation: (1) a polymer containing phosphorus in their cells, (2) a sheath of clay surrounding the surface of the filament and (3) the encrustation of a filament via a solid phase containing iron and phosphorus.
Ilja J. Kocken, Marlow Julius Cramwinckel, Richard E. Zeebe, Jack J. Middelburg, and Appy Sluijs
Clim. Past, 15, 91–104, https://doi.org/10.5194/cp-15-91-2019, https://doi.org/10.5194/cp-15-91-2019, 2019
Short summary
Short summary
Marine organic carbon burial could link the 405 thousand year eccentricity cycle in the long-term carbon cycle to that observed in climate records. Here, we simulate the response of the carbon cycle to astronomical forcing. We find a strong 2.4 million year cycle in the model output, which is present as an amplitude modulator of the 405 and 100 thousand year eccentricity cycles in a newly assembled composite record.
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018, https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Short summary
Arctic warming mobilizes belowground organic matter in northern high latitudes. This study focused on the size of organic carbon pools and organic matter quality in ice-rich permafrost on the Baldwin Peninsula, West Alaska. We analyzed biogeochemistry and found that three-quarters of the carbon is stored in degraded permafrost deposits. Nonetheless, using biomarker analyses, we showed that the organic matter in undisturbed yedoma permafrost has a higher potential for decomposition.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Julie Lattaud, Frédérique Kirkels, Francien Peterse, Chantal V. Freymond, Timothy I. Eglinton, Jens Hefter, Gesine Mollenhauer, Sergio Balzano, Laura Villanueva, Marcel T. J. van der Meer, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 4147–4161, https://doi.org/10.5194/bg-15-4147-2018, https://doi.org/10.5194/bg-15-4147-2018, 2018
Short summary
Short summary
Long-chain diols (LCDs) are biomarkers that occur widespread in marine environments and also in lakes and rivers. In this study, we looked at the distribution of LCDs in three river systems (Godavari, Danube, and Rhine) in relation to season, precipitation, and temperature. We found out that the LCDs are likely being produced in calm areas of the river systems and that marine LCDs have a different distribution than riverine LCDs.
Muhammed Ojoshogu Usman, Frédérique Marie Sophie Anne Kirkels, Huub Michel Zwart, Sayak Basu, Camilo Ponton, Thomas Michael Blattmann, Michael Ploetze, Negar Haghipour, Cameron McIntyre, Francien Peterse, Maarten Lupker, Liviu Giosan, and Timothy Ian Eglinton
Biogeosciences, 15, 3357–3375, https://doi.org/10.5194/bg-15-3357-2018, https://doi.org/10.5194/bg-15-3357-2018, 2018
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Jack J. Middelburg
Biogeosciences, 15, 413–427, https://doi.org/10.5194/bg-15-413-2018, https://doi.org/10.5194/bg-15-413-2018, 2018
Short summary
Short summary
Organic carbon processing at the seafloor is studied by geologists to better understand the sedimentary record, by biogeochemists to quantify burial and respiration, by organic geochemists to elucidate compositional changes, and by ecologists to follow carbon transfers within food webs. These disciplinary approaches have their strengths and weaknesses. This award talk provides a synthesis, highlights the role of animals in sediment carbon processing and presents some new concepts.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Dick van Oevelen, Christina E. Mueller, Tomas Lundälv, and Jack J. Middelburg
Biogeosciences, 13, 5789–5798, https://doi.org/10.5194/bg-13-5789-2016, https://doi.org/10.5194/bg-13-5789-2016, 2016
Short summary
Short summary
Cold-water corals form true hotspots of biodiversity in the cold and dark deep sea, but need to live off of only small amounts of food that reach the deep sea. Using chemical tracers, this study investigated whether cold-water corals are picky eaters. We found that under low food conditions, they do not differentiate between food sources but they do differentiate at high food concentrations. This adaptation suggests that they are well adapted to exploit short food pulses efficiently.
Clare Woulds, Steven Bouillon, Gregory L. Cowie, Emily Drake, Jack J. Middelburg, and Ursula Witte
Biogeosciences, 13, 4343–4357, https://doi.org/10.5194/bg-13-4343-2016, https://doi.org/10.5194/bg-13-4343-2016, 2016
Short summary
Short summary
Estuarine sediments are important locations for carbon cycling and burial. We used tracer experiments to investigate how site conditions affect the way in which seafloor biological communities cycle carbon. We showed that while total respiration rates are primarily determined by temperature, total carbon processing by the biological community is strongly related to
its biomass. Further, we saw a distinct pattern of carbon cycling in sandy sediment, in which uptake by bacteria dominates.
Arthur H. W. Beusen, Alexander F. Bouwman, Ludovicus P. H. Van Beek, José M. Mogollón, and Jack J. Middelburg
Biogeosciences, 13, 2441–2451, https://doi.org/10.5194/bg-13-2441-2016, https://doi.org/10.5194/bg-13-2441-2016, 2016
Short summary
Short summary
Intensifying anthropogenic activity over the 20th century including agriculture, water consumption, urbanization, and aquaculture has almost doubled the global nitrogen (N) and phosphorus (P) delivery to streams and steadily increased the N : P ratio in freshwater bodies. Concurrently, the cumulative number of reservoirs has driven a rise in freshwater nutrient retention and removal. Still, river nutrient transport to the ocean has also nearly doubled, potentially stressing coastal environments.
A. H. W. Beusen, L. P. H. Van Beek, A. F. Bouwman, J. M. Mogollón, and J. J. Middelburg
Geosci. Model Dev., 8, 4045–4067, https://doi.org/10.5194/gmd-8-4045-2015, https://doi.org/10.5194/gmd-8-4045-2015, 2015
Short summary
Short summary
The IMAGE-Global Nutrient Model (GNM) is used to study the impact of multiple environmental changes on N and P delivery to surface water and transport and in-stream retention in rivers, lakes, wetlands and reservoirs over prolonged time periods. N and P are delivered to water bodies via diffuse sources (agriculture and natural ecosystems) and wastewater. N and P retention in a water body is calculated on the basis of the residence time of the water and nutrient uptake velocity.
D. Graeber, G. Goyenola, M. Meerhoff, E. Zwirnmann, N. B. Ovesen, M. Glendell, J. Gelbrecht, F. Teixeira de Mello, I. González-Bergonzoni, E. Jeppesen, and B. Kronvang
Hydrol. Earth Syst. Sci., 19, 2377–2394, https://doi.org/10.5194/hess-19-2377-2015, https://doi.org/10.5194/hess-19-2377-2015, 2015
M. Hagens, C. P. Slomp, F. J. R. Meysman, D. Seitaj, J. Harlay, A. V. Borges, and J. J. Middelburg
Biogeosciences, 12, 1561–1583, https://doi.org/10.5194/bg-12-1561-2015, https://doi.org/10.5194/bg-12-1561-2015, 2015
Short summary
Short summary
This study looks at the combined impacts of hypoxia and acidification, two major environmental stressors affecting coastal systems, in a seasonally stratified basin. Here, the surface water experiences less seasonality in pH than the bottom water despite higher process rates. This is due to a substantial reduction in the acid-base buffering capacity of the bottom water as it turns hypoxic in summer. This highlights the crucial role of the buffering capacity as a modulating factor in pH dynamics.
F. Peterse, C. M. Moy, and T. I. Eglinton
Biogeosciences, 12, 933–943, https://doi.org/10.5194/bg-12-933-2015, https://doi.org/10.5194/bg-12-933-2015, 2015
A. de Kluijver, P. L. Schoon, J. A. Downing, S. Schouten, and J. J. Middelburg
Biogeosciences, 11, 6265–6276, https://doi.org/10.5194/bg-11-6265-2014, https://doi.org/10.5194/bg-11-6265-2014, 2014
J. J. Middelburg
Biogeosciences, 11, 2357–2371, https://doi.org/10.5194/bg-11-2357-2014, https://doi.org/10.5194/bg-11-2357-2014, 2014
C. E. Mueller, A. I. Larsson, B. Veuger, J. J. Middelburg, and D. van Oevelen
Biogeosciences, 11, 123–133, https://doi.org/10.5194/bg-11-123-2014, https://doi.org/10.5194/bg-11-123-2014, 2014
L. Pozzato, D. Van Oevelen, L. Moodley, K. Soetaert, and J. J. Middelburg
Biogeosciences, 10, 6879–6891, https://doi.org/10.5194/bg-10-6879-2013, https://doi.org/10.5194/bg-10-6879-2013, 2013
B. Veuger, A. Pitcher, S. Schouten, J. S. Sinninghe Damsté, and J. J. Middelburg
Biogeosciences, 10, 1775–1785, https://doi.org/10.5194/bg-10-1775-2013, https://doi.org/10.5194/bg-10-1775-2013, 2013
A. de Kluijver, K. Soetaert, J. Czerny, K. G. Schulz, T. Boxhammer, U. Riebesell, and J. J. Middelburg
Biogeosciences, 10, 1425–1440, https://doi.org/10.5194/bg-10-1425-2013, https://doi.org/10.5194/bg-10-1425-2013, 2013
K. A. Koho, K. G. J. Nierop, L. Moodley, J. J. Middelburg, L. Pozzato, K. Soetaert, J. van der Plicht, and G-J. Reichart
Biogeosciences, 10, 1131–1141, https://doi.org/10.5194/bg-10-1131-2013, https://doi.org/10.5194/bg-10-1131-2013, 2013
A. F. Bouwman, M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop, and C. P. Slomp
Biogeosciences, 10, 1–22, https://doi.org/10.5194/bg-10-1-2013, https://doi.org/10.5194/bg-10-1-2013, 2013
Related subject area
Biogeochemistry: Organic Biogeochemistry
Microbial strong organic-ligand production is tightly coupled to iron in hydrothermal plumes
Ocean liming effects on dissolved organic matter dynamics
Results from a multi-laboratory ocean metaproteomic intercomparison: effects of LC-MS acquisition and data analysis procedures
Controls on the composition of hydroxylated isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs) in cultivated ammonia-oxidizing Thaumarchaeota
Reviews and syntheses: Opportunities for robust use of peak intensities from high-resolution mass spectrometry in organic matter studies
Elemental stoichiometry of particulate organic matter across the Atlantic Ocean
Lipid remodeling in phytoplankton exposed to multi-environmental drivers in a mesocosm experiment
Molecular-level carbon traits of fine roots: unveiling adaptation and decomposition under flooded conditions
Contrasting seasonal patterns in particle aggregation and DOM transformation in a sub-Arctic fjord
Environmental controls on the distribution of brGDGTs and brGMGTs across the Seine River basin (NW France): implications for bacterial tetraethers as a proxy for riverine runoff
Latitudinal distribution of biomarkers across the western Arctic Ocean and the Bering Sea: an approach to assess sympagic and pelagic algal production
Sinking fate and carbon export of zooplankton fecal pellets: insights from time-series sediment trap observations in the northern South China Sea
Low cobalt inventories in the Amundsen and Ross seas driven by high demand for labile cobalt uptake among native phytoplankton communities
Methods to characterize type, relevance, and interactions of organic matter and microorganisms in fluids along the flow path of a geothermal facility
Potential bioavailability of representative pyrogenic organic matter compounds in comparison to natural dissolved organic matter pools
Distributions of bacteriohopanepolyols in lakes and coastal lagoons of the Azores Archipelago
Recently fixed carbon fuels microbial activity several meters below the soil surface
Environmental and hydrologic controls on sediment and organic carbon export from a subalpine catchment: insights from a time series
Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale
Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean
Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region)
Microbial labilization and diversification of pyrogenic dissolved organic matter
Bacterial and eukaryotic intact polar lipids point to in situ production as a key source of labile organic matter in hadal surface sediment of the Atacama Trench
What can we learn from amino acids about oceanic organic matter cycling and degradation?
Bacteriohopanetetrol-x: constraining its application as a lipid biomarker for marine anammox using the water column oxygen gradient of the Benguela upwelling system
Active and passive fluxes of carbon, nitrogen, and phosphorus in the northern South China Sea
Cyanobacteria net community production in the Baltic Sea as inferred from profiling pCO2 measurements
Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling
Revised fractional abundances and warm-season temperatures substantially improve brGDGT calibrations in lake sediments
Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas
Reproducible determination of dissolved organic matter photosensitivity
Technical note: Uncovering the influence of methodological variations on the extractability of iron-bound organic carbon
Anthropocene climate warming enhances autochthonous carbon cycling in an upland Arctic lake, Disko Island, West Greenland
Novel hydrocarbon-utilizing soil mycobacteria synthesize unique mycocerosic acids at a Sicilian everlasting fire
Alkenone isotopes show evidence of active carbon concentrating mechanisms in coccolithophores as aqueous carbon dioxide concentrations fall below 7 µmol L−1
Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake
Sediment release of dissolved organic matter to the oxygen minimum zone off Peru
Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts
The nonconservative distribution pattern of organic matter in the Rajang, a tropical river with peatland in its estuary
Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication
High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling
Sterol preservation in hypersaline microbial mats
Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)
Distribution and degradation of terrestrial organic matter in the sediments of peat-draining rivers, Sarawak, Malaysian Borneo
Validation of carbon isotope fractionation in algal lipids as a pCO2 proxy using a natural CO2 seep (Shikine Island, Japan)
Composition and cycling of dissolved organic matter from tropical peatlands of coastal Sarawak, Borneo, revealed by fluorescence spectroscopy and parallel factor analysis
Latitudinal variations in δ30Si and δ15N signatures along the Peruvian shelf: quantifying the effects of nutrient utilization versus denitrification over the past 600 years
Diapycnal dissolved organic matter supply into the upper Peruvian oxycline
Composition and vertical flux of particulate organic matter to the oxygen minimum zone of the central Baltic Sea: impact of a sporadic North Sea inflow
Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
Biogeosciences, 21, 5233–5246, https://doi.org/10.5194/bg-21-5233-2024, https://doi.org/10.5194/bg-21-5233-2024, 2024
Short summary
Short summary
Hydrothermally derived iron can be transported kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization of dissolved iron remain elusive. Using electrochemical, spectrometry, and genomic methods, we demonstrated that strong ligands exert an important control on iron in plumes, and high-affinity iron-binding siderophores were identified in several hydrothermal plume samples for the first time.
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
Biogeosciences, 21, 5131–5141, https://doi.org/10.5194/bg-21-5131-2024, https://doi.org/10.5194/bg-21-5131-2024, 2024
Short summary
Short summary
Ocean liming is a technique proposed to mitigate ocean acidification. Every action we take has an impact on the environment and the effects on the invisible world are often overlooked. With this study, we show that lime addition impacts the dynamics of dissolved organic matter, one of the largest reservoirs of carbon on Earth, representing the main source of energy for marine microbes. Further studies to assess the impacts on marine ecosystems are therefore crucial before taking any action.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
Adam J. Fagan, Tatsuro Tanioka, Alyse A. Larkin, Jenna A. Lee, Nathan S. Garcia, and Adam C. Martiny
Biogeosciences, 21, 4239–4250, https://doi.org/10.5194/bg-21-4239-2024, https://doi.org/10.5194/bg-21-4239-2024, 2024
Short summary
Short summary
Climate change is anticipated to influence the biological pump by altering phytoplankton nutrient distribution. In our research, we collected measurements of particulate matter concentrations during two oceanographic field studies. We observed systematic variations in organic matter concentrations and ratios across the Atlantic Ocean. From statistical modeling, we determined that these variations are associated with differences in the availability of essential nutrients for phytoplankton growth.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Mengke Wang, Peng Zhang, Huishan Li, Guisen Deng, Deliang Kong, Sifang Kong, and Junjian Wang
Biogeosciences, 21, 2691–2704, https://doi.org/10.5194/bg-21-2691-2024, https://doi.org/10.5194/bg-21-2691-2024, 2024
Short summary
Short summary
We developed and applied complementary analyses to characterize molecular-level carbon traits for water-grown and soil-grown fine roots. The adaptive strategy of developing more labile carbon in water-grown roots accelerated root decomposition and counteracted the decelerated effects of anoxia on decomposition, highlighting an indirect effect of environmental change on belowground carbon cycling.
Maria G. Digernes, Yasemin V. Bodur, Martí Amargant-Arumí, Oliver Müller, Jeffrey A. Hawkes, Stephen G. Kohler, Ulrike Dietrich, Marit Reigstad, and Maria Lund Paulsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1314, https://doi.org/10.5194/egusphere-2024-1314, 2024
Short summary
Short summary
Dissolved (DOM) and particulate organic matter (POM) are in constant exchange, but usually studied as distinct entities. We investigated the dynamics between POM and DOM in a sub-Arctic fjord across different seasons by conducting bi-monthly aggregation-dissolution experiments. During the productive period, POM concentrations increased in the experiment while DOM molecules became more recalcitrant. During the winter period, POM concentrations decreased whereas DOM molecules became more labile.
Zhe-Xuan Zhang, Edith Parlanti, Christelle Anquetil, Jérôme Morelle, Anniet M. Laverman, Alexandre Thibault, Elisa Bou, and Arnaud Huguet
Biogeosciences, 21, 2227–2252, https://doi.org/10.5194/bg-21-2227-2024, https://doi.org/10.5194/bg-21-2227-2024, 2024
Short summary
Short summary
Bacterial tetraethers have important implications for palaeoclimate reconstruction. However, fundamental understanding of how these lipids are transformed from land to sea and which environmental factors influence their distributions is lacking. Here, we investigate the sources of brGDGTs and brGMGTs and the factors controlling their distributions in a large dataset (n=237). We propose a novel proxy (RIX) to trace riverine runoff, which is applicable in modern systems and in paleorecord.
Youcheng Bai, Marie-Alexandrine Sicre, Jian Ren, Vincent Klein, Haiyan Jin, and Jianfang Chen
Biogeosciences, 21, 689–709, https://doi.org/10.5194/bg-21-689-2024, https://doi.org/10.5194/bg-21-689-2024, 2024
Short summary
Short summary
Algal biomarkers were used to assess sea ice and pelagic algal production across the western Arctic Ocean with changing sea-ice conditions. They show three distinct areas along with a marked latitudinal gradient of sea ice over pelagic algal production in surface sediments that are reflected by the H-Print index. Our data also show that efficient grazing consumption accounted for the dramatic decrease of diatom-derived biomarkers in sediments compared to that of particulate matter.
Hanxiao Wang, Zhifei Liu, Jiaying Li, Baozhi Lin, Yulong Zhao, Xiaodong Zhang, Junyuan Cao, Jingwen Zhang, Hongzhe Song, and Wenzhuo Wang
Biogeosciences, 20, 5109–5123, https://doi.org/10.5194/bg-20-5109-2023, https://doi.org/10.5194/bg-20-5109-2023, 2023
Short summary
Short summary
The sinking of zooplankton fecal pellets is a key process in the marine biological carbon pump. This study presents carbon export of four shapes of fecal pellets from two time-series sediment traps in the South China Sea. The results show that the sinking fate of fecal pellets is regulated by marine primary productivity, deep-dwelling zooplankton community, and deep-sea currents in the tropical marginal sea, thus providing a new perspective for exploring the carbon cycle in the world ocean.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Alessio Leins, Danaé Bregnard, Andrea Vieth-Hillebrand, Stefanie Poetz, Florian Eichinger, Guillaume Cailleau, Pilar Junier, and Simona Regenspurg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-159, https://doi.org/10.5194/bg-2023-159, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Organic matter and microbial fluid analyses are rarely taken into account in the geothermal industry and research. However, they can have a significant effect on the efficiency of geothermal power production. We discovered a high variety in organic compound composition in our samples and were able to differentiate it with regard to various sources (e.g. artificial and biogenic). Furthermore, the microbial diversity undergoes significant changes within the flow path of a geothermal power plant.
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Andrea Scheibe, Carlos A. Sierra, and Marie Spohn
Biogeosciences, 20, 827–838, https://doi.org/10.5194/bg-20-827-2023, https://doi.org/10.5194/bg-20-827-2023, 2023
Short summary
Short summary
We explored carbon cycling in soils in three climate zones in Chile down to a depth of 6 m, using carbon isotopes. Our results show that microbial activity several meters below the soil surface is mostly fueled by recently fixed carbon and that strong decomposition of soil organic matter only occurs in the upper decimeters of the soils. The study shows that different layers of the critical zone are tightly connected and that processes in the deep soil depend on recently fixed carbon.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Lisa Noll, Shasha Zhang, Qing Zheng, Yuntao Hu, Florian Hofhansl, and Wolfgang Wanek
Biogeosciences, 19, 5419–5433, https://doi.org/10.5194/bg-19-5419-2022, https://doi.org/10.5194/bg-19-5419-2022, 2022
Short summary
Short summary
Cleavage of proteins to smaller nitrogen compounds allows microorganisms and plants to exploit the largest nitrogen reservoir in soils and is considered the bottleneck in soil organic nitrogen cycling. Results from soils covering a European transect show that protein turnover is constrained by soil geochemistry, shifts in climate and associated alterations in soil weathering and should be considered as a driver of soil nitrogen availability with repercussions on carbon cycle processes.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Aleksandar I. Goranov, Andrew S. Wozniak, Kyle W. Bostick, Andrew R. Zimmerman, Siddhartha Mitra, and Patrick G. Hatcher
Biogeosciences, 19, 1491–1514, https://doi.org/10.5194/bg-19-1491-2022, https://doi.org/10.5194/bg-19-1491-2022, 2022
Short summary
Short summary
Wildfire-derived molecules are ubiquitous in the aquatic environment, but their biological fate remains understudied. We have evaluated the compositional changes that occur to wildfire-derived molecules after incubation with soil microbes. We observe a significant degradation but also a production of numerous new labile molecules. Our results indicate that wildfire-derived molecules can be broken down and the carbon and nitrogen therein can be incorporated into microbial food webs.
Edgart Flores, Sebastian I. Cantarero, Paula Ruiz-Fernández, Nadia Dildar, Matthias Zabel, Osvaldo Ulloa, and Julio Sepúlveda
Biogeosciences, 19, 1395–1420, https://doi.org/10.5194/bg-19-1395-2022, https://doi.org/10.5194/bg-19-1395-2022, 2022
Short summary
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Zoë R. van Kemenade, Laura Villanueva, Ellen C. Hopmans, Peter Kraal, Harry J. Witte, Jaap S. Sinninghe Damsté, and Darci Rush
Biogeosciences, 19, 201–221, https://doi.org/10.5194/bg-19-201-2022, https://doi.org/10.5194/bg-19-201-2022, 2022
Short summary
Short summary
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We assess the distribution of bacteriohopanetetrol-x (BHT-x), used to trace past anammox, along a redox gradient in the water column of the Benguela upwelling system. BHT-x / BHT ratios of >0.18 correspond to the presence of living anammox bacteria and oxygen levels <50 μmol L−1. This allows for a more robust application of BHT-x to trace past marine anammox and deoxygenation in dynamic marine systems.
Jia-Jang Hung, Ching-Han Tung, Zong-Ying Lin, Yuh-ling Lee Chen, Shao-Hung Peng, Yen-Huei Lin, and Li-Shan Tsai
Biogeosciences, 18, 5141–5162, https://doi.org/10.5194/bg-18-5141-2021, https://doi.org/10.5194/bg-18-5141-2021, 2021
Short summary
Short summary
We report measured active and passive fluxes and their controlling mechanisms in the northern South China Sea (NSCS). The total fluxes were higher than most reports in open oceans, indicating the significance of NSCS in atmospheric CO2 uptake and in storing that CO2 in the ocean’s interior. Winter cooling and extreme events enhanced nutrient availability and elevated fluxes. Global warming may have profound impacts on reducing ocean’s uptake and storage of CO2 in subtropical–tropical oceans.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Alexander Braun, Marina Spona-Friedl, Maria Avramov, Martin Elsner, Federico Baltar, Thomas Reinthaler, Gerhard J. Herndl, and Christian Griebler
Biogeosciences, 18, 3689–3700, https://doi.org/10.5194/bg-18-3689-2021, https://doi.org/10.5194/bg-18-3689-2021, 2021
Short summary
Short summary
It is known that CO2 fixation by photoautotrophic organisms is the major sink from the atmosphere. While biologists are aware that CO2 fixation also occurs in heterotrophic organisms, this route of inorganic carbon, and its quantitative role, is hardly recognized in biogeochemistry. We demonstrate that a considerable amount of CO2 is fixed annually through anaplerotic reactions in heterotrophic organisms, and a significant quantity of inorganic carbon is temporally sequestered in biomass.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Alec W. Armstrong, Leanne Powers, and Michael Gonsior
Biogeosciences, 18, 3367–3390, https://doi.org/10.5194/bg-18-3367-2021, https://doi.org/10.5194/bg-18-3367-2021, 2021
Short summary
Short summary
Living things decay into organic matter, which can dissolve into water (like tea brewing). Tea receives its color by absorbing light. Similarly, this material absorbs light, which can then cause chemical reactions that change it. By measuring changes in these optical properties, we found that materials from some places are more sensitive to light than others. Comparing sensitivity to light helps us understand where these materials come from and what happens as they move through water.
Ben J. Fisher, Johan C. Faust, Oliver W. Moore, Caroline L. Peacock, and Christian März
Biogeosciences, 18, 3409–3419, https://doi.org/10.5194/bg-18-3409-2021, https://doi.org/10.5194/bg-18-3409-2021, 2021
Short summary
Short summary
Organic carbon can be protected from microbial degradation in marine sediments through association with iron minerals on 1000-year timescales. Despite the importance of this carbon sink, our spatial and temporal understanding of iron-bound organic carbon interactions globally is poor. Here we show that caution must be applied when comparing quantification of iron-bound organic carbon extracted by different methods as the extraction strength and method specificity can be highly variable.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
Marcus P. S. Badger
Biogeosciences, 18, 1149–1160, https://doi.org/10.5194/bg-18-1149-2021, https://doi.org/10.5194/bg-18-1149-2021, 2021
Short summary
Short summary
Reconstructing ancient atmospheric CO2 is an important aim of palaeoclimate science in order to understand the Earth's climate system. One method, the alkenone proxy based on molecular fossils of coccolithophores, has been recently shown to be ineffective at low-to-moderate CO2 levels. In this paper I show that this is likely due to changes in the biogeochemistry of the coccolithophores when there is low carbon availability, but for much of the Cenozoic the alkenone proxy should have utility.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Gerard J. M. Versteegh, Alexander J. P. Houben, and Karin A. F. Zonneveld
Biogeosciences, 17, 3545–3561, https://doi.org/10.5194/bg-17-3545-2020, https://doi.org/10.5194/bg-17-3545-2020, 2020
Short summary
Short summary
Anoxic sediments mostly contain much more organic matter than oxic ones, and therefore organic matter in anoxic settings is often considered to be preserved better than in oxic settings. However, through the analysis of the same fossil dinoflagellate cyst species from both oxic and anoxic settings, we show that at a molecular level the preservation in the oxic sediments may be better since in the anoxic setting the cyst macromolecule has been altered by postdepositional modification.
Zhuo-Yi Zhu, Joanne Oakes, Bradley Eyre, Youyou Hao, Edwin Sien Aun Sia, Shan Jiang, Moritz Müller, and Jing Zhang
Biogeosciences, 17, 2473–2485, https://doi.org/10.5194/bg-17-2473-2020, https://doi.org/10.5194/bg-17-2473-2020, 2020
Short summary
Short summary
Samples were collected in August 2016 in the Rajang River and its estuary, with tropical forest in the river basin and peatland in the estuary. Organic matter composition was influenced by transportation in the river basin, whereas peatland added clear biodegraded parts to the fluvial organic matter, which implies modification of the initial lability and/or starting points in the subsequent degradation and alternation processes after the organic matter enters the sea.
Wenjie Xiao, Yasong Wang, Yongsheng Liu, Xi Zhang, Linlin Shi, and Yunping Xu
Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020, https://doi.org/10.5194/bg-17-2135-2020, 2020
Short summary
Short summary
The hadal zone (6–11 km depth) is the least explored habitat on Earth. We studied microbial branched glycerol dialkyl glycerol tetraethers (brGDGTs) in the Challenger Deep, Mariana Trench. One unique feature is the strong predominance of 6-methyl brGDGT, which likely reflects an adaption of brGDGT-producing bacteria to alkaline seawater and low temperature. BrGDGTs, with elemental and isotopic data, suggest an autochthonous product for brGDGT. A new approach is proposed for brGDGT sourcing.
Yuge Bai, Edisson Subdiaga, Stefan B. Haderlein, Heike Knicker, and Andreas Kappler
Biogeosciences, 17, 683–698, https://doi.org/10.5194/bg-17-683-2020, https://doi.org/10.5194/bg-17-683-2020, 2020
Short summary
Short summary
Biogeochemical processes of SOM are key for greenhouse gas emission and water quality. We extracted SOM by water or by NaOH–HCl under oxic–anoxic conditions. Chemical and anoxic extractions lead to higher SOM electron exchange capacities, resulting in stimulation of microbial Fe(III) reduction. Therefore, aqueous pH-neutral SOM extracts should be used to reflect environmental SOM redox processes, and artifacts of chemical extractions need to be considered when evaluating SOM redox processes.
Yan Shen, Volker Thiel, Pablo Suarez-Gonzalez, Sebastiaan W. Rampen, and Joachim Reitner
Biogeosciences, 17, 649–666, https://doi.org/10.5194/bg-17-649-2020, https://doi.org/10.5194/bg-17-649-2020, 2020
Short summary
Short summary
Today, sterols are widespread in plants, animals, and fungi but are almost absent in the oldest rocks. Microbial mats, representing the earliest complex ecosystems on Earth, were omnipresent in Precambrian marine environments and may have degraded the sterols at that time. Here we analyze the distribution of sterols through a microbial mat. This provides insight into how variations in biological and nonbiological factors affect the preservation of sterols in modern and ancient microbial mats.
Sarah Coffinet, Travis B. Meador, Lukas Mühlena, Kevin W. Becker, Jan Schröder, Qing-Zeng Zhu, Julius S. Lipp, Verena B. Heuer, Matthew P. Crump, and Kai-Uwe Hinrichs
Biogeosciences, 17, 317–330, https://doi.org/10.5194/bg-17-317-2020, https://doi.org/10.5194/bg-17-317-2020, 2020
Short summary
Short summary
This study deals with two membrane lipids called BDGTs and PDGTs. Membrane lipids are molecules forming the cell envelope of all organisms. Different organisms produce different lipids thus they can be used to detect the presence of specific organisms in the environment. We analyzed the structure of these new lipids and looked for potential producers. We found that they are likely made by microbes emitting methane below the sediment surface and could be used to track these specific microbes.
Ying Wu, Kun Zhu, Jing Zhang, Moritz Müller, Shan Jiang, Aazani Mujahid, Mohd Fakharuddin Muhamad, and Edwin Sien Aun Sia
Biogeosciences, 16, 4517–4533, https://doi.org/10.5194/bg-16-4517-2019, https://doi.org/10.5194/bg-16-4517-2019, 2019
Short summary
Short summary
Our understanding of terrestrial organic matter (TOM) in tropical peat-draining rivers remains limited, especially in Southeast Asia. We explored the characteristics of TOM via bulk parameters and lignin phenols of sediment in Malaysia. This showed that the most important plant source of the organic matter in these rivers is woody angiosperm C3 plants with limited diagenetic alteration. This slower degradation of TOM may be a link to higher total nitrogen content, especially for the small river.
Caitlyn R. Witkowski, Sylvain Agostini, Ben P. Harvey, Marcel T. J. van der Meer, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 4451–4461, https://doi.org/10.5194/bg-16-4451-2019, https://doi.org/10.5194/bg-16-4451-2019, 2019
Short summary
Short summary
Carbon dioxide concentrations (pCO2) in the atmosphere play an integral role in Earth system dynamics, especially climate. Past climates help us understand future ones, but reconstructing pCO2 over the geologic record remains a challenge. This research demonstrates new approaches for exploring past pCO2 via the carbon isotope fractionation in general algal lipids, which we test over a high CO2 gradient from a naturally occurring CO2 seep.
Yongli Zhou, Patrick Martin, and Moritz Müller
Biogeosciences, 16, 2733–2749, https://doi.org/10.5194/bg-16-2733-2019, https://doi.org/10.5194/bg-16-2733-2019, 2019
Short summary
Short summary
We found that peatlands in coastal Sarawak, Borneo, export extremely humified organic matter, which dominates the riverine organic matter pool and conservatively mixes with seawater, while the freshly produced fraction is low and stable in concentration at all salinities. We estimated that terrigenous fractions, which showed high photolability, still account for 20 % of the coastal dissolved organic carbon pool, implying the importance of peat-derived organic matter in the coastal carbon cycle.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Alexandra N. Loginova, Sören Thomsen, Marcus Dengler, Jan Lüdke, and Anja Engel
Biogeosciences, 16, 2033–2047, https://doi.org/10.5194/bg-16-2033-2019, https://doi.org/10.5194/bg-16-2033-2019, 2019
Short summary
Short summary
High primary production in the Peruvian upwelling system is followed by rapid heterotrophic utilization of organic matter and supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world. Here, we estimated vertical fluxes of oxygen and dissolved organic matter (DOM) from the surface to the OMZ. Our results suggest that DOM remineralization substantially reduces oxygen concentration in the upper water column and controls the shape of the upper oxycline.
Carolina Cisternas-Novoa, Frédéric A. C. Le Moigne, and Anja Engel
Biogeosciences, 16, 927–947, https://doi.org/10.5194/bg-16-927-2019, https://doi.org/10.5194/bg-16-927-2019, 2019
Short summary
Short summary
We investigate the composition and vertical fluxes of POM in two deep basins of the Baltic Sea (GB: Gotland Basin and LD: Landsort Deep). The two basins showed different O2 regimes resulting from the intrusion of oxygen-rich water from the North Sea that ventilated the deep waters in GB, but not in LD.
In GB, O2 intrusions lead to a high abundance of manganese oxides that aggregate with POM, altering its composition and vertical flux and contributing to a higher POC transfer efficiency in GB.
Marina Zamanillo, Eva Ortega-Retuerta, Sdena Nunes, Pablo Rodríguez-Ros, Manuel Dall'Osto, Marta Estrada, Maria Montserrat Sala, and Rafel Simó
Biogeosciences, 16, 733–749, https://doi.org/10.5194/bg-16-733-2019, https://doi.org/10.5194/bg-16-733-2019, 2019
Short summary
Short summary
Many marine microorganisms produce polysaccharide-rich transparent exopolymer particles (TEPs) for rather unknown reasons but with important consequences for the ocean carbon cycle, sea–air gas exchange and formation of organic aerosols. Here we compare surface–ocean distributions of TEPs and physical, chemical and biological variables along a N–S transect in the Atlantic Ocean. Our data suggest that phytoplankton and not bacteria are the main TEP producers, and solar radiation acts as a sink.
Cited articles
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S.
C., Alin, S. R., Aalto, R. E., and Yoo, K.: Riverine coupling of
biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol.
Environ., 9, 53–60, https://doi.org/10.1890/100014, 2011.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A.,
and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2,
598–600, https://doi.org/10.1038/ngeo618, 2009.
Baxter, A. J., Hopmans, E. C., and Russell, J. M.: ScienceDirect Bacterial
GMGTs in East African lake sediments?: Their potential as palaeotemperature
indicators, Geochim. Cosmochim. Ac., 259, 155–169, https://doi.org/10.1016/j.gca.2019.05.039, 2019.
Bianchi, T. S.: The role of terrestrially derived organic carbon in the
coastal ocean: A changing paradigm and the priming effect, P. Natl. Acad.
Sci. USA, 108, 19473–19481, https://doi.org/10.1073/pnas.1017982108, 2011.
Bianchi, T. S., Filley, T., Dria, K., and Hatcher, P. G.: Temporal
variability in sources of dissolved organic carbon in the lower Mississippi
River, Geochim. Cosmochim. Ac., 68, 959–967,
https://doi.org/10.1016/j.gca.2003.07.011, 2004.
Blaga, C. I., Reichart, G. J., Heiri, O., and Sinninghe Damsté, J. S.:
Tetraether membrane lipid distributions in water-column particulate matter
and sediments: A study of 47 European lakes along a north–south transect, J.
Paleolimnol., 41, 523–540, https://doi.org/10.1007/s10933-008-9242-2, 2009.
Blair, N. E., Leithold, E. L., and Aller, R. C.: From bedrock to burial: the
evolution of particulate organic carbon across coupled watershed-continental
margin systems, Mar. Chem., 92, 141–156,
https://doi.org/10.1016/j.marchem.2004.06.023, 2004.
Brassell, S. C. and Eglinton, G.: Molecular geochemical indicators in sediments, in: Organic Marine Geochemistry ACS Symposium Series 305, edited by: Sohn, M. L., 10–32, American Chemical Society, Washington, 1986.
Buckles, L. K., Weijers, J. W. H., Tran, X.-M., Waldron, S., and Sinninghe Damsté, J. S.: Provenance of tetraether membrane lipids in a large temperate lake (Loch Lomond, UK): implications for glycerol dialkyl glycerol tetraether (GDGT)-based palaeothermometry, Biogeosciences, 11, 5539–5563, https://doi.org/10.5194/bg-11-5539-2014, 2014.
Coard, M. A., Cousen, S. M., Cuttler, A. H., Dean, H. J., Dearing, J. A.,
Eglinton, T. I., Greaves, A. M., Lacey, K. P., O'Sullivan, P. E., Pickering,
D. A., Rhead, M. M., Rodwell, J. K., and Simola, H.: Paleolimnological
studies of annually-laminated sediments in Loe Pool, Cornwall, U.K.,
Hydrobiologia, 103, 185–191, https://doi.org/10.1007/BF00028450, 1983.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Dang, X., Yang, H., Naafs, B. D. A., Pancost, R. D., and Xie, S.: Evidence of
moisture control on the methylation of branched glycerol dialkyl glycerol
tetraethers in semi-arid and arid soils, Geochim. Cosmochim. Ac., 189,
24–36, https://doi.org/10.1016/j.gca.2016.06.004, 2016.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Dearing Crampton-Flood, E., Peterse, F., Munsterman, D., and Sinninghe
Damsté, J. S.: Using tetraether lipids archived in North Sea Basin
sediments to extract North Western European Pliocene continental air
temperatures, Earth Planet. Sc. Lett., 490, 193–205,
https://doi.org/10.1016/j.epsl.2018.03.030, 2018.
De Jonge, C., Hopmans, E. C., Stadnitskaia, A., Rijpstra, W. I. C., Hofland,
R., Tegelaar, E., and Sinninghe Damsté, J. S.: Identification of novel
penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in
peat using HPLC–MS2, GC–MS and GC–SMB-MS, Org. Geochem., 54, 78–82,
https://doi.org/10.1016/j.orggeochem.2012.10.004, 2013.
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A.,
and Sinninghe Damsté, J. S.: In situ produced branched glycerol dialkyl
glycerol tetraethers in suspended particulate matter from the Yenisei River,
Eastern Siberia, Geochim. Cosmochim. Ac., 125, 476–491,
https://doi.org/10.1016/j.gca.2013.10.031, 2014a.
De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J.-H., Schouten, S., and
Sinninghe Damsté, J. S.: Occurrence and abundance of 6-methyl branched
glycerol dialkyl glycerol tetraethers in soils: Implications for
palaeoclimate reconstruction, Geochim. Cosmochim. Ac., 141, 97–112,
https://doi.org/10.1016/j.gca.2014.06.013, 2014b.
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A.,
Streletskaya, I. D., Vasiliev, A. A., and Sinninghe Damsté, J. S.:
Drastic changes in the distribution of branched tetraether lipids in
suspended matter and sediments from the Yenisei River and Kara Sea
(Siberia): Implications for the use of brGDGT-based proxies in coastal
marine sediments, Geochim. Cosmochim. Ac., 165, 200–225,
https://doi.org/10.1016/j.gca.2015.05.044, 2015.
Dirghangi, S. S., Pagani, M., Hren, M. T., and Tipple, B. J.: Distribution of
glycerol dialkyl glycerol tetraethers in soils from two environmental
transects in the USA, Org. Geochem., 59, 49–60,
https://doi.org/10.1016/j.orggeochem.2013.03.009, 2013.
Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E., and Scow, K. M.: Land
use and climatic factors structure regional patterns in soil microbial
communities, Global Ecol. Biogeogr., 19, 27–39,
https://doi.org/10.1111/j.1466-8238.2009.00486.x, 2010.
Eglinton, G. and Hamilton, R. J.: Leaf Epicuticular Waxes, Science,
156, 1322–1335, https://doi.org/10.1126/science.156.3780.1322, 1967.
Feng, X., Vonk, J. E., van Dongen, B. E., Gustafsson, O., Semiletov, I. P.,
Dudarev, O. V., Wang, Z., Montlucon, D. B., Wacker, L., and Eglinton, T. I.:
Differential mobilization of terrestrial carbon pools in Eurasian Arctic
river basins, P. Natl. Acad. Sci. USA, 110, 14168–14173,
https://doi.org/10.1073/pnas.1307031110, 2013.
Feng, X., Feakins, S. J., Liu, Z., Ponton, C., Wang, R. Z., Karkabi, E.,
Galy, V., Berelson, W. M., Nottingham, A. T., Meir, P., and West, A. J.:
Source to sink: Evolution of lignin composition in the Madre de Dios River
system with connection to the Amazon basin and offshore, J. Geophys. Res.-Biogeo., 121, 1316–1338, https://doi.org/10.1002/2016JG003323, 2016.
Fernandes, M. B. and Sicre, M. A.: The importance of terrestrial organic
carbon inputs on Kara Sea shelves as revealed by n-alkanes, OC and δ13C values, Org. Geochem., 31, 363–374,
https://doi.org/10.1016/S0146-6380(00)00006-1, 2000.
Fierer, N. and Jackson, R. B.: The diversity and biogeography of soil
bacterial communities, P. Natl. Acad. Sci. USA, 103, 626–31,
https://doi.org/10.1073/pnas.0507535103, 2006.
Flory, J. E. and Hawley, G. R. W.: A hydrodictyon reticulatum bloom at loe
pool, cornwall, Eur. J. Phycol., 29, 17–20,
https://doi.org/10.1080/09670269400650431, 1994.
Freymond, C. V., Peterse, F., Fischer, L. V., Filip, F., Giosan, L., and
Eglinton, T. I.: Branched GDGT signals in fluvial sediments of the Danube
River basin: Method comparison and longitudinal evolution, Org. Geochem.,
103, 88–96, https://doi.org/10.1016/j.orggeochem.2016.11.002, 2017.
Glendell, M., Jones, R., Dungait, J. A. J., Meusburger, K., Schwendel, A.
C., Barclay, R., Barker, S., Haley, S., Quine, T. A., and Meersmans, J.:
Tracing of particulate organic C sources across the terrestrial-aquatic
continuum, a case study at the catchment scale (Carminowe Creek, southwest
England), Sci. Total Environ., 616–617, 1077–1088,
https://doi.org/10.1016/j.scitotenv.2017.10.211, 2018.
Goñi, M. A., Ruttenberg, K. C., and Eglinton, T. I.: Sources and
contribution of terrigenous organic carbon to surface sediments in the Gulf
of Mexico, Nature, 389, 275–278, https://doi.org/10.1038/38477, 1997.
Guo, J., Glendell, M., Meersmans, J., Kirkels, F. M. S. A., Middelburg, J. J., and Peterse, F.: Branched tetraether lipids in Carminowe Creek catchment (southwest England), PANGAEA, https://doi.org/10.1594/PANGAEA.918523, 2020.
Harvey, H. R., Fallon, R. D., and Patton, J. S.: The effect of organic matter
and oxygen on the degradation of bacterial membrane lipids in marine
sediments, Geochim. Cosmochim. Ac., 50, 795–804,
https://doi.org/10.1016/0016-7037(86)90355-8, 1986.
Hedges, J. I., Clark, W. A., Quay, P. D., Richey, J. E., Devol, A. H., and
Santos, M.: Compositions and fluxes of particulate organic material in the
Amazon River, Limnol. Oceanogr., 31, 717–738,
https://doi.org/10.4319/lo.1986.31.4.0717, 1986.
Hedges, J. I., Keil, R. G., and Benner, R.: What happens to terrestrial
organic matter in the ocean?, Org. Geochem., 27, 195–212,
https://doi.org/10.1016/S0146-6380(97)00066-1, 1997.
Hedges, J. I., Mayorga, E., Tsamakis, E., McClain, M. E., Aufdenkampe, A.,
Quay, P., Richey, J. E., Benner, R., Opsahl, S., Black, B., Pimentel, T.,
Quintanilla, J., and Maurice, L.: Organic matter in Bolivian tributaries of
the Amazon River: A comparison to the lower mainstream, Limnol. Oceanogr.,
45, 1449–1466, https://doi.org/10.4319/lo.2000.45.7.1449, 2000.
Hemingway, J. D., Schefuß, E., Spencer, R. G. M., Dinga, B. J.,
Eglinton, T. I., McIntyre, C., and Galy, V. V.: Hydrologic controls on
seasonal and inter-annual variability of Congo River particulate organic
matter source and reservoir age, Chem. Geol., 466, 454–465,
https://doi.org/10.1016/j.chemgeo.2017.06.034, 2017.
Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe
Damsté, J. S., and Schouten, S.: A novel proxy for terrestrial organic
matter in sediments based on branched and isoprenoid tetraether lipids,
Earth Planet. Sc. Lett., 224, 107–116,
https://doi.org/10.1016/j.epsl.2004.05.012, 2004.
Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: The effect of
improved chromatography on GDGT-based palaeoproxies, Org. Geochem., 93,
1–6, https://doi.org/10.1016/j.orggeochem.2015.12.006, 2016.
Huguet, A., Meador, T. B., Laggoun-Défarge, F., Könneke, M., Wu, W.,
Derenne, S., and Hinrichs, K. U.: Production rates of bacterial tetraether
lipids and fatty acids in peatland under varying oxygen concentrations,
Geochim. Cosmochim. Ac., 203, 103–116, https://doi.org/10.1016/j.gca.2017.01.012,
2017.
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe
Damsté, J. S., and Schouten, S.: An improved method to determine the
absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org.
Geochem., 37, 1036–1041, https://doi.org/10.1016/j.orggeochem.2006.05.008, 2006.
Inglis, G. N., Collinson, M. E., Riegel, W., Wilde, V., Farnsworth, A.,
Lunt, D. J., Valdes, P., Robson, B. E., Scott, A. C., Lenz, O. K., Naafs, B.
D. A., and Pancost, R. D.: Mid-latitude continental temperatures through the
early Eocene in western Europe, Earth Planet. Sc. Lett., 460, 86–96,
https://doi.org/10.1016/j.epsl.2016.12.009, 2017.
Jaeschke, A., Rethemeyer, J., Lappé, M., Schouten, S., Boeckx, P., and
Schefuß, E.: Influence of land use on distribution of soil n-alkane
δD and brGDGTs along an altitudinal transect in Ethiopia:
Implications for (paleo)environmental studies, Org. Geochem., 124, 77–87,
https://doi.org/10.1016/j.orggeochem.2018.06.006, 2018.
Janzen, H. H.: Carbon cycling in earth systems – A soil science perspective,
Agr. Ecosyst. Environ., 104, 399–417, https://doi.org/10.1016/j.agee.2004.01.040,
2004.
Kim, J. H., Zell, C., Moreira-Turcq, P., Pérez, M. A. P., Abril, G.,
Mortillaro, J. M., Weijers, J. W. H., Meziane, T., and Sinninghe Damsté,
J. S.: Tracing soil organic carbon in the lower Amazon River and its
tributaries using GDGT distributions and bulk organic matter properties,
Geochim. Cosmochim. Ac., 90, 163–180, https://doi.org/10.1016/j.gca.2012.05.014, 2012.
Kim, J. H., Ludwig, W., Buscail, R., Dorhout, D., and Sinninghe Damsté,
J. S.: Tracing tetraether lipids from source to sink in the Rhône river
system (NW Mediterranean), Front. Earth Sci., 3, 22,
https://doi.org/10.3389/feart.2015.00022, 2015.
Liang, J., Russell, J. M., Xie, H., Lupien, R. L., Si, G., Wang, J., Hou, J.,
and Zhang, G.: Vegetation effects on temperature calibrations of branched
glycerol dialkyl glycerol tetraether (brGDGTs) in soils, Org. Geochem., 127,
1–11, https://doi.org/10.1016/j.orggeochem.2018.10.010, 2019.
Loomis, S. E., Russell, J. M., and Sinninghe Damsté, J. S.: Distributions
of branched GDGTs in soils and lake sediments from western Uganda:
Implications for a lacustrine paleothermometer, Org. Geochem., 42,
739–751, https://doi.org/10.1016/j.orggeochem.2011.06.004, 2011.
Loomis, S. E., Russell, J. M., Heureux, A. M., D'Andrea, W. J., and Sinninghe
Damsté, J. S.: Seasonal variability of branched glycerol dialkyl
glycerol tetraethers (brGDGTs) in a temperate lake system, Geochim.
Cosmochim. Ac., 144, 173–187, https://doi.org/10.1016/j.gca.2014.08.027, 2014.
Menges, J., Huguet, C., Alcañiz, J. M., Fietz, S., Sachse, D., and Rosell-Melé, A.: Influence of water availability in the distributions of branched glycerol dialkyl glycerol tetraether in soils of the Iberian Peninsula, Biogeosciences, 11, 2571–2581, https://doi.org/10.5194/bg-11-2571-2014, 2014.
Ménot, G., Bard, E., Rostek, F., Weijers, J. W. H., Hopmans, E. C.,
Schouten, S., and Sinninghe Damsté, J. S.: Early Reactivation of European
Rivers During the Last Deglaciation, Science, 313,
1623–1625, 2006.
Miller, D. R., Habicht, M. H., Keisling, B. A., Castañeda, I. S., and Bradley, R. S.: A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs), Clim. Past, 14, 1653–1667, https://doi.org/10.5194/cp-14-1653-2018, 2018.
Mueller-Niggemann, C., Utami, S. R., Marxen, A., Mangelsdorf, K., Bauersachs, T., and Schwark, L.: Distribution of tetraether lipids in agricultural soils – differentiation between paddy and upland management, Biogeosciences, 13, 1647–1666, https://doi.org/10.5194/bg-13-1647-2016, 2016.
Naafs, B. D. A., Inglis, G. N., Zheng, Y., Amesbury, M. J., Biester, H.,
Bindler, R., Blewett, J., Burrows, M. A., del Castillo Torres, D., Chambers,
F. M., Cohen, A. D., Evershed, R. P., Feakins, S. J., Gałka, M.,
Gallego-Sala, A., Gandois, L., Gray, D. M., Hatcher, P. G., Honorio
Coronado, E. N., Hughes, P. D. M., Huguet, A., Könönen, M.,
Laggoun-Défarge, F., Lähteenoja, O., Lamentowicz, M., Marchant, R.,
McClymont, E., Pontevedra-Pombal, X., Ponton, C., Pourmand, A., Rizzuti, A.
M., Rochefort, L., Schellekens, J., De Vleeschouwer, F., and Pancost, R. D.:
Introducing global peat-specific temperature and pH calibrations based on
brGDGT bacterial lipids, Geochim. Cosmochim. Ac., 208, 285–301,
https://doi.org/10.1016/j.gca.2017.01.038, 2017.
Naeher, S., Peterse, F., Smittenberg, R. H., Niemann, H., Zigah, P. K., and
Schubert, C. J.: Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in
catchment soils, water column and sediments of Lake Rotsee (Switzerland) –
Implications for the application of GDGT-based proxies for lakes, Org.
Geochem., 66, 164–173, https://doi.org/10.1016/j.orggeochem.2013.10.017, 2014.
O'Sullivan, P. E.: The eutrophication of shallow coastal lakes in Southwest England – understanding and recommendations for restoration, based on palaeolimnology, historical records, and the modelling of changing phosphorus loads, Hydrobiologia, 243, 421–434, https://doi.org/10.1007/BF00007059, 1992.
Peterse, F., Kim, J. H., Schouten, S., Kristensen, D. K., Koç, N., and
Sinninghe Damsté, J. S.: Constraints on the application of the MBT/CBT
palaeothermometer at high latitude environments (Svalbard, Norway), Org.
Geochem., 40, 692–699, https://doi.org/10.1016/j.orggeochem.2009.03.004, 2009.
Peterse, F., Nicol, G. W., Schouten, S., and Sinninghe Damsté, J. S.:
Influence of soil pH on the abundance and distribution of core and intact
polar lipid-derived branched GDGTs in soil, Org. Geochem., 41,
1171–1175, https://doi.org/10.1016/j.orggeochem.2010.07.004, 2010.
Peterse, F., Prins, M. A., Beets, C. J., Troelstra, S. R., Zheng, H., Gu,
Z., Schouten, S., and Damsté, J. S. S.: Decoupled warming and monsoon
precipitation in East Asia over the last deglaciation, Earth Planet. Sc.
Lett., 301, 256–264, https://doi.org/10.1016/j.epsl.2010.11.010, 2011.
Peterse, F., van der Meer, J., Schouten, S., Weijers, J. W. H., Fierer, N.,
Jackson, R. B., Kim, J. H., and Sinninghe Damsté, J. S.: Revised
calibration of the MBT-CBT paleotemperature proxy based on branched
tetraether membrane lipids in surface soils, Geochim. Cosmochim. Ac., 96,
215–229, https://doi.org/10.1016/j.gca.2012.08.011, 2012.
Powers, L. A., Werne, J. P., Johnson, T. C., Hopmans, E. C., Sinninghe
Damsté, J. S., and Schouten, S.: Crenarchaeotal membrane lipids in lake
sediments: A new paleotemperature proxy continental paleoclimate
reconstruction?, Geology, 32, 613–616, https://doi.org/10.1130/G20434.1, 2004.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at:
http://www.R-project.org, last access: April 2018.
Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J., and Sinninghe
Damsté, J. S.: Distributions of 5- and 6-methyl branched glycerol
dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment:
Effects of temperature, pH, and new lacustrine paleotemperature
calibrations, Org. Geochem., 117, 56–69,
https://doi.org/10.1016/j.orggeochem.2017.12.003, 2018.
Schoon, P. L., De Kluijver, A., Middelburg, J. J., Downing, J. A., Sinninghe
Damsté, J. S., and Schouten, S.: Influence of lake water pH and
alkalinity on the distribution of core and intact polar branched glycerol
dialkyl glycerol tetraethers (GDGTs) in lakes, Org. Geochem., 60, 72–82,
https://doi.org/10.1016/j.orggeochem.2013.04.015, 2013.
Schouten, S., Hopmans, E. C., Pancost, R. D., and Sinninghe Damsté, J.
S.: Widespread occurrence of structurally diverse tetraether membrane
lipids: Evidence for the ubiquitous presence of low-temperature relatives of
hyperthermophiles, P. Natl. Acad. Sci. USA, 97, 14421–14426,
https://doi.org/10.1073/pnas.97.26.14421, 2000.
Sinninghe Damsté, J. S.: Spatial heterogeneity of sources of branched
tetraethers in shelf systems: The geochemistry of tetraethers in the Berau
River delta (Kalimantan, Indonesia), Geochim. Cosmochim. Ac., 186, 13–31,
https://doi.org/10.1016/j.gca.2016.04.033, 2016.
Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., van Duin, A. C.
T., and Geenevasen, J. A. J.: Crenarchaeol, J. Lipid Res., 43,
1641–1651, https://doi.org/10.1194/jlr.M200148-JLR200, 2002.
Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S., and
Verschuren, D.: Fluxes and distribution of tetraether lipids in an
equatorial African lake: Constraints on the application of the TEX86
palaeothermometer and BIT index in lacustrine settings, Geochim. Cosmochim.
Ac., 73, 4232–4249, https://doi.org/10.1016/j.gca.2009.04.022, 2009.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Weijers, J.
W. H., Foesel, B. U., Overmann, J., and Dedysh, S. N.: 13,16-Dimethyl
octacosanedioic acid (iso-Diabolic Acid), a common membrane-spanning lipid
of Acidobacteria subdivisions 1 and 3, Appl. Environ. Microb., 77,
4147–4154, https://doi.org/10.1128/AEM.00466-11, 2011.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Foesel, B.
U., Wüst, P. K., Overmann, J., Tank, M., Bryant, D. A., Dunfield, P. F.,
Houghton, K., and Stott, M. B.: Ether- and ester-bound iso-diabolic acid and
other lipids in members of Acidobacteria subdivision 4, Appl. Environ.
Microb., 80, 5207–5218, https://doi.org/10.1128/AEM.01066-14, 2014.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Foesel, B. U., Huber, K.
J., Overmann, J., Nakagawa, S., Kim, J. J., Dunfield, P. F., Dedysh, S. N.,
and Villanueva, L.: An overview of the occurrence of ether- and ester-linked
iso-diabolic acid membrane lipids in microbial cultures of the
Acidobacteria: Implications for brGDGT paleoproxies for temperature and pH,
Org. Geochem., 124, 63–76, https://doi.org/10.1016/j.orggeochem.2018.07.006, 2018.
Smith, P.: Land use change and soil organic carbon dynamics, Nutr. Cycl.
Agroecosys., 81, 169–178, https://doi.org/10.1007/s10705-007-9138-y, 2008.
Steenwerth, K. L., Jackson, L. E., Calderón, F. J., Stromberg, M. R., and
Scow, K. M.: Erratum to “Soil community composition and land use history in
cultivated and grassland ecosystems of coastal California” [Soil Biology & Biochemistry 34(11) 1599–1611], Soil Biol. Biochem., 35, 487–500,
https://doi.org/10.1016/S0038-0717(03)00027-0, 2003.
Tierney, J. E. and Russell, J. M.: Distributions of branched GDGTs in a
tropical lake system: Implications for lacustrine application of the MBT/CBT
paleoproxy, Org. Geochem., 40, 1032–1036,
https://doi.org/10.1016/j.orggeochem.2009.04.014, 2009.
Tierney, J. E., Russell, J. M., Eggermont, H., Hopmans, E. C., Verschuren,
D., and Sinninghe Damsté, J. S.: Environmental controls on branched
tetraether lipid distributions in tropical East African lake sediments,
Geochim. Cosmochim. Ac., 74, 4902–4918, https://doi.org/10.1016/j.gca.2010.06.002,
2010.
Wakeham, S. G. and Lee, C.: Organic Geochemistry, edited by: Engel, M. H. and
Macko, S. A., Springer US, Boston, MA, 1993.
Wang, H., Liu, W., Zhang, C. L., Liu, Z., and He, Y.: Branched and isoprenoid
tetraether (BIT) index traces water content along two marsh-soil transects
surrounding Lake Qinghai: Implications for paleo-humidity variation, Org.
Geochem., 59, 75–81, https://doi.org/10.1016/j.orggeochem.2013.03.011, 2013.
Weber, Y., De Jonge, C., Rijpstra, W. I. C., Hopmans, E. C., Stadnitskaia,
A., Schubert, C. J., Lehmann, M. F., Sinninghe Damsté, J. S., and
Niemann, H.: Identification and carbon isotope composition of a novel
branched GDGT isomer in lake sediments: Evidence for lacustrine branched
GDGT production, Geochim. Cosmochim. Ac., 154, 118–129,
https://doi.org/10.1016/j.gca.2015.01.032, 2015.
Weber, Y., Sinninghe Damsté, J. S., Zopfi, J., De Jonge, C., Gilli, A.,
Schubert, C. J., Lepori, F., Lehmann, M. F., and Niemann, H.: Redox-dependent
niche differentiation provides evidence for multiple bacterial sources of
glycerol tetraether lipids in lakes, P. Natl. Acad. Sci. USA, 115,
10926–10931, https://doi.org/10.1073/pnas.1805186115, 2018.
Weijers, J. W. H., Schouten, S., Hopmans, E. C., Geenevasen, J. A. J.,
David, O. R. P., Coleman, J. M., Pancost, R. D., and Sinninghe Damste, J. S.:
Membrane lipids of mesophilic anaerobic bacteria thriving in peats have
typical archaeal traits, Environ. Microbiol., 8, 648–657,
https://doi.org/10.1111/j.1462-2920.2005.00941.x, 2006a.
Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté,
J. S.: Occurrence and distribution of tetraether membrane lipids in soils:
Implications for the use of the TEX86 proxy and the BIT index, Org.
Geochem., 37, 1680–1693, https://doi.org/10.1016/j.orggeochem.2006.07.018, 2006b.
Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C., and
Sinninghe Damsté, J. S.: Environmental controls on bacterial tetraether
membrane lipid distribution in soils, Geochim. Cosmochim. Ac., 71,
703–713, https://doi.org/10.1016/j.gca.2006.10.003, 2007a.
Weijers, J. W. H., Schefuß, E., Schouten, S., and Sinninghe Damsté,
J. S.: Evolution of Tropical Africa over the Last Deglaciation, Science, 8247, 5–8, 2007b.
Weijers, J. W. H., Wiesenberg, G. L. B., Bol, R., Hopmans, E. C., and Pancost, R. D.: Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s), Biogeosciences, 7, 2959–2973, https://doi.org/10.5194/bg-7-2959-2010, 2010.
Weijers, J. W. H., Bernhardt, B., Peterse, F., Werne, J. P., Dungait, J. A.
J., Schouten, S., and Sinninghe Damsté, J. S.: Absence of seasonal
patterns in MBT-CBT indices in mid-latitude soils, Geochim. Cosmochim. Ac.,
75, 3179–3190, https://doi.org/10.1016/j.gca.2011.03.015, 2011.
Zell, C., Kim, J. H., Moreira-Turcq, P., Abril, G., Hopmans, E. C., Bonnet,
M. P., Sobrinho, R. L., and Sinninghe Damsté, J. S.: Disentangling the
origins of branched tetraether lipids and crenarchaeol in the lower Amazon
river: Implications for GDGT-based proxies, Limnol. Oceanogr., 58, 343–353,
https://doi.org/10.4319/lo.2013.58.1.0343, 2013.
Zell, C., Kim, J. H., Hollander, D., Lorenzoni, L., Baker, P., Silva, C. G.,
Nittrouer, C., and Sinninghe Damsté, J. S.: Sources and distributions of
branched and isoprenoid tetraether lipids on the Amazon shelf and fan:
Implications for the use of GDGT-based proxies in marine sediments, Geochim.
Cosmochim. Ac., 139, 293–312, https://doi.org/10.1016/j.gca.2014.04.038, 2014.
Zhang, C. L., Wang, J., Wei, Y., Zhu, C., Huang, L., and Dong, H.: Production
of branched tetraether lipids in the lower Pearl River and estuary: Effects
of extraction methods and impact on bGDGT proxies, Front. Microbiol.,
2, 1–18, https://doi.org/10.3389/fmicb.2011.00274, 2012.
Zheng, Y., Pancost, R. D., Liu, X., Wang, Z., Naafs, B. D. A., Xie, X., Liu,
Z., Yu, X., and Yang, H.: Atmospheric connections with the North Atlantic
enhanced the deglacial warming in northeast China, Geology, 45,
1031–1034, https://doi.org/10.1130/G39401.1, 2017.
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly...
Altmetrics
Final-revised paper
Preprint