Articles | Volume 18, issue 8
https://doi.org/10.5194/bg-18-2449-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2449-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeochemical and plant trait mechanisms drive enhanced methane emissions in response to whole-ecosystem warming
Smithsonian Environmental Research Center, Edgewater, MD, USA
J. Patrick Megonigal
Smithsonian Environmental Research Center, Edgewater, MD, USA
Related authors
Katherine A. Haviland and Genevieve L. Noyce
Biogeosciences, 21, 5185–5198, https://doi.org/10.5194/bg-21-5185-2024, https://doi.org/10.5194/bg-21-5185-2024, 2024
Short summary
Short summary
Plant roots release both oxygen and carbon to the surrounding soil. While oxygen leads to less production of methane (a greenhouse gas), carbon often has the opposite effect. We investigated these processes in two plant species, S. patens and S. americanus. We found that S. patens roots produce more carbon and less oxygen than S. americanus. Additionally, the S. patens pool of root-associated carbon compounds was more dominated by compound types known to lead to higher methane production.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Katherine A. Haviland and Genevieve L. Noyce
Biogeosciences, 21, 5185–5198, https://doi.org/10.5194/bg-21-5185-2024, https://doi.org/10.5194/bg-21-5185-2024, 2024
Short summary
Short summary
Plant roots release both oxygen and carbon to the surrounding soil. While oxygen leads to less production of methane (a greenhouse gas), carbon often has the opposite effect. We investigated these processes in two plant species, S. patens and S. americanus. We found that S. patens roots produce more carbon and less oxygen than S. americanus. Additionally, the S. patens pool of root-associated carbon compounds was more dominated by compound types known to lead to higher methane production.
Patrick J. Neale, J. Patrick Megonigal, Maria Tzortziou, Elizabeth A. Canuel, Christina R. Pondell, and Hannah Morrissette
Biogeosciences, 21, 2599–2620, https://doi.org/10.5194/bg-21-2599-2024, https://doi.org/10.5194/bg-21-2599-2024, 2024
Short summary
Short summary
Adsorption/desorption incubations were conducted with tidal marsh soils to understand the differential sorption behavior of colored vs. noncolored dissolved organic carbon. The wetland soils varied in organic content, and a range of salinities of fresh to 35 was used. Soils primarily adsorbed colored organic carbon and desorbed noncolored organic carbon. Sorption capacity increased with salinity, implying that salinity variations may shift composition of dissolved carbon in tidal marsh waters.
Cited articles
Al-Haj, A. N. and Fulweiler, R. W.: A synthesis of methane emissions from
shallow vegetated coastal ecosystems, Global Change Biol., 26, 2988–3005,
https://doi.org/10.1111/gcb.15046, 2020.
Bardgett, R. D., Bowman, W. D., Kaufmann, R., and Schmidt, S. K.: A temporal
approach to linking aboveground and belowground ecology, Trends Ecol. Evol.,
20, 634–641, https://doi.org/10.1016/j.tree.2005.08.005, 2005.
Basiliko, N., Stewart, H., Roulet, N. T., and Moore, T. R.: Do root exudates
enhance peat decomposition?, Geomicrobiol. J., 29, 374–378,
https://doi.org/10.1080/01490451.2011.568272, 2012.
Bianchi, T. S.: Biogeochemistry of Estuaries, Oxford University Press, New
York, USA, 720 pp., 2006.
Blaser, M. and Conrad, R.: Stable carbon isotope fractionation as tracer of
carbon cycling in anoxic soil ecosystems, Curr. Opin. Biotech., 41,
122–129, https://doi.org/10.1016/j.copbio.2016.07.001, 2016.
Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., and Trettin,
C.: The carbon balance of North American wetlands, Wetlands, 26, 889–916,
https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2, 2006.
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., and Zhuang, Q.: Methane
emissions from wetlands: biogeochemical, microbial, and modeling
perspectives from local to global scales, Global Change Biol., 19,
1325–1346, https://doi.org/10.1111/gcb.12131, 2013.
Bubier, J. L., Moore, T. R., Bellisario, L., Comer, N. T., and Crill, P. M.:
Ecological controls on methane emissions from a Northern Peatland Complex in
the zone of discontinuous permafrost, Manitoba, Canada,
Global Biogeochem. Cy., 9, 455–470, https://doi.org/10.1029/95GB02379, 1995.
Chen, J., Luo, Y., Xia, J., Wilcox, K. R., Cao, J., Zhou, X., Jiang, L.,
Niu, S., Estera, K. Y., Huang, R., Wu, F., Hu, T., Liang, J., Shi, Z., Guo,
J., and Wang, R.-W.: Warming effects on ecosystem carbon fluxes are
modulated by plant functional types, Ecosystems, 20, 515–526,
https://doi.org/10.1007/s10021-016-0035-6, 2017.
Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N.,
Öquist, M., Svensson, B. H., Nykänen, H., Martikainen, P. J., and
Oskarsson, H.: Factors controlling large scale variations in methane
emissions from wetlands, Geophys. Res. Lett., 30, 1414, https://doi.org/10.1029/2002GL016848, 2003.
Conrad, R.: Quantification of methanogenic pathways using stable carbon
isotopic signatures: a review and a proposal, Org. Geochem., 36, 739–752,
https://doi.org/10.1016/j.orggeochem.2004.09.006, 2005.
Conrad, R.: Importance of hydrogenotrophic, aceticlastic and methylotrophic
methanogenesis for methane production in terrestrial, aquatic and other
anoxic environments: A mini review, Pedosphere, 30, 25–39,
https://doi.org/10.1016/S1002-0160(18)60052-9, 2020.
Crozier, C. R. and DeLaune, R. D.: Methane production by soils from
different Louisiana marsh vegetation types, Wetlands, 16, 121–126,
https://doi.org/10.1007/BF03160685, 1996.
Dacey, J. W. H., Drake, B. G., and Klug, M. J.: Stimulation of methane
emission by carbon dioxide enrichment of marsh vegetation, Nature, 370,
47–49, https://doi.org/10.1038/370047a0, 1994.
de Jong, A. E. E., in't Zandt, M. H., Meisel, O. H., Jetten, M. S. M.,
Dean, J. F., Rasigraf, O., and Welte, C. U.: Increases in temperature and
nutrient availability positively affect methane-cycling microorganisms in
Arctic thermokarst lake sediments, Environ. Microbiol., 20, 4314–4327,
https://doi.org/10.1111/1462-2920.14345, 2018.
Delarue, F., Gogo, S., Buttler, A., Bragazza, L., Jassey, V. E. J., Bernard,
G., and Laggoun-Défarge, F.: Indirect effects of experimental warming on
dissolved organic carbon content in subsurface peat, J. Soils Sediments, 14,
1800–1805, https://doi.org/10.1007/s11368-014-0945-x, 2014.
Deyn, G. B. D., Cornelissen, J. H. C., and Bardgett, R. D.: Plant functional
traits and soil carbon sequestration in contrasting biomes, Ecol. Lett., 11,
516–531, https://doi.org/10.1111/j.1461-0248.2008.01164.x, 2008.
Dieleman, C. M., Lindo, Z., McLaughlin, J. W., Craig, A. E., and Branfireun,
B. A.: Climate change effects on peatland decomposition and porewater
dissolved organic carbon biogeochemistry, Biogeochemistry, 128, 385–396,
https://doi.org/10.1007/s10533-016-0214-8, 2016.
Ding, W., Cai, Z., and Tsuruta, H.: Plant species effects on methane
emissions from freshwater marshes, Atmos. Environ., 39, 3199–3207,
https://doi.org/10.1016/j.atmosenv.2005.02.022, 2005.
Dise, N. B., Gorham, E., and Verry, E. S.: Environmental factors controlling
methane emissions from peatlands in northern Minnesota,
J. Geophys. Res.-Atmos., 98, 10583–10594, https://doi.org/10.1029/93JD00160, 1993.
Duval, T. P. and Radu, D. D.: Effect of temperature and soil organic matter
quality on greenhouse-gas production from temperate poor and rich fen soils,
Ecol. Eng., 114, 66–75, https://doi.org/10.1016/j.ecoleng.2017.05.011, 2018.
Environmental Protection Agency: Inventory of US Greenhouse Gas Emissions
and Sinks: 1990–2015, Environmental Protection Agency, 633 pp., Washington, DC, USA, 2017.
Fenner, N., Freeman, C., Lock, M. A., Harmens, H., Reynolds, B., and Sparks,
T.: Interactions between elevated CO2 and warming could amplify DOC
exports from peatland catchments, Environ. Sci. Technol., 41, 3146–3152,
https://doi.org/10.1021/es061765v, 2007.
Fey, A. and Conrad, R.: Effect of temperature on carbon and electron flow
and on the archaeal community in methanogenic rice field
soil, Appl. Environ. Microb., 66, 4790–4797,
https://doi.org/10.1128/AEM.66.11.4790-4797.2000, 2000.
He, S., Malfatti, S. A., McFarland, J. W., Anderson, F. E., Pati, A.,
Huntemann, M., Tremblay, J., del Rio, T. G., Waldrop, M. P., Windham-Myers,
L., and Tringe, S. G.: Patterns in wetland microbial community composition
and functional gene repertoire associated with methane emissions, mBio, 6,
e00066-15, https://doi.org/10.1128/mBio.00066-15, 2015.
Heckathorn, S. A., Giri, A., Mishra, S., and Bista, D.: Heat Stress and
Roots, in: Climate Change and Plant Abiotic Stress Tolerance,
John Wiley & Sons Ltd., Weinheim, Germany, 109–136, https://doi.org/10.1002/9783527675265.ch05, 2013.
Hinrichs, K.-U. and Boetius, A.: The Anaerobic Oxidation of Methane: New
Insights in Microbial Ecology and Biogeochemistry, in: Ocean Margin Systems,
edited by: Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B. B.,
Schlüter, M., and van Weering, T. C. E., Springer, Berlin, Heidelberg,
Germany, 457–477, https://doi.org/10.1007/978-3-662-05127-6_28, 2003.
Holmquist, J. R., Windham-Myers, L., Bliss, N., Crooks, S., Morris, J. T.,
Megonigal, J. P., Troxler, T., Weller, D., Callaway, J., Drexler, J.,
Ferner, M. C., Gonneea, M. E., Kroeger, K. D., Schile-Beers, L., Woo, I.,
Buffington, K., Breithaupt, J., Boyd, B. M., Brown, L. N., Dix, N., Hice,
L., Horton, B. P., MacDonald, G. M., Moyer, R. P., Reay, W., Shaw, T.,
Smith, E., Smoak, J. M., Sommerfield, C., Thorne, K., Velinsky, D., Watson,
E., Grimes, K. W., and Woodrey, M.: Accuracy and precision of tidal wetland
soil carbon mapping in the conterminous United States, Sci. Rep.-UK, 8, 9478,
https://doi.org/10.1038/s41598-018-26948-7, 2018.
Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P.,
Kostka, J., Hanson, P. J., Keller, J. K., and Bridgham, S. D.: Massive
peatland carbon banks vulnerable to rising temperatures, Nat. Commun., 11,
2373, https://doi.org/10.1038/s41467-020-16311-8, 2020.
Hosono, T. and Nouchi, I.: The dependence of methane transport in rice
plants on the root zone temperature, Plant Soil, 191, 233–240,
https://doi.org/10.1023/A:1004203208686, 1997.
Inglett, K. S., Inglett, P. W., Reddy, K. R., and Osborne, T. Z.:
Temperature sensitivity of greenhouse gas production in wetland soils of
different vegetation, Biogeochemistry, 108, 77–90,
https://doi.org/10.1007/s10533-011-9573-3, 2012.
IPCC: Climate Change 2013: The Physical Science Basis, Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, Cambridge, UK, 2013.
Jones, T. G., Freeman, C., Lloyd, A., and Mills, G.: Impacts of elevated
atmospheric ozone on peatland below-ground DOC characteristics, Ecol. Eng.,
35, 971–977, https://doi.org/10.1016/j.ecoleng.2008.08.009, 2009.
Kayranli, B., Scholz, M., Mustafa, A., and Hedmark, Å.: Carbon storage
and fluxes within freshwater wetlands: A critical review, Wetlands, 30,
111–124, https://doi.org/10.1007/s13157-009-0003-4, 2010.
Keller, J. K., Wolf, A. A., Weisenhorn, P. B., Drake, B. G., and Megonigal,
J. P.: Elevated CO2 affects porewater chemistry in a brackish marsh,
Biogeochemistry, 96, 101–117, https://doi.org/10.1007/s10533-009-9347-3, 2009.
Kirwan, M. L. and Guntenspergen, G. R.: Feedbacks between inundation, root
production, and shoot growth in a rapidly submerging brackish marsh,
J. Ecol., 100, 764–770, https://doi.org/10.1111/j.1365-2745.2012.01957.x, 2012.
Kludze, H. K. and DeLaune, R. D.: Methane emissions and growth of Spartina patens in response to soil redox intensity, Soil Sci. Soc. Am. J., 58, 1838–1845, https://doi.org/10.2136/sssaj1994.03615995005800060037x, 1994.
Krauss, K. W. and Whitbeck, J. L.: Soil greenhouse gas fluxes during wetland
forest retreat along the Lower Savannah River, Georgia (USA), Wetlands, 32,
73–81, https://doi.org/10.1007/s13157-011-0246-8, 2012.
Kristjansson, J. K., Schönheit, P., and Thauer, R. K.: Different Ks
values for hydrogen of methanogenic bacteria and sulfate reducing bacteria:
An explanation for the apparent inhibition of methanogenesis by sulfate,
Arch. Microbiol., 131, 278–282, https://doi.org/10.1007/BF00405893, 1982.
Lenzewski, N., Mueller, P., Meier, R. J., Liebsch, G., Jensen, K., and
Koop-Jakobsen, K.: Dynamics of oxygen and carbon dioxide in rhizospheres of
Lobelia dortmanna – a planar optode study of belowground gas exchange
between plants and sediment, New Phytol., 218, 131–141, https://doi.org/10.1111/nph.14973, 2018.
Liu, D., Ding, W., Yuan, J., Xiang, J., and Lin, Y.: Substrate and/or
substrate-driven changes in the abundance of methanogenic archaea cause
seasonal variation of methane production potential in species-specific
freshwater wetlands, Appl. Microbiol. Biot., 98, 4711–4721,
https://doi.org/10.1007/s00253-014-5571-4, 2014.
Liu, L., Wang, D., Chen, S., Yu, Z., Xu, Y., Li, Y., Ge, Z., and Chen, Z.:
Methane emissions from estuarine coastal wetlands: Implications for global
change effect, Soil Sci. Soc. Am. J., 83, 1368–1377,
https://doi.org/10.2136/sssaj2018.12.0472, 2019.
Lu, M., Caplan, J. S., Bakker, J. D., Langley, J. A., Mozdzer, T. J., Drake,
B. G., and Megonigal, J. P.: Allometry data and equations for coastal marsh
plants, Ecology, 97, p. 3554, https://doi.org/10.1002/ecy.1600, 2016.
Marsh, A. S., Rasse, D. P., Drake, B. G., and Patrick Megonigal, J.: Effect
of elevated CO2 on carbon pools and fluxes in a brackish marsh,
Estuaries, 28, 694–704, https://doi.org/10.1007/BF02732908, 2005.
Martin, R. M. and Moseman-Valtierra, S.: Different short-term responses of
greenhouse gas fluxes from salt marsh mesocosms to simulated global change
drivers, Hydrobiologia, 802, 71–83, https://doi.org/10.1007/s10750-017-3240-1, 2017.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C.
M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint
for blue carbon: toward an improved understanding of the role of vegetated
coastal habitats in sequestering CO2, Front. Ecol. Environ., 9,
552–560, https://doi.org/10.1890/110004, 2011.
Megonigal, J. P. and Schlesinger, W. H.: Methane-limited methanotrophy
in tidal freshwater swamps, Global Biogeochem. Cy., 16, 1088, https://doi.org/10.1029/2001GB001594, 2002.
Megonigal, J. P., Whalen, S. C., Tissue, D. T., Bovard, B. D., Allen, A. S.,
and Albert, D. B.: A plant-soil-atmosphere microcosm for tracing radiocarbon
from photosynthesis through methanogenesis, Soil Sci. Soc. Am. J., 63,
665–671, https://doi.org/10.2136/sssaj1999.03615995006300030033x, 1999.
Megonigal, J. P., Hines, M. E., and Visscher, P. T.: Anaerobic metabolism:
linkages to trace gases and aerobic processes, in: Biogeochemistry, edited
by: Schlesinger, W. H., Elsevier-Pergamon, Oxford, UK, 317–424, 2004.
Megonigal, J. P., Chapman, S., Crooks, S., Dijkstra, P., Kirwan, M., and Langley, A.: 3.4 Impacts and effects of ocean warming on tidal marsh and tidal freshwater forest ecosystems, in: Explaining Ocean Warming: Causes, scale, effects, and consequences, IUCN, Gland, Switzerland, 2016.
Moor, H., Rydin, H., Hylander, K., Nilsson, M. B., Lindborg, R., and
Norberg, J.: Towards a trait-based ecology of wetland vegetation, J. Ecol.,
105, 1623–1635, https://doi.org/10.1111/1365-2745.12734, 2017.
Mueller, P., Jensen, K., and Megonigal, J. P.: Plants mediate soil organic
matter decomposition in response to sea level rise, Global Change Biol., 22,
404–414, https://doi.org/10.1111/gcb.13082, 2016.
Mueller, P., Mozdzer, T. J., Langley, J. A., Aoki, L. R., Noyce, G. L., and
Megonigal, J. P.: Plants determine methane response to sea level rise, Nat.
Commun., https://doi.org/10.1038/s41467-020-18763-4, 2020.
Neubauer, S. C. and Craft, C. B.: Global Change and Tidal
Freshwater Wetlands: Scenarios and Impacts, in: Tidal Freshwater Wetlands,
edited by: Barendregt, A., Whigham, D., and Baldwin, A., Margraf Publishers,
Weikersheim, Germany, 253–310, 2009.
Neubauer, S. C. and Megonigal, J. P.: Moving beyond global warming
potentials to quantify the climatic role of ecosystems, Ecosystems, 18,
1000–1013, https://doi.org/10.1007/s10021-015-9879-4, 2015.
Neubauer, S. C., Emerson, D., and Megonigal, J. P.: Microbial oxidation and
reduction of Iron in the root zone and influences on metal mobility, in:
Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil
Environments, John Wiley & Sons Ltd., Hoboken, New Jersey, 339–371,
https://doi.org/10.1002/9780470175484.ch9, 2008.
Neumann, R. B., Blazewicz, S. J., Conaway, C. H., Turetsky, M. R., and
Waldrop, M. P.: Modeling CH4 and CO2 cycling using porewater
stable isotopes in a thermokarst bog in Interior Alaska: results from three
conceptual reaction networks, Biogeochemistry, 127, 57–87,
https://doi.org/10.1007/s10533-015-0168-2, 2016.
Noyce, G. L., Kirwan, M. L., Rich, R. L., and Megonigal, J. P.: Asynchronous
nitrogen supply and demand produce non-linear plant allocation responses to
warming and elevated CO2, P. Natl. Acad. Sci. USA, 116, 21623–21628, https://doi.org/10.1073/pnas.1904990116, 2019.
Oremland, R. S., Marsh, L. M., and Polcin, S.: Methane production and
simultaneous sulphate reduction in anoxic, salt marsh sediments, Nature,
296, 143–145, https://doi.org/10.1038/296143a0, 1982.
Pastore, M. A., Megonigal, J. P., and Langley, J. A.: Elevated CO2 and
nitrogen addition accelerate net carbon gain in a brackish marsh,
Biogeochemistry, 133, 73–87, https://doi.org/10.1007/s10533-017-0312-2, 2017.
Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A.,
Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marbà, N.,
Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., and Baldera, A.:
Estimating global “blue carbon” emissions from conversion and degradation
of vegetated coastal ecosystems, PloS One, 7, e43542,
https://doi.org/10.1371/journal.pone.0043542, 2012.
Philippot, L., Hallin, S., Börjesson, G., and Baggs, E. M.: Biochemical
cycling in the rhizosphere having an impact on global change, Plant Soil,
321, 61–81, https://doi.org/10.1007/s11104-008-9796-9, 2009.
Poffenbarger, H. J., Needelman, B. A., and Megonigal, J. P.: Salinity
influence on methane emissions from tidal marshes, Wetlands, 31, 831–842,
https://doi.org/10.1007/s13157-011-0197-0, 2011.
Rich, R. L., Stefanski, A., Montgomery, R. A., Hobbie, S. E., Kimball, B.
A., and Reich, P. B.: Design and performance of combined infrared canopy and
belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in
Danger) experiment, Global Change Biol., 21, 2334–2348,
https://doi.org/10.1111/gcb.12855, 2015.
Robroek, B. J. M., Albrecht, R. J. H., Hamard, S., Pulgarin, A., Bragazza,
L., Buttler, A., and Jassey, V. E.: Peatland vascular plant functional types
affect dissolved organic matter chemistry, Plant Soil, 407, 135–143,
https://doi.org/10.1007/s11104-015-2710-3, 2016.
Roden, E. E. and Wetzel, R. G.: Organic carbon oxidation and suppression of
methane production by microbial Fe(III) oxide reduction in vegetated and
unvegetated freshwater wetland sediments, Limnol. Oceanogr., 41, 1733–1748,
https://doi.org/10.4319/lo.1996.41.8.1733, 1996.
Schlesinger, W. H. and Bernhardt, E. S.: Biogeochemistry: An Analysis of
Global Change, edn. 4, Academic Press, Waltham, Massachusetts, USA, 2020.
Segers, R.: Methane production and methane consumption: A review of
processes underlying wetland methane fluxes, Biogeochemistry, 41, 23–51,
https://doi.org/10.1023/A:1005929032764, 1998.
Sihi, D., Inglett, P. W., Gerber, S., and Inglett, K. S.: Rate of warming
affects temperature sensitivity of anaerobic peat decomposition and
greenhouse gas production, Global Change Biol., 24, 259–274,
https://doi.org/10.1111/gcb.13839, 2017.
Sorrell, B. K., Brix, H., Schierup, H.-H., and Lorenzen, B.: Die-back of
Phragmites australis: Influence on the distribution and rate of sediment methanogenesis, Biogeochemistry, 36, 173–188, https://doi.org/10.1023/A:1005761609386,
1997.
Stanley, E. H. and Ward, A. K.: Effects of vascular plants on seasonal pore
water carbon dynamics in a lotic wetland, Wetlands, 30, 889–900,
https://doi.org/10.1007/s13157-010-0087-x, 2010.
Sutton-Grier, A. E., Keller, J. K., Koch, R., Gilmour, C., and
Megonigal, J. P.: Electron donors and acceptors influence anaerobic soil
organic matter mineralization in tidal marshes, Soil Biol. Biochem., 43,
1576–1583, https://doi.org/10.1016/j.soilbio.2011.04.008, 2011.
van Bodegom, P. M. and Stams, A. J. M.: Effects of alternative electron
acceptors and temperature on methanogenesis in rice paddy soils,
Chemosphere, 39, 167–182, https://doi.org/10.1016/S0045-6535(99)00101-0, 1999.
van der Nat, F.-J. W. A. and Middelburg, J. J.: Effects of two common macrophytes
on methane dynamics in freshwater sediments, Biogeochemistry, 43, 79–104,
https://doi.org/10.1023/A:1006076527187, 1998a.
van der Nat, F.-J. W. A. and Middelburg, J. J.: Seasonal variation in
methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris, Aquat. Bot., 61, 95–110, https://doi.org/10.1016/S0304-3770(98)00072-2, 1998b.
van Hulzen, J. B., Segers, R., van Bodegom, P. M., and Leffelaar, P. A.:
Temperature effects on soil methane production: an explanation for observed
variability, Soil Biol. Biochem., 31, 1919–1929,
https://doi.org/10.1016/S0038-0717(99)00109-1, 1999.
Vann, C. D. and Megonigal, J. P.: Elevated CO2 and water depth
regulation of methane emissions: Comparison of woody and non-woody wetland
plant species, Biogeochemistry, 63, 117–134,
https://doi.org/10.1023/A:1023397032331, 2003.
Waldo, N. B., Hunt, B. K., Fadely, E. C., Moran, J. J., and Neumann, R. B.:
Plant root exudates increase methane emissions through direct and indirect
pathways, Biogeochemistry, 145, 213–234,
https://doi.org/10.1007/s10533-019-00600-6, 2019.
Ward, S. E., Ostle, N. J., Oakley, S., Quirk, H., Henrys, P. A., and
Bardgett, R. D.: Warming effects on greenhouse gas fluxes in peatlands are
modulated by vegetation composition, Ecol. Lett., 16, 1285–1293,
https://doi.org/10.1111/ele.12167, 2013.
Wassmann, R., Alberto, M. C., Tirol-Padre, A., Hoang, N. T., Romasanta, R.,
Centeno, C. A., and Sander, B. O.: Increasing sensitivity of methane
emission measurements in rice through deployment of “closed chambers” at
nighttime, PloS One, 13, e0191352, https://doi.org/10.1371/journal.pone.0191352, 2018.
Weiss, J. V., Emerson, D., and Megonigal, J. P.: Geochemical control of
microbial Fe(III) reduction potential in wetlands: comparison of the
rhizosphere to non-rhizosphere soil, FEMS Microbiol. Ecol., 48, 89–100,
https://doi.org/10.1016/j.femsec.2003.12.014, 2004.
Weston, N. B. and Joye, S. B.: Temperature-driven decoupling of key phases
of organic matter degradation in marine sediments,
P. Natl. Acad. Sci. USA, 102, 17036–17040, https://doi.org/10.1073/pnas.0508798102, 2005.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation and oxidation of methane, Chem. Geol., 161, 291–314,
https://doi.org/10.1016/S0009-2541(99)00092-3, 1999.
Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C.
W., Pfeifer-Meister, L., Medvedeff, C., McFarlane, K. J., Kostka, J. E.,
Kolton, M., Kolka, R. K., Kluber, L. A., Keller, J. K., Guilderson, T. P.,
Griffiths, N. A., Chanton, J. P., Bridgham, S. D., and Hanson, P. J.:
Stability of peatland carbon to rising temperatures, Nat. Commun., 7,
13723, https://doi.org/10.1038/ncomms13723, 2016.
Yang, P., Wang, M. H., Lai, D. Y. F., Chun, K. P., Huang, J. F., Wan, S. A.,
Bastviken, D., and Tong, C.: Methane dynamics in an estuarine brackish
Cyperus malaccensis marsh: Production and porewater concentration in soils, and net emissions to the atmosphere over five years, Geoderma, 337, 132–142,
https://doi.org/10.1016/j.geoderma.2018.09.019, 2019.
Yang, Z., Wullschleger, S. D., Liang, L., Graham, D. E., and Gu, B.: Effects
of warming on the degradation and production of low-molecular-weight labile
organic carbon in an Arctic tundra soil, Soil Biol. Biochem., 95, 202–211,
https://doi.org/10.1016/j.soilbio.2015.12.022, 2016.
Ye, R., Jin, Q., Bohannan, B., Keller, J. K., and Bridgham, S. D.:
Homoacetogenesis: A potentially underappreciated carbon pathway in
peatlands, Soil Biol. Biochem., 68, 385–391,
https://doi.org/10.1016/j.soilbio.2013.10.020, 2014.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C.,
St-Pierre, A., Thanh-Duc, N., and del Giorgio, P. A.: Methane fluxes show
consistent temperature dependence across microbial to ecosystem scales,
Nature, 507, 488–491, https://doi.org/10.1038/nature13164, 2014.
Short summary
Methane (CH4) is a potent greenhouse gas that contributes to global radiative forcing. A mechanistic understanding of how wetland CH4 cycling will respond to global warming is crucial for improving prognostic models. We present results from the first 4 years of a novel whole-ecosystem warming experiment in a coastal wetland, showing that warming increases CH4 emissions and identifying four potential mechanisms that can be added to future modeling efforts.
Methane (CH4) is a potent greenhouse gas that contributes to global radiative forcing. A...
Altmetrics
Final-revised paper
Preprint