Articles | Volume 17, issue 21
https://doi.org/10.5194/bg-17-5443-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5443-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake
Loes G. J. van Bree
Department of Earth
Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Department of Earth
Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Allix J. Baxter
Department of Earth
Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Wannes De Crop
Limnology Unit, Ghent University, K.L. Ledeganckstraat 35, 9000
Gent, Belgium
Sigrid van Grinsven
NIOZ Royal Netherlands Institute for Sea Research, Department of
Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59,
1790 AB Den Burg, the Netherlands
Laura Villanueva
NIOZ Royal Netherlands Institute for Sea Research, Department of
Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59,
1790 AB Den Burg, the Netherlands
Dirk Verschuren
Limnology Unit, Ghent University, K.L. Ledeganckstraat 35, 9000
Gent, Belgium
Jaap S. Sinninghe Damsté
Department of Earth
Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
NIOZ Royal Netherlands Institute for Sea Research, Department of
Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59,
1790 AB Den Burg, the Netherlands
Related authors
No articles found.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Jingjing Guo, Martin Ziegler, Louise Fuchs, Youbin Sun, and Francien Peterse
Clim. Past, 21, 343–355, https://doi.org/10.5194/cp-21-343-2025, https://doi.org/10.5194/cp-21-343-2025, 2025
Short summary
Short summary
In this study, we use the distribution of soil bacterial membrane lipids stored on the Chinese Loess Plateau (CLP) to quantitatively reconstruct variations in precipitation amount over the past 130 kyr. The precipitation record shows orbital- and millennial-scale variations and varies at precession and obliquity scale. The application of this precipitation proxy across the CLP indicates a more pronounced spatial gradient during glacials, when the western CLP experiences more arid conditions.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Yord W. Yedema, Timme Donders, Francien Peterse, and Francesca Sangiorgi
J. Micropalaeontol., 42, 257–276, https://doi.org/10.5194/jm-42-257-2023, https://doi.org/10.5194/jm-42-257-2023, 2023
Short summary
Short summary
The pollen and dinoflagellate cyst content of 21 surface sediments from the northern Gulf of Mexico is used to test the applicability of three palynological ratios (heterotroph/autotroph, pollen/dinocyst, and pollen/bisaccate ratio) as proxies for marine productivity and distance to the coast/river. Redundancy analysis confirms the suitability of these three ratios, where the H/A ratio can be used as an indicator of primary production, and the P/B ratio best tracks the distance to the coast.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Jaap S. Sinninghe Damsté, Lisa A. Warden, Carlo Berg, Klaus Jürgens, and Matthias Moros
Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, https://doi.org/10.5194/cp-18-2271-2022, 2022
Short summary
Short summary
Reconstruction of past climate conditions is important for understanding current climate change. These reconstructions are derived from proxies, enabling reconstructions of, e.g., past temperature, precipitation, vegetation, and sea surface temperature (SST). Here we investigate a recently developed SST proxy based on membrane lipids of ammonium-oxidizing archaea in the ocean. We show that low salinities substantially affect the proxy calibration by examining Holocene Baltic Sea sediments.
Frédérique M. S. A. Kirkels, Hugo J. de Boer, Paulina Concha Hernández, Chris R. T. Martes, Marcel T. J. van der Meer, Sayak Basu, Muhammed O. Usman, and Francien Peterse
Biogeosciences, 19, 4107–4127, https://doi.org/10.5194/bg-19-4107-2022, https://doi.org/10.5194/bg-19-4107-2022, 2022
Short summary
Short summary
The distinct carbon isotopic values of C3 and C4 plants are widely used to reconstruct past hydroclimate, where more C3 plants reflect wetter and C4 plants drier conditions. Here we examine the impact of regional hydroclimatic conditions on plant isotopic values in the Godavari River basin, India. We find that it is crucial to identify regional plant isotopic values and consider drought stress, which introduces a bias in C3 / C4 plant estimates and associated hydroclimate reconstructions.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Zoë R. van Kemenade, Laura Villanueva, Ellen C. Hopmans, Peter Kraal, Harry J. Witte, Jaap S. Sinninghe Damsté, and Darci Rush
Biogeosciences, 19, 201–221, https://doi.org/10.5194/bg-19-201-2022, https://doi.org/10.5194/bg-19-201-2022, 2022
Short summary
Short summary
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We assess the distribution of bacteriohopanetetrol-x (BHT-x), used to trace past anammox, along a redox gradient in the water column of the Benguela upwelling system. BHT-x / BHT ratios of >0.18 correspond to the presence of living anammox bacteria and oxygen levels <50 μmol L−1. This allows for a more robust application of BHT-x to trace past marine anammox and deoxygenation in dynamic marine systems.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Cited articles
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman D. J.: Basic
local alignment search tool, J. Mol. Biol., 215, 403–410,
https://doi.org/10.1016/S0022-2836(05)80360-2, 1990.
Andrews, S.: A quality control tool for high throughput sequence data, available at:
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (last access: January 2019), 2010.
Bechtel, A., Smittenberg, R. H., Bernasconi, S. M., and Schubert, C. J.:
Distribution of branched and isoprenoid tetraether lipids in an oligotrophic
and a eutrophic Swiss lake: insights into sources and GDGT-based proxies,
Org. Geochem., 41, 822–832, https://doi.org/10.1016/j.orggeochem.2010.04.022, 2010.
Besseling, M. A., Hopmans, E. C., Boschman, R. C., Sinninghe Damsté, J. S., and Villanueva, L.: Benthic archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone, Biogeosciences, 15, 4047–4064, https://doi.org/10.5194/bg-15-4047-2018, 2018.
Blaga, C. I., Reichart, G.-J., Vissers, E. W., Lotter, A. F., Anselmetti, F. S., and Sinninghe Damsté, J. S.: Seasonal changes in glycerol dialkyl glycerol tetraether concentrations and fluxes in a perialpine lake: Implications for the use of the TEX86 and BIT proxies, Geochim. Cosmochim. Ac., 75, 6416–6428, https://doi.org/10.1016/j.gca.2011.08.016, 2011.
Bodé, S., De Wispelaere, L., Hemp, A., Verschuren, D., and Boeckx, P.:
Water-isotope ecohydrology on Mt. Kilimanjaro, Ecohydrology, 13, e2171,
https://doi.org/10.1002/eco.2171, 2020.
Buckles, L. K., Weijers, J. W. H., Verschuren, D., and Sinninghe Damsté, J. S.:
Sources of core and intact branched tetraether membrane lipids in the
lacustrine environment: anatomy of Lake Challa and its catchment, equatorial
East Africa, Geochim. Cosmochim. Ac., 140, 106–126,
https://doi.org/10.1016/j.gca.2014.04.042, 2014.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., Fierer, N., Gonzales Peña, A., Goodrich, J. K., Gordon,
J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E.,
Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J.,
Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T.,
Zaneveld, J., and Knight, R.: QIIME allows analysis of high-throughput
community sequencing data, Nat. Methods, 7, 335–336,
https://doi.org/10.1038/nmeth.f.303, 2010.
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J.,
Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., and Gormley, N.:
Ultra-high-throughput microbial community analysis on the Illumina HiSeq and
MiSeq platforms, ISME J., 6, 1621, https://doi.org/10.1038/ismej.2012.8,
2012.
Castañeda, I. S. and Schouten, S.: A review of molecular organic proxies
for examining modern and ancient lacustrine environments, Quaternary Sci. Rev.,
30, 2851–2891, https://doi.org/10.1016/j.quascirev.2011.07.009, 2011.
Chevalier, M., Chase, B. M., Quick, L. J., Dupond, L. M., and Johnson, T. C.:
Temperature change in subtropical southeastern Africa during the past
790,000 yr, Geology, https://doi.org/10.1130/G47841.1, online first, 2020.
Colcord, D. E., Cadieux, S. B., Brassell, S. C., Castañeda, I. S., Pratt,
L. M., and White, J. R.: Assessment of branched GDGTs as temperature proxies
in sedimentary records from several small lakes in southwestern Greenland,
Org. Geochem., 82, 33–41, https://doi.org/10.1016/j.orggeochem.2015.02.005,
2015.
Colcord, D. E., Pearson, A., and Brassell, S. C.: Carbon isotopic composition
of intact branched GDGT core lipids in Greenland lake sediments and soils,
Org. Geochem., 110, 25–32, https://doi.org/10.1016/j.orggeochem.2017.04.008,
2017.
Dearing Crampton-Flood, E., Tierney, J. E., Peterse, F., Kirkels, F. M. S. A.,
and Sinninghe Damsté J. S.: BayMBT: A Bayesian calibration model for
branched glycerol dialkyl glycerol tetraethers in soils and peats, Geochim.
Cosmochim. Ac., 268, 142–159, https://doi.org/10.1016/j.gca.2019.09.043,
2020.
De Jonge, C., Hopmans, E. C., Stadnitskaia, A., Rijpstra, W. I. C., Hofland,
R., Tegelaar, E. W., and Sinninghe Damsté, J. S.: Identification of novel
penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in
peat using HPLC–MS, GC–MS, and GC–SMB-MS, Org. Geochem., 54, 78–82,
https://doi.org/10.1016/j.orggeochem.2012.10.004, 2013.
De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J.-H., Schouten, S., and
Sinninghe Damsté, J. S.: Occurrence and abundance of 6-methyl branched
glycerol dialkyl glycerol tetraethers in soils: Implications for
paleoclimate reconstruction, Geochim. Cosmochim. Ac., 141, 97–112,
https://doi.org/10.1016/j.gca.2014.06.013, 2014a.
De Jonge, C., Stadnitskaia, A., Hopmans, E. C., Cherkashov, G., Fedotov, A.,
and Sinninghe Damsté, J. S.: In situ produced branched glycerol dialkyl glycerol
tetraethers in suspended particulate matter from the Yenisei River, Eastern
Sibera, Geochim. Cosmochim. Ac., 125, 476–491,
https://doi.org/10.1016/j.gca.2013.10.031, 2014b.
Diefendorf, A. F. and Freimuth, E. J.: Extracting the most from terrestrial
plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary
record: A review, Org. Geochem., 103, 1–21,
https://doi.org/10.1016/j.orggeochem.2016.10.016, 2017.
Freeman, K. H. and Pancost, R. D.: Biomarkers for terrestrial plants and
climate, in: Treatise on Geochemistry, Elsevier Inc., 2nd Edn.,
395–416, 2013.
Guo, J., Glendell, M., Meersmans, J., Kirkels, F., Middelburg, J. J., and Peterse, F.: Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England), Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, 2020.
Harvey, H. R., Fallon, R. D., and Patton, J. S.: The effect of organic matter
and oxygen on the degradation of bacterial membrane lipids in marine
sediments, Geochim. Cosmochim. Ac., 50, 795–804,
https://doi.org/10.1016/0016-7037(86)90355-8, 1986.
Hemp, A.: Continuum or zonation? Altitudinal gradients in the forest
vegetation of Mt. Kilimanjaro, Plant Ecol., 184, 27–42,
https://doi.org/10.1007/s11258-005-9049-4, 2006.
Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: The effect of
improved chromatography on GDGT based paleoproxies, Org. Geochem., 93, 1–6,
https://doi.org/10.1016/j.orggeochem.2015.12.006, 2016.
Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe
Damsté, J. S., and Schouten, S.: An improved method to determine the
absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids, Org.
Geochem., 37, 1036–1041, https://doi.org/10.1016/j.orggeochem.2006.05.008,
2006.
Lê, S., Josse, J., and Husson, F.: FactoMineR: An R package for
multivariate analysis, J. Stat. Softw., 25, 1–18, 2008.
Li, J., Pancost, R. D., Naafs, B. D. A., Huan, Y., Cheng, Z., and Xie, S.:
Distribution of glycerol dialkyl glycerol tetraether (GDGT) lipids in a
hypersaline lake system, Org. Geochem., 99, 113–124,
https://doi.org/10.1016/j.orggeochem.2016.06.007, 2016.
Loomis, S. E., Russell, J. M., and Sinninghe Damsté, J. S.: Distributions
of branched GDGTs in soils and lake sediments from western Uganda:
Implications for a lacustrine paleothermometer, Org. Geochem., 42, 739–751,
https://doi.org/10.1016/j.orggeochem.2011.06.004, 2011.
Loomis, S. E., Russell, J. M., Ladd, B., Street-Perrott, F. A., and Sinninghe
Damsté, J. S.: Calibration and application of the branched GDGT
temperature proxy on East African lake sediments, Earth Planet. Sc. Lett.,
357–358, 277–288, https://doi.org/10.1016/j.epsl.2012.09.031, 2012.
Loomis, S. E., Russell, J. M., Eggermont, H., Verschuren, D., and Sinninghe
Damsté, J. S.: Effects of temperature, pH, and nutrient concentration on
branched GDGT distributions in East African lakes: Implications for
paleoenvironmental reconstruction, Org. Geochem., 66, 25–37,
https://doi.org/10.1016/j.orggeochem.2013.10.012, 2014a.
Loomis, S. E., Russell, J. M., Heureux, A. M., D'Andrea, W. J., and Sinninghe
Damsté, J. S.: Seasonal variability of branched glycerol dialkyl glycerol
tetraethers (brGDGTs) in a temperate lake system, Geochim. Cosmochim. Ac.,
144, 173–187, https://doi.org/10.1016/j.gca.2014.08.027, 2014b.
Loomis, S. E., Russell, J. M., Verschuren, D., Morrill, C., De Cort, G.,
Sinninghe Damsté, J. S., Olago, D., Eggermont, H., Street-Perrott, F. A.,
and Kelly, M. A.: The tropical lapse rate steepened during the Last Glacial
Maximum, Sci. Adv., 3, e1600815, https://doi.org/10.1126/sciadv.1600815,
2017.
Miller, D. R., Habicht, M. H., Keisling, B. A., Castañeda, I. S., and Bradley, R. S.: A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs), Clim. Past, 14, 1653–1667, https://doi.org/10.5194/cp-14-1653-2018, 2018.
Moernaut, J., Verschuren, D., Charlet, F., Kristen, I., Fagot, M., and De
Batist, M.: The seismic-stratigraphic record of lake level fluctuations in
Lake Challa: hydrological stability and change in equatorial East Africa
over the last 140 kyr, Earth Planet. Sc. Lett., 290, 214–223,
https://doi.org/10.1016/j.epsl.2009.12.023, 2010.
Naafs, B. D. A., Inglis, G. N., Zheng, Y., Amesbury, M. J., Biester, H.,
Bindler, R., Blewett, J., Burrows, M. A., Castillo Torres, D. D., Chambers,
F. M., Cohen, A. D., Evershed, P., Feakins, S. J., Gałka, M., Gallego-Sala,
A., Gandois, L., Gray, D. M., Hatcher, P. G., Honorio Coronado, E. N., Hughes,
P. D. M., Huguet, A., Könönen, M., Laggoun-Défarge, F.,
Lähteenoja, O., Lamentowicz, M., Marchant, R., McClymont, E.,
Pontevedra-Pombal, X., Ponton, C., Pourmand, A., Rizzuti, A. M., Rochefort,
L., Schellekens, J., De Vleeschouwer, F., and Pancost, R. D.: Introducing
global peat-specific temperature and pH calibrations based upon brGDGT
bacterial lipids, Geochim. Cosmochim. Ac., 208, 285–301,
https://doi.org/10.1016/j.gca.2017.01.038, 2017a.
Naafs, B. D. A., Gallego-Sala, A. V., Inglis, G. N., and Pancost, R. D.: Refining
the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil
temperature calibration, Org. Geochem., 106, 48–56,
https://doi.org/10.1016/j.orggeochem.2017.01.009, 2017b.
Parfenova, V. V., Gladkikh, A. S., and Belykh, O. I.: Comparative analysis of
biodiversity in the planktonic and biofilm bacterial communities in Lake
Baikal, Microbiology, 82, 91–101, https://doi.org/10.1134/S0026261713010128,
2013.
Payne, B. R.: Water balance of Lake Chala and its relation to groundwater
from tritium and stable isotope data, J. Hydrol., 11, 47–58,
https://doi.org/10.1016/0022-1694(70)90114-9, 1970.
Pearson, E. J., Juggins, S., Talbot, H. M., Weckstrom, J., Rosen, P., Ryves,
D. B., Roberts, S. J., and Schmidt, R.: A lacustrine GDGT-temperature
calibration from the Scandinavian Arctic to Antarctic: Renewed potential for
the application of GDGT paleothermometry in lakes, Geochim. Cosmochim. Ac.,
75, 6225–6238, https://doi.org/10.1016/j.gca.2011.07.042, 2011.
Peterse, F., Kim, J.-H., Schouten, S., Klitgaard Kristensen, D., Koç,
N., and Sinninghe Damsté, J.S.: Constraints on the application of the
MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway),
Org. Geochem., 40, 692–699,
https://doi.org/10.1016/j.orggeochem.2009.03.004, 2009.
Peterse, F., Hopmans, E. C., Schouten, S., Mets, A., Rijpstra, W. I. C., and
Sinninghe Damsté, J. S.: Identification and distribution of intact polar
branched tetraether lipids in peat and soil, Org. Geochem., 42, 1007–1015,
https://doi.org/10.1016/j.orggeochem.2011.07.006, 2011.
Peterse, F., van Bree, L. G. J., Baxter, A. J., De Crop, W., van Grinsven, S., Villanueva, L., Verschuren, D., and Sinninghe Damsté, J. S.: Concentration of branched glycerol dialkyl glycerol tetraethers and bacterial community composition in suspended particulate matter of Lake Chala from September 2013–January 2015, PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.922776, 2020a.
Peterse, F., van Bree, L. G. J., Baxter, A. J., De Crop, W., van Grinsven, S., Villanueva, L., Verschuren, D., and Sinninghe Damsté, J. S.: Concentration of branched glycerol dialkyl glycerol tetraethers in settling particles of Lake Chala from September 2010–January 2015, PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.922780, 2020b.
Peterse, F., van Bree, L. G. J., Baxter, A. J., De Crop, W., van Grinsven, S., Villanueva, L., Verschuren, D., and Sinninghe Damsté, J. S.: Concentration of branched glycerol dialkyl glycerol tetraethers in catchment soils of Lake Chala, PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.922781, 2020c.
Peterse, F., van Bree, L. G. J., Baxter, A. J., De Crop, W., van Grinsven, S., Villanueva, L., Verschuren, D., and Sinninghe Damsté, J. S.: Concentration of branched glycerol dialkyl glycerol tetraethers in surficial sediments of Lake Chala, PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.922783, 2020d.
Preheim, S. P., Olesen, S. W., Spencer, S. J., Materna, A., Varadharajan, C.,
Blackburn, M., Friedman, J., Rodríguez, J., Hemond, H., and Alm, E. J.:
Surveys, simulation and single-cell assays relate function and phylogeny in
a lake ecosystem, Nat. Microbiol., 1, 16130,
https://doi.org/10.1038/nmicrobiol.2016.130, 2016.
Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J., and Sinninghe
Damsté, J. S.: Distributions of 5- and 6-methyl branched glycerol dialkyl
glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of
temperature, pH, and new lacustrine paleotemperature calibrations, Org.
Geochem., 117, 56–69, https://doi.org/10.1016/j.orggeochem.2017.12.003,
2018.
Schoon, P. L., de Kluijver, A., Middelburg, J. J., Downing, J. A., Sinninghe
Damsté, J. S., and Schouten, S.: Influence of lake water pH and
alkalinity on the distribution of core and intact polar branched glycerol
dialkyl glycerol tetraethers (GDGTs) in lakes, Org. Geochem., 60, 72–82,
https://doi.org/10.1016/j.orggeochem.2013.04.015, 2013.
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic
geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Org.
Geochem., 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006,
2013.
Sinninghe Damsté, J. S.: Spatial heterogeneity of sources of branched
tetraethers in shelf systems: The geochemistry of tetraethers in the Berau
River delta (Kalimantan, Indonesia), Geochim. Cosmochim. Ac., 186, 13–31,
https://doi.org/10.1016/j.gca.2016.04.033, 2016.
Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S., and
Verschuren, D.: Fluxes and distribution of tetraether lipids in an
equatorial African lake: constraints on the application of the TEX86
palaeothermometer and BIT index in lacustrine settings, Geochim. Cosmochim.
Ac., 73, 4232–4249, https://doi.org/10.1016/j.gca.2009.04.022, 2009.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Weijers,
J. W. H., Foesel, B. U., Overmann, J., and Dedysh, S. N.: 13,16-Dimethyl
octacosanedioic acid (iso-diabolic acid): A common membrane-spanning lipid
of Acidobacteria subdivisions 1 and 3, Appl. Environ. Microb., 77,
4147–4154, https://doi.org/10.1128/aem.00466-11, 2011a.
Sinninghe Damsté, J. S., Verschuren, D., Ossebaar, J., Blokker, J., van
Houten, R., van der Meer, M. T. J., Plessen, B., and Schouten, S.: A
25,000-year record of climate-induced changes in lowland vegetation of
eastern equatorial Africa revealed by the stable carbon-isotopic composition
of fossil plant leaf waxes, Earth Planet. Sc. Lett., 302, 236–246,
https://doi.org/10.1016/j.epsl.2010.12.025, 2011b.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Foesel, B. U., Huber, K.,
Overmann, J., Nakagawa, S., Kim, J. J., Dunfield, P., Dedysh, S., and
Villanueva, L.: An overview of the occurrence of ether- and ester-linked iso
diabolic acid membrane lipids in microbial cultures of the Acidobacteria:
Implications for brGDGT paleoproxies for temperature and pH, Org. Geochem.,
124, 63–76, https://doi.org/10.1016/j.orggeochem.2018.07.006, 2018.
Sinninghe Damsté, J. S., Hopmans, E. C., Pancost, R. D., Schouten, S., and Geenevasen, J. A. J.: Newly discovered nonisoprenoid glycerol dialkyl glycerol tetraether lipids in sediments, Chem. Comm., 17, 1683–1684, https://doi.org/10.1039/b004517i, 2000.
Sollai, M., Villanueva, L., Hopmans, E. C., Keil, R. G., and Sinninghe Damsté, J. S.: Archaeal sources of intact membrane lipid biomarkers in the oxygen deficient zone of the Eastern Tropical South Pacific, Front Microbiol., 10, 765, https://doi.org/10.3389/fmicb.2019.00765, 2019.
Sun, Q., Chu, G., Liu, M., Xie, M., Li, S., Ling, Y., Wang, X., Shi, L.,
Jia, G., and Lu, H.: Distributions and temperature dependence of branched
glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from
China and Nepal, J. Geophys. Res., 116, G01008,
https://doi.org/10.1029/2010JG001365, 2011.
Tierney, J. E. and Russell, J. M.: Distributions of branched GDGTs in a
tropical lake system: implications for lacustrine application of the MBT/CBT
paleoproxy, Org. Geochem., 40, 1032–1036,
https://doi.org/10.1016/j.orggeochem.2009.04.014, 2009.
Tierney, J. E., Russell, J. M., Eggermont, H., Hopmans, E. C., Verschuren, D.,
and Sinninghe Damsté, J. S.: Environmental controls on branched
tetraether lipid distributions in tropical East African lake sediments,
Geochim. Cosmochim. Ac., 74, 4902–4918,
https://doi.org/10.1016/j.gca.2010.06.002, 2010.
Tierney, J. E., Schouten, S., Pitcher, A., Hopmans, E. C., and Sinninghe
Damsté, J. S.: Core and intact polar glycerol dialkyl glycerol
tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): insights into
the origin of lacustrine GDGTs, Geochim. Cosmochim. Ac., 77, 561–581,
https://doi.org/10.1016/j.gca.2011.10.018, 2012.
van Bree, L. G. J., Peterse, F., van der Meer, M. T. J., Middelburg, J. J.,
Negash, A. M. D., De Crop, W., Cocquyt, C., Wieringa, J. J., Verschuren, D.,
and Sinninghe Damsté, J. S.: Seasonal variability in the abundance and
stable carbon-isotopic composition of lipid biomarkers in suspended
particulate matter from a stratified equatorial lake (Lake Chala,
Kenya/Tanzania): Implications for the sedimentary record, Quaternary Sci. Rev.,
192, 208–224, https://doi.org/10.1016/j.quascirev.2018.05.023, 2018.
Verschuren, D., Sinninghe Damsté, J. S., Moernaut, J., Kristen, I.,
Blaauw, M., Fagot, M., Haug, G. H., and CHALLACEA Project Members:
Half-precessional dynamics of monsoon rainfall near the East African
Equator, Nature, 462, 637–641, https://doi.org/10.1038/nature08520, 2009.
Volkman, J. K., Barrett, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L.,
and Gelin, F.: Microalgal biomarkers: A review of recent research
developments, Org. Geochem., 29, 1163–1179,
https://doi.org/10.1016/S0146-6380(98)00062-X, 1998.
Weber, Y., De Jonge, C., Rijpstra, W. I. C., Hopmans, E. C., Stadnitskaia, A.,
Schubert, C. J., Lehmann, M. F., Sinninghe Damsté, J. S., and Niemann, H.:
Identification and carbon isotope composition of a novel GDGT isomer in lake
sediments: Evidence for lacustrine brGDGT production?, Geochim. Cosmochim.
Ac., 154, 118–129, https://doi.org/10.1016/j.gca.2015.01.032, 2015.
Weber, Y., Sinninghe Damsté, J. S., Zopfi, J., De Jonge, C., Gili, A.,
Schubert, C. J., Lepori, F., Lehmann, M. F., and Niemann, H.:
Redox-dependent niche differentiation provides evidence for multiple
bacterial sources of glycerol tetraether lipids in lakes, P. Natl. Acad.
Sci. USA, 115, 10926–10931, https://doi.org/10.1073/pnas.1805186115,
2018.
Weijers, J. W. H., Schouten, S., Hopmans, E. C., Geenevasen, J. A. J., David,
O. R. P., Coleman, J. M., Pancost, R. D., and Sinninghe Damsté, J. S.:
Membrane lipids of mesophilic anaerobic bacteria thriving in peats have
typical archaeal traits, Environ. Microbiol., 8, 648–657,
https://doi.org/10.1111/j.1462-2920.2005.00941.x, 2006.
Weijers, J. W. H., Schefuß, E., Schouten, S., and Sinninghe Damsté,
J. S.: Coupled thermal and hydrological evolution of tropical Africa over the
last deglaciation, Science, 315, 1701–1704,
https://doi.org/10.1126/science.1138131, 2007a.
Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C., and
Sinninghe Damsté, J. S.: Environmental controls on bacterial tetraether
membrane lipid distribution in soils, Geochim. Cosmochim. Ac., 71, 703–713,
https://doi.org/10.1016/j.gca.2006.10.003, 2007b.
White, D. C., Davis, W. M., Nickels, J. S., King, J. D., and Bobbie, R. J.:
Determination of the sedimentary microbial biomass by extractible lipid
phosphate, Oecologia, 40, 51–62, https://doi.org/10.1007/BF00388810, 1979.
Wolff, C., Haug, G. H., Timmermann, A., Sinninghe Damsté, J. S., Brauer,
A., Sigman, D. M., Cane, M. A., and Verschuren, D.: Reduced interannual
rainfall variability in East Africa during the Last Ice Age, Science, 333,
743–747, https://doi.org/10.1126/science.1203724, 2011.
Wolff, C., Kristen-Jenny, I., Schettler, G., Plessen, B., Meyer, H., Dulski,
P., Naumann, R., Brauer, A., Verschuren, D., and Haug, G. H.: Modern
seasonality in Lake Challa (Kenya/Tanzania) and its sedimentary
documentation in recent lake sediments, Limnol. Oceanogr., 59, 1621–1636,
https://doi.org/10.4319/lo.2014.59.5.1621, 2014.
Woltering, M., Werne, J. P., Kish, J. L., Hicks, R., Sinninghe Damsté,
J. S., and Schouten, S.: Vertical and temporal variability in concentration
and distribution of thaumarchaeotal tetraether lipids in Lake Superior and
the implications for the application of the TEX86 temperature proxy,
Geochim. Cosmochim. Ac., 87, 136–153,
https://doi.org/10.1016/j.gca.2012.03.024, 2012.
Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A.: PEAR: A fast and
accurate Illumina Paired-End reAd merger, Bioinformatics, 30, 614–620,
https://doi.org/10.1093/bioinformatics/btt593, 2013.
Zheng, Y., Pancost, R. D., Liu, X., Wang, Z., Naafs, B. D. A., Xie, X., Liu,
Z., Yu, X., and Yang, H.: Atmospheric connections with the North Atlantic
enhanced the deglacial warming in northeast China, Geology, 45, 1031–1034,
https://doi.org/10.1130/G39401.1, 2017.
Zimmermann, J., Portillo, M. C., Serrano, L., Ludwig, W., and Gonzalez, J. M.:
Acidobacteria in freshwater ponds at Doñana National Park, Spain,
Microb. Ecol., 63, 844–55, https://doi.org/10.1007/s00248-011-9988-3, 2012.
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on...
Altmetrics
Final-revised paper
Preprint