Articles | Volume 17, issue 23
https://doi.org/10.5194/bg-17-5919-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-5919-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeochemical impact of cable bacteria on coastal Black Sea sediment
Martijn Hermans
CORRESPONDING AUTHOR
Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, the Netherlands
now at: Aquatic Biogeochemistry Research Unit (ABRU), Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
Nils Risgaard-Petersen
Center for Geomicrobiology, Section for Microbiology, Department of
Bioscience, Aarhus University, 8000 Aarhus, Denmark
Center for Electromicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
Filip J. R. Meysman
Centre of Excellence for Microbial Systems Technology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, the Netherlands
Caroline P. Slomp
Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, the Netherlands
Related authors
No articles found.
Clare Woulds, Dick Van Oevelen, Silvia Hidalgo-Martinez, and Filip Meysman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3676, https://doi.org/10.5194/egusphere-2025-3676, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Marine sediments are locations of carbon storage. Only some deposited carbon remains stored, while most is lost as CO2 through respiration by organisms. We report experiments to investigate the organisms responsible for marine sediment respiration. Larger organisms and microbes contributed equally to respiration. The groups competed to feed on fresh carbon. Respiration of older carbon was stimulated when both groups were present, thus burrowing activities allow microbial activity to increase.
Astrid Hylen, Nils Ekeroth, Hannah Berk, Andy W. Dale, Mikhail Kononets, Wytze K. Lenstra, Aada Palo, Anders Tengberg, Sebastiaan J. van de Velde, Stefan Sommer, Caroline P. Slomp, and Per O. J. Hall
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-146, https://doi.org/10.5194/essd-2025-146, 2025
Preprint under review for ESSD
Short summary
Short summary
Phosphorus is an essential element for life and its cycling strongly impact primary production. Here, we present a dataset of sediment-water fluxes of dissolved inorganic phosphorus from the Baltic Sea, an area with a long history of eutrophication. The fluxes were measured in situ with three types of benthic chamber landers at 59 stations over 20 years. The data show clear spatial patterns and will be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Caroline P. Slomp, Martijn Hermans, Niels A. G. M. van Helmond, Silke Severmann, James McManus, Marit R. van Erk, and Sairah Malkin
EGUsphere, https://doi.org/10.5194/egusphere-2025-817, https://doi.org/10.5194/egusphere-2025-817, 2025
Short summary
Short summary
Cable bacteria couple oxidation of sulfide at depth in sediments with reduction of oxygen, nitrate or nitrite near the sediment surface, thereby preventing release of toxic hydrogen sulfide to the overlying water. We show evidence for a diversity of cable bacteria in sediments from hypoxic and anoxic basins along the continental margin of California and Mexico. Cable bacteria activity in this setting is likely periodic and dependent on the supply of organic matter and/or oxygen.
Tom Huysmans, Filip J. R. Meysman, and Sebastiaan J. van de Velde
EGUsphere, https://doi.org/10.5194/egusphere-2025-447, https://doi.org/10.5194/egusphere-2025-447, 2025
Short summary
Short summary
To examine the potential of "Accelerated Weathering of Limestone" as a carbon capture and storage technique, we compared the different available reactor designs, and assessed their CO2 sequestration efficiencies, resource usage and limitations. We find that large water volumes are required to efficiently remove CO2 from the gas stream and that very small CaCO3 particle sizes and long residence times are required to achieve reasonable CaCO3 dissolution efficiencies.
Robin Klomp, Olga M. Żygadłowska, Mike S. M. Jetten, Véronique E. Oldham, Niels A. G. M. van Helmond, Caroline P. Slomp, and Wytze K. Lenstra
Biogeosciences, 22, 751–765, https://doi.org/10.5194/bg-22-751-2025, https://doi.org/10.5194/bg-22-751-2025, 2025
Short summary
Short summary
In marine sediments, dissolved Mn is present as either Mn(III) or Mn(II). We apply a reactive transport model to geochemical data for a seasonally anoxic and sulfidic coastal basin to determine the pathways of formation and removal of dissolved Mn(III) in the sediment. We demonstrate a critical role for reactions with Fe(II) and show evidence for substantial benthic release of dissolved Mn(III). Given the mobility of Mn(III), these findings have important implications for marine Mn cycling.
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
Biogeosciences, 22, 355–384, https://doi.org/10.5194/bg-22-355-2025, https://doi.org/10.5194/bg-22-355-2025, 2025
Short summary
Short summary
Marine enhanced rock weathering (mERW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of mERW parameters and identifying aspects to consider when applying mERW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Constance Choquel, Emmanuelle Geslin, Edouard Metzger, Helena L. Filipsson, Nils Risgaard-Petersen, Patrick Launeau, Manuel Giraud, Thierry Jauffrais, Bruno Jesus, and Aurélia Mouret
Biogeosciences, 18, 327–341, https://doi.org/10.5194/bg-18-327-2021, https://doi.org/10.5194/bg-18-327-2021, 2021
Short summary
Short summary
Marine microorganisms such as foraminifera are able to live temporarily without oxygen in sediments. In a Swedish fjord subjected to seasonal oxygen scarcity, a change in fauna linked to the decrease in oxygen and the increase in an invasive species was shown. The invasive species respire nitrate until 100 % of the nitrate porewater in the sediment and could be a major contributor to nitrogen balance in oxic coastal ecosystems. But prolonged hypoxia creates unfavorable conditions to survive.
Cited articles
Aller, R.: Sedimentary diagenesis, depositional environments, and benthic
fluxes, Geochemistry, 2nd Edn., 8, 293–334, Elsevier, Oxford, 2014.
Aller, R. C., Aller, J. Y., Zhu, Q., Heilbrun, C., Klingensmith, I., and
Kaushik, A.: Worm tubes as conduits for the electrogenic microbial grid in
marine sediments, Sci. Adv., 5, eaaw3651, https://doi.org/10.1126/sciadv.aaw3651, 2019.
APHA: Standard methods for the examination of water and wastewater, American
Public Health Association (APHA), Washington, DC, USA, 2005.
Atkinson, M.: Elemental composition of commercial seasalts, Journal of
Aquariculture and Aquatic Sciences, 8, 39–43, 1997.
Bellier, N., Chazarenc, F., and Comeau, Y.: Phosphorus removal from
wastewater by mineral apatite, Water Res., 40, 2965–2971, 2006.
Berg, P., Risgaard-Petersen, N., and Rysgaard, S.: Interpretation of
measured concentration profiles in sediment pore water, Limnol. Oceanogr., 43, 1500–1510, 1998.
Berner, R. A.: Early diagenesis: a theoretical approach, Princeton
University Press, New Jersey, 1980.
Bjerg, J. T., Boschker, H. T., Larsen, S., Berry, D., Schmid, M., Millo, D.,
Tataru, P., Meysman, F. J., Wagner, M., and Nielsen, L. P.: Long-distance
electron transport in individual, living cable bacteria, P.
Natl. Acad. Sci. USA, 115, 5786–5791, 2018.
Bockris, J. O. M. and Reddy, A. K.: Ion-Ion Interactions, in: Modern Electrochemistry 1, Springer, Boston, MA, https://doi.org/10.1007/0-306-46909-X_3, 2002.
Boudreau, B. P.: Diagenetic models and their implementation, Springer
Berlin, 1997.
Boyd, P. and Ellwood, M.: The biogeochemical cycle of iron in the ocean,
Nat. Geosci., 3, 675–682, 2010.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., and Isensee,
K.: Declining oxygen in the global ocean and coastal waters, Science, 359,
eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Burdige, D. J.: The biogeochemistry of manganese and iron reduction in
marine sediments, Earth Sci. Rev., 35, 249–284, 1993.
Burdige, D. J.: Geochemistry of marine sediments, Princeton University
Press, New Jersey, 2006.
Burdorf, L. D. W., Tramper, A., Seitaj, D., Meire, L., Hidalgo-Martinez, S., Zetsche, E.-M., Boschker, H. T. S., and Meysman, F. J. R.: Long-distance electron transport occurs globally in marine sediments, Biogeosciences, 14, 683–701, https://doi.org/10.5194/bg-14-683-2017, 2017.
Burdorf, L. D., Malkin, S. Y., Bjerg, J. T., van Rijswijk, P., Criens, F.,
Tramper, A., and Meysman, F. J.: The effect of oxygen availability on
long-distance electron transport in marine sediments, Limnol.
Oceanog., 63, 1799–1816, 2018.
Buresh, R. J. and Moraghan, J.: Chemical Reduction of Nitrate by Ferrous
Iron 1, J. Environ. Qual., 5, 320–325, 1976.
Burton, E. D., Bush, R. T., and Sullivan, L. A.: Fractionation and
extractability of sulfur, iron and trace elements in sulfidic sediments,
Chemosphere, 64, 1421–1428, 2006.
Burton, E. D., Sullivan, L. A., Bush, R. T., Johnston, S. G., and Keene, A.
F.: A simple and inexpensive chromium-reducible sulfur method for
acid-sulfate soils, Appl. Geochem., 23, 2759–2766, 2008.
Capet, A., Beckers, J.-M., and Grégoire, M.: Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf – is there any recovery after eutrophication?, Biogeosciences, 10, 3943–3962, https://doi.org/10.5194/bg-10-3943-2013, 2013.
Claff, S. R., Sullivan, L. A., Burton, E. D., and Bush, R. T.: A sequential
extraction procedure for acid sulfate soils: partitioning of iron, Geoderma,
155, 224–230, 2010.
Cornelissen, R., Bøggild, A., Thiruvallur Eachambadi, R., Koning, R. I.,
Kremer, A., Hidalgo-Martinez, S., Zetsche, E.-M., Damgaard, L. R.,
Bonné, R., and Drijkoningen, J.: The cell envelope structure of cable
bacteria, Front. Microbiol., 9, 3044, https://doi.org/10.3389/fmicb.2018.03044, 2018.
Coull, B. C. and Chandler, G. T.: Meiobenthos, in Encyclopedia of Ocean Sciences, edited by: Steele, J. H., Academic Press, San Diego,
726–731, 2001.
Damgaard, L. R., Risgaard-Petersen, N., and Nielsen, L. P.: Electric
potential microelectrode for studies of electrobiogeophysics, J.
Geophys. Res.-Biogeosci., 119, 1906–1917, 2014.
Davis, C. C., Chen, H.-W., and Edwards, M.: Modeling silica sorption to iron
hydroxide, Environ. Sci. Technol., 36, 582–587, 2002.
Diaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for
marine ecosystems, Science, 321, 926–929, 2008.
Egger, M., Jilbert, T., Behrends, T., Rivard, C., and Slomp, C. P.:
Vivianite is a major sink for phosphorus in methanogenic coastal surface
sediments, Geochim. Cosmochim. Ac., 169, 217–235, 2015.
Fofonoff, N. P. and Millard Jr., R. C.: Algorithms for the computation of fundamental properties of seawater, Paris, France, UNESCO, 53 pp., UNESCO Technical Papers in Marine Sciences, 44, available at: http://hdl.handle.net/11329/109 (last access: 25 November 2020), 1983.
Fossing, H. and Jørgensen, B. B.: Measurement of bacterial sulfate
reduction in sediments: evaluation of a single-step chromium reduction
method, Biogeochemistry, 8, 205–222, 1989.
Geerlings, N. M. J., Zetsche, E.-M., Hidalgo-Martinez, S., Middelburg, J. J., and Meysman, F. J. R.: Mineral formation induced by cable bacteria performing long-distance electron transport in marine sediments, Biogeosciences, 16, 811–829, https://doi.org/10.5194/bg-16-811-2019, 2019.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res.,
4, 243–289, 2008.
Hermans, M., Lenstra, W., Hidalgo-Martinez, S., van Helmond, N. A.,
Witbaard, R., Meysman, F., Gonzalez, S., and Slomp, C. P.: Abundance and
Biogeochemical Impact of Cable Bacteria in Baltic Sea Sediments,
Environ. Sci. Technol., 53, 7494–7503, 2019a.
Hermans, M., Lenstra, W. K., van Helmond, N. A., Behrends, T., Egger, M.,
Séguret, M. J., Gustafsson, E., Gustafsson, B. G., and Slomp, C. P.:
Impact of natural re-oxygenation on the sediment dynamics of manganese, iron
and phosphorus in a euxinic Baltic Sea basin, Geochim. Cosmochim.
Ac., 246, 174–196, 2019b.
Hermans, M., Astudillo Pascual, M., Behrends, T., Lenstra, W. K., Conley, D.
J., and Slomp, C. P.: Coupled dynamics of iron, manganese and phosphorus in
brackish coastal sediments populated by cable bacteria, Limnol.
Oceanogr., submitted, 2020.
Hovanec, T. A. and Coshland, J. L.: A chemical analysis of select trace
elements in synthetic sea salts and natural seawater, Sea Scope, Aquarium
Systems, 21, 1–4, 2004.
Jeroschewski, P., Steuckart, C., and Kühl, M.: An amperometric
microsensor for the determination of H2S in aquatic environments, Anal.
Chem., 68, 4351–4357, 1996.
Jilbert, T., de Lange, G., and Reichart, G. J.: Fluid displacive resin
embedding of laminated sediments: preserving trace metals for
high-resolution paleoclimate investigations, Limnol. Oceanogr.-Meth., 6, 16–22, 2008.
Jilbert, T. and Slomp, C. P.: Iron and manganese shuttles control the
formation of authigenic phosphorus minerals in the euxinic basins of the
Baltic Sea, Geochim. Cosmochim. Ac., 107, 155–169, 2013.
Kallmeyer, J., Ferdelman, T. G., Weber, A., Fossing, H., and Jørgensen,
B. B.: A cold chromium distillation procedure for radiolabeled sulfide
applied to sulfate reduction measurements, Limnol. Oceanogr.-Meth., 2, 171–180, 2004.
Kemp, W. M., Testa, J. M., Conley, D. J., Gilbert, D., and Hagy, J. D.: Temporal responses of coastal hypoxia to nutrient loading and physical controls, Biogeosciences, 6, 2985–3008, https://doi.org/10.5194/bg-6-2985-2009, 2009.
Kjeldsen, K. U., Schreiber, L., Thorup, C. A., Boesen, T., Bjerg, J. T.,
Yang, T., Dueholm, M. S., Larsen, S., Risgaard-Petersen, N., and Nierychlo,
M.: On the evolution and physiology of cable bacteria, P.
Natl. Acad. Sci., 116, 19116–19125, 2019.
Koroleff, F.: Determination of ammonia as indophenol blue, International
Council for the Exploration of the Sea (ICES), 9, 1969.
Kraal, P., Slomp, C. P., Forster, A., Kuypers, M. M., and Sluijs, A.: Pyrite
oxidation during sample storage determines phosphorus fractionation in
carbonate-poor anoxic sediments, Geochim. Cosmochim. Ac., 73,
3277–3290, 2009.
Kraal, P., Burton, E. D., and Bush, R. T.: Iron monosulfide accumulation and
pyrite formation in eutrophic estuarine sediments, Geochim. Cosmochim. Ac., 122, 75–88, 2013.
Kraal, P. and Slomp, C. P.: Rapid and extensive alteration of phosphorus
speciation during oxic storage of wet sediment samples, Plos One, 9, e96859, https://doi.org/10.1371/journal.pone.0096859,
2014.
Kraal, P., Dijkstra, N., Behrends, T., and Slomp, C. P.: Phosphorus burial
in sediments of the sulfidic deep Black Sea: Key roles for adsorption by
calcium carbonate and apatite authigenesis, Geochim. Cosmochim. Ac.,
204, 140–158, 2017.
Kristensen, E., Kristiansen, K. D., and Jensen, M. H.: Temporal behavior of
manganese and iron in a sandy coastal sediment exposed to water column
anoxia, Estuaries, 26, 690–699, 2003.
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana,
C. O., and Banta, G. T.: What is bioturbation? The need for a precise
definition for fauna in aquatic sciences, Mar. Ecol. Prog. Ser.,
446, 285–302, 2012.
Kristiansen, K., Kristensen, E., and Jensen, E.: The influence of water
column hypoxia on the behaviour of manganese and iron in sandy coastal
marine sediment, Estuarine, Coast. Shelf Sci., 55, 645–654, 2002.
Kuz'minskii, Y. V., Andriiko, A., and Nyrkova, L.: Chemical and phase
composition of manganese oxides obtained by Mn (II) oxidation in nitrate
solutions, J. Power Dources, 52, 49–53, 1994.
Larsen, S., Nielsen, L. P., and Schramm, A.: Cable bacteria associated with
long-distance electron transport in New England salt marsh sediment,
Environ. Microbiol. Rep., 7, 175–179, 2015.
Learman, D., Voelker, B., Vazquez-Rodriguez, A., and Hansel, C.: Formation
of manganese oxides by bacterially generated superoxide, Nat. Geosci.,
4, 95–98, https://doi.org/10.1038/NGEO1055, 2011.
Lenstra, W., Hermans, M., Séguret, M., Witbaard, R., Behrends, T.,
Dijkstra, N., Van Helmond, N., Kraal, P., Laan, P., and Rijkenberg, M.: The
shelf-to-basin iron shuttle in the Black Sea revisited, Chem. Geol.,
511, 314–341, 2019.
Lenstra, W., Séguret, M., Behrends, T., Groeneveld, R., Hermans, M.,
Witbaard, R., and Slomp, C.: Controls on the shuttling of manganese over the
northwestern Black Sea shelf and its fate in the euxinic deep basin,
Geochim. Cosmochim. Ac., 273, 177–204, 2020.
Luther, G. W.: The role of one-and two-electron transfer reactions in
forming thermodynamically unstable intermediates as barriers in
multi-electron redox reactions, Aquatic Geochemistry, 16, 395–420, 2010.
Madison, A. S., Tebo, B. M., Mucci, A., Sundby, B., and Luther, G. W.:
Abundant porewater Mn (III) is a major component of the sedimentary redox
system, Science, 341, 875–878, 2013.
Malkin, S. Y., Rao, A. M., Seitaj, D., Vasquez-Cardenas, D., Zetsche, E.-M.,
Hidalgo-Martinez, S., Boschker, H. T., and Meysman, F. J.: Natural
occurrence of microbial sulphur oxidation by long-range electron transport
in the seafloor, ISME J., 8, 1843–1854, 2014.
Malkin, S. Y., Seitaj, D., Burdorf, L. D., Nieuwhof, S., Hidalgo-Martinez,
S., Tramper, A., Geeraert, N., De Stigter, H., and Meysman, F. J.:
Electrogenic sulfur oxidation by cable bacteria in bivalve reef sediments,
Front. Mar. Sci., 4, 1–19, https://doi.org/10.3389/fmars.2017.00028, 2017.
Marzocchi, U., Trojan, D., Larsen, S., Meyer, R. L., Revsbech, N. P.,
Schramm, A., Nielsen, L. P., and Risgaard-Petersen, N.: Electric coupling
between distant nitrate reduction and sulfide oxidation in marine sediment,
ISME J., 8, 1682–1690, 2014.
Meysman, F. J., Risgaard-Petersen, N., Malkin, S. Y., and Nielsen, L. P.:
The geochemical fingerprint of microbial long-distance electron transport in
the seafloor, Geochim. Cosmochim. Ac., 152, 122–142, 2015.
Meysman, F. J.: Cable bacteria take a new breath using long-distance
electricity, Trends Microbiol., 26, 411–422, 2018.
Meysman, F. J., Cornelissen, R., Trashin, S., Bonné, R., Martinez, S.
H., van der Veen, J., Blom, C. J., Karman, C., Hou, J.-L., and Eachambadi,
R. T.: A highly conductive fibre network enables centimetre-scale electron
transport in multicellular cable bacteria, Nat. Commun., 10, 1–8,
2019.
Millero, F. J., Plese, T., and Fernandez, M.: The dissociation of hydrogen
sulfide in seawater 1, Limnol. Oceanogr., 33, 269–274, 1988.
Morgan, B., Burton, E. D., and Rate, A. W.: Iron monosulfide enrichment and
the presence of organosulfur in eutrophic estuarine sediments, Chem.
Geol., 296, 119–130, 2012.
Müller, H., Bosch, J., Griebler, C., Damgaard, L. R., Nielsen, L. P.,
Lueders, T., and Meckenstock, R. U.: Long-distance electron transfer by
cable bacteria in aquifer sediments, ISME J., 10, 2010–2019, 2016.
Murphy, J. and Riley, J.: A single-solution method for the determination of
soluble phosphate in sea water, J. Mar. Biol. Assoc. UK, 37, 9–14, 1958.
Naudet, V. and Revil, A.: A sandbox experiment to investigate
bacteria-mediated redox processes on self-potential signals, Geophys.
Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL022735, 2005.
Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., and
Sayama, M.: Electric currents couple spatially separated biogeochemical
processes in marine sediment, Nature, 463, 1071–1074, 2010.
Nielsen, L. P., and Risgaard-Petersen, N.: Rethinking sediment
biogeochemistry after the discovery of electric currents, Ann. Rev. Mar. Sci., 7, 425–442, 2015.
Norkko, J., Reed, D. C., Timmermann, K., Norkko, A., Gustafsson, B. G.,
Bonsdorff, E., Slomp, C. P., Carstensen, J., and Conley, D. J.: A welcome
can of worms? Hypoxia mitigation by an invasive species, Glob. Change
Biol., 18, 422–434, 2012.
Nriagu, J. O.: Stability of vivianite and ion-pair formation in the system
Fe3(PO4)2-H3PO4H3PO4-H2O, Geochim. Cosmochim. Ac., 36, 459–470,
1972.
Pernthaler, J., Glöckner, F.-O., Schönhuber, W., and Amann, R.:
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide
probes, Meth. Microbiol., 30, 207–226, 2001.
Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L.,
Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., and El-Naggar, M. Y.:
Filamentous bacteria transport electrons over centimetre distances, Nature,
491, 218–221, 2012.
Poulton, S. W. and Canfield, D. E.: Development of a sequential extraction
procedure for iron: implications for iron partitioning in continentally
derived particulates, Chem. Geol., 214, 209–221, 2005.
Rabalais, N. N., Turner, R. E., and Wiseman Jr., W. J.: Gulf of Mexico
hypoxia, aka “The dead zone”, Annual Review of ecology and Systematics,
33, 235–263, 2002.
Rabalais, N. N., Cai, W.-J., Carstensen, J., Conley, D. J., Fry, B., Hu, X.,
Quinones-Rivera, Z., Rosenberg, R., Slomp, C. P., and Turner, R. E.:
Eutrophication-driven deoxygenation in the coastal ocean, Oceanography, 27,
172–183, 2014.
Rabouille, C., Denis, L., Dedieu, K., Stora, G., Lansard, B., and Grenz, C.:
Oxygen demand in coastal marine sediments: comparing in situ microelectrodes
and laboratory core incubations, J. Exp. Mar. Biol. Ecol., 285, 49–69, 2003.
Raiswell, R. and Canfield, D. E.: The iron biogeochemical cycle past and
present, Geochemi. Perspect., 1, 1–2, 2012.
Rao, A. M., Malkin, S. Y., Hidalgo-Martinez, S., and Meysman, F. J.: The
impact of electrogenic sulfide oxidation on elemental cycling and solute
fluxes in coastal sediment, Geochim. Cosmochim. Ac., 172, 265–286,
2016.
Rasmussen, H. and Jørgensen, B. B.: Microelectrode studies of seasonal
oxygen uptake in a coastal sediment: role of molecular diffusion, Mar.
Ecol. Prog. Ser., 81, 289–303, 1992.
Reed, D. C., Slomp, C. P., and Gustafsson, B. G.: Sedimentary phosphorus
dynamics and the evolution of bottom-water hypoxia: A coupled
benthic–pelagic model of a coastal system, Limnol. Oceanogr., 56,
1075–1092, 2011.
Revil, A., Mendonça, C., Atekwana, E., Kulessa, B., Hubbard, S., and
Bohlen, K.: Understanding biogeobatteries: Where geophysics meets
microbiology, J. Geophys. Res.-Biogeosci., 115, 1–22, https://doi.org/10.1029/2009JG001065, 2010.
Revil, A., Karaoulis, M., Johnson, T., and Kemna, A.: Some low-frequency
electrical methods for subsurface characterization and monitoring in
hydrogeology, Hydrogeol. J., 20, 617–658, 2012.
Riedel, B., Zuschin, M., and Stachowitsch, M.: Tolerance of benthic
macrofauna to hypoxia and anoxia in shallow coastal seas: a realistic
scenario, Mar. Ecol. Prog. Ser., 458, 39–52, 2012.
Risgaard-Petersen, N., Revil, A., Meister, P., and Nielsen, L. P.: Sulfur,
iron-, and calcium cycling associated with natural electric currents running
through marine sediment, Geochim. Cosmochim. Ac., 92, 1–13, 2012.
Risgaard-Petersen, N., Damgaard, L. R., Revil, A., and Nielsen, L. P.:
Mapping electron sources and sinks in a marine biogeobattery, J. Geophys. Res.-Biogeo., 119, 1475–1486, 2014.
Risgaard-Petersen, N., Kristiansen, M., Frederiksen, R. B., Dittmer, A. L.,
Bjerg, J. T., Trojan, D., Schreiber, L., Damgaard, L. R., Schramm, A., and
Nielsen, L. P.: Cable bacteria in freshwater sediments, Appl.
Environ. Microbiol., 81, 6003–6011, 2015.
Ruttenberg, K. C.: Development of a sequential extraction method for
different forms of phosphorus in marine sediments, Limnol.
Oceanogr., 37, 1460–1482, 1992.
Ruttenberg, K. C. and Berner, R. A.: Authigenic apatite formation and
burial in sediments from non-upwelling, continental margin environments,
Geochim. Cosmochim. Ac., 57, 991–1007, 1993.
Sandfeld, T., Marzocchi, U., Petro, C., Schramm, A., and Risgaard-Petersen,
N.: Electrogenic sulfide oxidation mediated by cable bacteria stimulates
sulfate reduction in freshwater sediments, ISME J., 14, 1233–1246,
2020.
Schauer, R., Risgaard-Petersen, N., Kjeldsen, K. U., Bjerg, J. J. T.,
Jørgensen, B. B., Schramm, A., and Nielsen, L. P.: Succession of cable
bacteria and electric currents in marine sediment, ISME J., 8,
1314–1322, https://doi.org/10.1038/ismej.2013.239, 2014.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic
oxygen content during the past five decades, Nature, 542, 335–339, https://doi.org/10.1038/nature21399, 2017.
Seitaj, D., Schauer, R., Sulu-Gambari, F., Hidalgo-Martinez, S., Malkin, S.
Y., Burdorf, L. D., Slomp, C. P., and Meysman, F. J.: Cable bacteria
generate a firewall against euxinia in seasonally hypoxic basins,
P. Natl. Acad. Sci. USA, 112, 13278–13283, 2015.
Sigg, L. and Stumm, W.: The interaction of anions and weak acids with the
hydrous goethite (α-FeOOH) surface, Colloid. Surface., 2,
101–117, 1981.
Slomp, C. P., Epping, E. H., Helder, W., and Raaphorst, W. V.: A key role
for iron-bound phosphorus in authigenic apatite formation in North Atlantic
continental platform sediments, J. Mar. Res., 54, 1179–1205,
1996.
Straub, K. L., Benz, M., Schink, B., and Widdel, F.: Anaerobic,
nitrate-dependent microbial oxidation of ferrous iron, Appl. Environ.
Microbiol., 62, 1458–1460, 1996.
Sulu-Gambari, F., Seitaj, D., Behrends, T., Banerjee, D., Meysman, F. J.,
and Slomp, C. P.: Impact of cable bacteria on sedimentary iron and manganese
dynamics in a seasonally-hypoxic marine basin, Geochim. Cosmochim.
Ac., 192, 49–69, 2016a.
Sulu-Gambari, F., Seitaj, D., Meysman, F. J., Schauer, R., Polerecky, L.,
and Slomp, C. P.: Cable bacteria control iron–phosphorus dynamics in
sediments of a coastal hypoxic basin, Environ. Sci. Technol.,
50, 1227–1233, 2016b.
Sulu-Gambari, F., Hagens, M., Behrends, T., Seitaj, D., Meysman, F. J.,
Middelburg, J., and Slomp, C. P.: Phosphorus cycling and burial in sediments
of a seasonally hypoxic Marine Basin, Estuar. Coast., 41, 921–939,
2018.
Trojan, D., Schreiber, L., Bjerg, J. T., Bøggild, A., Yang, T., Kjeldsen,
K. U., and Schramm, A.: A taxonomic framework for cable bacteria and
proposal of the candidate genera Electrothrix and Electronema, Syst.
Appl. Microbiol., 39, 297–306, 2016.
Van Cappellen, P., and Berner, R. A.: A mathematical model for the early
diagenesis of phosphorus and fluorine in marine sediments; apatite
precipitation, Am. J. Sci., 288, 289–333, 1988.
van de Velde, S., Lesven, L., Burdorf, L. D., Hidalgo-Martinez, S.,
Geelhoed, J. S., Van Rijswijk, P., Gao, Y., and Meysman, F. J.: The impact
of electrogenic sulfur oxidation on the biogeochemistry of coastal
sediments: A field study, Geochim. Cosmochim. Ac., 194, 211–232,
2016.
Vasquez-Cardenas, D., Van De Vossenberg, J., Polerecky, L., Malkin, S. Y.,
Schauer, R., Hidalgo-Martinez, S., Confurius, V., Middelburg, J. J.,
Meysman, F. J., and Boschker, H. T.: Microbial carbon metabolism associated
with electrogenic sulphur oxidation in coastal sediments, ISME J.,
9, 1966–1978, https://doi.org/10.1038/ismej.2015.10, 2015.
Wang, Y. and Van Cappellen, P.: A multicomponent reactive transport model
of early diagenesis: Application to redox cycling in coastal marine
sediments, Geochim. Cosmochim. Ac., 60, 2993–3014, 1996.
Wijsman, J. W., Middelburg, J. J., Herman, P. M., Böttcher, M. E., and
Heip, C. H.: Sulfur and iron speciation in surface sediments along the
northwestern margin of the Black Sea, Mar. Chem., 74, 261–278, 2001.
Short summary
This paper demonstrates that the recently discovered cable bacteria are capable of using a mineral, known as siderite, as a source for the formation of iron oxides. This work also demonstrates that the activity of cable bacteria can lead to a distinct subsurface layer in the sediment that can be used as a marker for their activity.
This paper demonstrates that the recently discovered cable bacteria are capable of using a...
Altmetrics
Final-revised paper
Preprint