Articles | Volume 18, issue 9
https://doi.org/10.5194/bg-18-2981-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2981-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep-water inflow event increases sedimentary phosphorus release on a multi-year scale
Department of Marine Sciences, University of Gothenburg, Box 461, 405
30 Gothenburg, Sweden
Sebastiaan J. van de Velde
Department of Earth and Planetary Sciences, University of California,
Riverside, CA 92521, USA
Bgeosys, Geoscience, Environment & Society, Université Libre de
Bruxelles, 1050 Brussels, Belgium
Operational Directorate Natural Environment, Royal Belgian Institute
of Natural Sciences, 1000 Brussels, Belgium
Mikhail Kononets
Department of Marine Sciences, University of Gothenburg, Box 461, 405
30 Gothenburg, Sweden
Mingyue Luo
Department of Analytical, Environmental and Geo-Chemistry, Vrije
Universiteit Brussel, 1050 Brussels, Belgium
Elin Almroth-Rosell
Oceanographic Research, Swedish Meteorological and Hydrological
Institute, 426 71 Västra Frölunda, Sweden
Per O. J. Hall
Department of Marine Sciences, University of Gothenburg, Box 461, 405
30 Gothenburg, Sweden
Related authors
Silvia Placitu, Sebastiaan J. van de Velde, Astrid Hylén, Mats Eriksson, Per O. J. Hall, and Steeve Bonneville
EGUsphere, https://doi.org/10.5194/egusphere-2025-3020, https://doi.org/10.5194/egusphere-2025-3020, 2025
Short summary
Short summary
Marine sediments store organic carbon and help regulate climate. Oxygen-depleted waters are thought to enhance this, however West Gotland Basin sediments show low carbon despite such conditions. We studied the role of mineral protection, which can shield carbon from microbes, and found it limited. This suggests that without physical protection, carbon remains accessible and gets degraded, making mineral protection a key factor in carbon preservation.
Astrid Hylen, Nils Ekeroth, Hannah Berk, Andy W. Dale, Mikhail Kononets, Wytze K. Lenstra, Aada Palo, Anders Tengberg, Sebastiaan J. van de Velde, Stefan Sommer, Caroline P. Slomp, and Per O. J. Hall
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-146, https://doi.org/10.5194/essd-2025-146, 2025
Preprint under review for ESSD
Short summary
Short summary
Phosphorus is an essential element for life and its cycling strongly impact primary production. Here, we present a dataset of sediment-water fluxes of dissolved inorganic phosphorus from the Baltic Sea, an area with a long history of eutrophication. The fluxes were measured in situ with three types of benthic chamber landers at 59 stations over 20 years. The data show clear spatial patterns and will be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
Biogeosciences, 22, 355–384, https://doi.org/10.5194/bg-22-355-2025, https://doi.org/10.5194/bg-22-355-2025, 2025
Short summary
Short summary
Marine enhanced rock weathering (mERW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of mERW parameters and identifying aspects to consider when applying mERW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Silvia Placitu, Sebastiaan J. van de Velde, Astrid Hylén, Mats Eriksson, Per O. J. Hall, and Steeve Bonneville
EGUsphere, https://doi.org/10.5194/egusphere-2025-3020, https://doi.org/10.5194/egusphere-2025-3020, 2025
Short summary
Short summary
Marine sediments store organic carbon and help regulate climate. Oxygen-depleted waters are thought to enhance this, however West Gotland Basin sediments show low carbon despite such conditions. We studied the role of mineral protection, which can shield carbon from microbes, and found it limited. This suggests that without physical protection, carbon remains accessible and gets degraded, making mineral protection a key factor in carbon preservation.
Astrid Hylen, Nils Ekeroth, Hannah Berk, Andy W. Dale, Mikhail Kononets, Wytze K. Lenstra, Aada Palo, Anders Tengberg, Sebastiaan J. van de Velde, Stefan Sommer, Caroline P. Slomp, and Per O. J. Hall
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-146, https://doi.org/10.5194/essd-2025-146, 2025
Preprint under review for ESSD
Short summary
Short summary
Phosphorus is an essential element for life and its cycling strongly impact primary production. Here, we present a dataset of sediment-water fluxes of dissolved inorganic phosphorus from the Baltic Sea, an area with a long history of eutrophication. The fluxes were measured in situ with three types of benthic chamber landers at 59 stations over 20 years. The data show clear spatial patterns and will be important for marine management and studies on mechanisms in benthic phosphorus cycling.
Tom Huysmans, Filip J. R. Meysman, and Sebastiaan J. van de Velde
EGUsphere, https://doi.org/10.5194/egusphere-2025-447, https://doi.org/10.5194/egusphere-2025-447, 2025
Short summary
Short summary
To examine the potential of "Accelerated Weathering of Limestone" as a carbon capture and storage technique, we compared the different available reactor designs, and assessed their CO2 sequestration efficiencies, resource usage and limitations. We find that large water volumes are required to efficiently remove CO2 from the gas stream and that very small CaCO3 particle sizes and long residence times are required to achieve reasonable CaCO3 dissolution efficiencies.
Luna J. J. Geerts, Astrid Hylén, and Filip J. R. Meysman
Biogeosciences, 22, 355–384, https://doi.org/10.5194/bg-22-355-2025, https://doi.org/10.5194/bg-22-355-2025, 2025
Short summary
Short summary
Marine enhanced rock weathering (mERW) with olivine is a promising method for capturing CO2 from the atmosphere, yet studies in field conditions are lacking. We bridge the gap between theoretical studies and the real-world environment by estimating the predictability of mERW parameters and identifying aspects to consider when applying mERW. A major source of uncertainty is the lack of experimental studies with sediment, which can heavily influence the speed and efficiency of CO2 drawdown.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Karol Kuliński, Gregor Rehder, Eero Asmala, Alena Bartosova, Jacob Carstensen, Bo Gustafsson, Per O. J. Hall, Christoph Humborg, Tom Jilbert, Klaus Jürgens, H. E. Markus Meier, Bärbel Müller-Karulis, Michael Naumann, Jørgen E. Olesen, Oleg Savchuk, Andreas Schramm, Caroline P. Slomp, Mikhail Sofiev, Anna Sobek, Beata Szymczycha, and Emma Undeman
Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, https://doi.org/10.5194/esd-13-633-2022, 2022
Short summary
Short summary
The paper covers the aspects related to changes in carbon, nitrogen, and phosphorus (C, N, P) external loads; their transformations in the coastal zone; changes in organic matter production (eutrophication) and remineralization (oxygen availability); and the role of sediments in burial and turnover of C, N, and P. Furthermore, this paper also focuses on changes in the marine CO2 system, the structure of the microbial community, and the role of contaminants for biogeochemical processes.
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021, https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
Short summary
Dense blooms of cyanobacteria occur every summer in the Baltic Proper and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important role in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Sebastiaan J. van de Velde, Rebecca K. James, Ine Callebaut, Silvia Hidalgo-Martinez, and Filip J. R. Meysman
Biogeosciences, 18, 1451–1461, https://doi.org/10.5194/bg-18-1451-2021, https://doi.org/10.5194/bg-18-1451-2021, 2021
Short summary
Short summary
Some 540 Myr ago, animal life evolved in the ocean. Previous research suggested that when these early animals started inhabiting the seafloor, they retained phosphorus in the seafloor, thereby limiting photosynthesis in the ocean. We studied salt marsh sediments with and without animals and found that their impact on phosphorus retention is limited, which implies that their impact on the global environment might have been less drastic than previously assumed.
Cited articles
Almroth-Rosell, E., Eilola, K., Kuznetsov, I., Hall, P. O. J., and Meier, H.
E. M.: A new approach to model oxygen dependent benthic phosphate fluxes in
the baltic sea, J. Marine Syst., 144, 127–141,
https://doi.org/10.1016/j.jmarsys.2014.11.007, 2015.
Altieri, A. H. and Gedan, K. B.: Climate change and dead zones,
Global Change Biol., 21, 1395–1406, https://doi.org/10.1111/gcb.12754, 2015.
Aminot, A., Kérouel, R., and Coverly, S. C.: Nutrients in
seawater using segmented flow analysis, in: Practical Guidelines for the
Analysis of Seawater, edited by: Wurl, O., CRC Press, Boca Raton, Florida, USA, 144–177, 2009.
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost,
R. D., and Regnier, P. A. G.: Quantifying the degradation of organic matter
in marine sediments: A review and synthesis, Earth-Sci. Rev., 123,
53–86, https://doi.org/10.1016/j.earscirev.2013.02.008, 2013.
Arnosti, C., Jorgensen, B. B., Sagemann, J., and Thamdrup, B.: Temperature
dependence of microbial degradation of organic matter in marine sediments:
polysaccharide hydrolysis, oxygen consumption, and sulfate reduction, Mar.
Ecol. Prog. Ser., 165, 59–70, 1998.
Berelson, W. M., McManus, J., Coale, K. H., Johnson, K. S., Burdige, D. J.,
Kilgore, T. E., Colodner, D., Chavez, F. P., Kudela, R., and Boucher, J.: A
time series of benthic flux measurements from Monterey Bay, CA,
Cont. Shelf Res., 23, 457–481, https://doi.org/10.1016/S0278-4343(03)00009-8, 2003.
Bianchi, T. S.: The role of terrestrially derived organic carbon in the
coastal ocean: A changing paradigm and the priming effect, P. Natl. Acad. Sci. USA, 108, 19473–19481, https://doi.org/10.1073/pnas.1017982108, 2011.
Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and
Galy, V.: Centers of organic carbon burial and oxidation at the land-ocean
interface, Org. Geochem., 115, 138–155, https://doi.org/10.1016/j.orggeochem.2017.09.008, 2018.
Bidle, K. D. and Azam, F.: Accelerated dissolution of diatom silica by
marine bacterial assemblages, Nature, 397, 508–512,
https://doi.org/10.1038/17351, 1999.
Blomqvist, S., Ekeroth, N., Elmgren, R., and Hall, P. O. J.: Long overdue
improvement of box corer sampling, Mar. Ecol. Prog. Ser., 538, 13–21,
https://doi.org/10.3354/meps11405, 2015.
Boudreau, B. P.: Diagenetic models and their implementation: modelling
transport and reactions in aquatic sediments, Springer, New York, 414 pp., 1997.
Breitburg, D. L., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F.
P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee,
K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G.
C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski,
M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Broman, E., Bonaglia, S., Holovachov, O., Marzocchi, U., Hall, P. O. J., and
Nascimento, F. J. A.: Uncovering diversity and metabolic spectrum of animals
in dead zone sediments, Commun. Biol., 3, 106,
https://doi.org/10.1038/s42003-020-0822-7, 2020.
Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.:
Deoxygenation of the Baltic Sea during the last century,
P. Natl. Acad. Sci. USA, 111, 5628–5633, https://doi.org/10.1073/pnas.1323156111, 2014.
Christiansen, C., Edelvang, K., Emeis, K. C., Graf, G., Jähmlich, S.,
Kozuch, J., Laima, M., Leipe, T., Löffler, A., Lund-Hansen, L. C.,
Miltner, A., Pazdro, K., Pempkowiak, J., Shimmield, G., Shimmield, T.,
Smith, J., Voss, M., and Witt, G.: Material transport from the nearshore to
the basinal environment in the southern Baltic Sea I, Processes and mass
estimates, J. Marine Syst., 35, 133–150,
https://doi.org/10.1016/S0924-7963(02)00126-4, 2002.
Cisternas-Novoa, C., Le Moigne, F. A. C., and Engel, A.: Composition and vertical flux of particulate organic matter to the oxygen minimum zone of the central Baltic Sea: impact of a sporadic North Sea inflow, Biogeosciences, 16, 927–947, https://doi.org/10.5194/bg-16-927-2019, 2019.
Danielsson, Å., Jönsson, A., and Rahm, L.: Resuspension patterns in
the Baltic proper, J. Sea Res., 57, 257–269,
https://doi.org/10.1016/j.seares.2006.07.005, 2007.
de Mendibur, F.: agricolae: Statistical Procedures for Agricultural
Research, R package version 1.3-3, available at: https://CRAN.R-project.org/package=agricolae (last access: 23 March 2021), 2020.
Dellwig, O., Leipe, T., Ma, C., Glockzin, M., Pollehne, F., Schnetger, B.,
Yakushev, E. V., and Bo, M. E.: A new particulate Mn-Fe-P-shuttle at the
redoxcline of anoxic basins, Geochim. Cosmochim. Ac., 74, 7100–7115,
https://doi.org/10.1016/j.gca.2010.09.017, 2010.
Dellwig, O., Schnetger, B., Meyer, D., Pollehne, F., Häusler, K., and
Arz, H. W.: Impact of the Major Baltic Inflow in 2014 on Manganese Cycling
in the Gotland Deep (Baltic Sea), Front. Mar. Sci., 5, 248,
https://doi.org/10.3389/fmars.2018.00248, 2018.
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for
Marine Ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401, 2008.
Ekeroth, N., Blomqvist, S., and Hall, P. O. J.: Nutrient fluxes from reduced
Baltic Sea sediment: effects of oxygenation and macrobenthos, Mar. Ecol.
Prog. Ser., 544, 77–92, https://doi.org/10.3354/meps11592, 2016.
Glud, R. N., Berg, P., Fossing, H., and Jørgensen, B. B.: Effect of the
diffusive boundary layer on benthic mineralization and O2 distribution: A theoretical model analysis, Limnol. Oceanogr., 52, 547–557,
https://doi.org/10.4319/lo.2007.52.2.0547, 2007.
Gunnars, A., Blomqvist, S., Johansson, P., and Andersson, C.: Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with
incorporation of phosphate and calcium, Geochim. Cosmochim. Ac., 66,
745–758, 2002.
Hagen, E. and Feistel, R.: Observations of low-frequency current
fluctuations in deep water of the Eastern Gotland Basin/Baltic Sea,
J. Geophys. Res.-Oceans, 109, C03044, https://doi.org/10.1029/2003jc002017, 2004.
Hall, P. O. J., Anderson, L. G., van der Loeff, M. M. R., Sundby, B., and
Westerlund, S. F. G.: Oxygen uptake kinetics in the benthic boundary layer,
Limnol. Oceanogr., 34, 734–746, https://doi.org/10.4319/lo.1989.34.4.0734, 1989.
Hall, P. O. J., Almroth-Rosell, E., Bonaglia, S., Dale, A. W., Hylén,
A., Kononets, M. Y., Nilsson, M. M., Sommer, S., van de Velde, S. J., and
Viktorsson, L.: Influence of Natural Oxygenation of Baltic Proper Deep Water
on Benthic Recycling and Removal of Phosphorus, Nitrogen, Silicon and
Carbon, Front. Mar. Sci., 4, 27, https://doi.org/10.3389/fmars.2017.00027, 2017.
Hermans, M., Lenstra, W. K., Hidalgo-Martinez, S., van Helmond, N. A. G. M.,
Witbaard, R., Meysman, F. J. R., Gonzalez, S., and Slomp, C. P.: Abundance
and Biogeochemical Impact of Cable Bacteria in Baltic Sea Sediments,
Environ. Sci. Technol., 53, 7494–7503, https://doi.org/10.1021/acs.est.9b01665, 2019a.
Hermans, M., Lenstra, W. K., van Helmond, N. A. G. M., Behrends, T., Egger,
M., Séguret, M. J. M., Gustafsson, E., Gustafsson, B. G., and Slomp, C.
P.: Impact of natural re-oxygenation on the sediment dynamics of manganese,
iron and phosphorus in a euxinic Baltic Sea basin, Geochim. Cosmochim. Ac.,
246, 174–196, https://doi.org/10.1126/science.1105959, 2019b.
Hulthe, G., Hulth, S., and Hall, P. O. J.: Effect of oxygen on degradation
rate of refractory and labile organic matter in continental margin
sediments, Geochim. Cosmochim. Ac., 62, 1319–1328, 1998.
Hylén, A., van de Velde, S. J., Kononets, M., Luo, M., Almroth-Rosell, E., and Hall, P. O. J.: Benthic fluxes and sediment properties in the Eastern Gotland Basin, Baltic Sea, following a major Baltic inflow, Marine Data Archive [data set], https://doi.org/10.14284/442, 2021.
Jilbert, T. and Slomp, C. P.: Iron and manganese shuttles control the
formation of authigenic phosphorus minerals in the euxinic basins of the
Baltic Sea, Geochim. Cosmochim. Ac., 107, 155–169,
https://doi.org/10.1016/j.gca.2013.01.005, 2013.
Jilbert, T., Slomp, C. P., Gustafsson, B. G., and Boer, W.: Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles, Biogeosciences, 8, 1699–1720, https://doi.org/10.5194/bg-8-1699-2011, 2011.
Johansen, M. and Skjevik, A.-T.: Algal situation in marine waters
surrounding Sweden, no. 8-11, available at:
https://www.smhi.se/publikationer/publikationer/algrapporter (last access: 18 January 2021), 2017.
Jonsson, P., Carman, R., and Wulff, F.: Laminated Sediments in the Baltic: A
Tool for Evaluating Nutrient Mass Balances, Ambio, 19, 152–158, 1990.
Kononets, M. Y., Tengberg, A., Nilsson, M. M., Ekeroth, N., Hylén, A.,
van de Velde, S. J., Rütting, T., Bonaglia, S., Blomqvist, S., and Hall,
P. O. J.: In situ incubations with Gothenburg benthic chamber landers:
Applications and quality control, J. Marine Syst., 214, 103475,
https://doi.org/10.1016/j.jmarsys.2020.103475, 2021.
Koreleff, F.: Determination of nutrients, in: Methods of seawater analysis,
edited by: Grasshoff, K., Ehrhardt, M., and Kremling, K., Verlag Chemie, Weinheim, Germany, 125–187, 1983.
Kraal, P., Dijkstra, N., Behrends, T., and Slomp, C. P.: Phosphorus burial in
sediments of the sulfidic deep Black Sea: Key roles for adsorption by
calcium carbonate and apatite authigenesis, Geochim. Cosmochim. Ac., 204,
140–158, https://doi.org/10.1016/j.gca.2017.01.042, 2017.
LaRowe, D. E., Arndt, S., Bradley, J. A., Estes, E. R., Hoarfrost, A., Lang,
S. Q., Lloyd, K. G., Mahmoudi, N., Orsi, W. D., Shah Walter, S. R., Steen,
A. D., and Zhao, R.: The fate of organic carbon in marine sediments – New
insights from recent data and analysis, Earth-Sci. Rev., 204, 103146, https://doi.org/10.1016/j.earscirev.2020.103146, 2020.
Le Moigne, F. A. C., Cisternas-Novoa, C., Piontek, J., Maßmig, M., and
Engel, A.: On the effect of low oxygen concentrations on bacterial
degradation of sinking particles, Sci. Rep.-UK, 7, 16722,
https://doi.org/10.1038/s41598-017-16903-3, 2017.
Leipe, T., Tauber, F., Vallius, H., Virtasalo, J. J., Uścinowicz, S.,
Kowalski, N., Hille, S., Lindgren, S., and Myllyvirta, T.: Particulate
organic carbon (POC) in surface sediments of the Baltic Sea,
Geo-Mar. Lett., 31, 175–188, https://doi.org/10.1007/s00367-010-0223-x, 2011.
Liblik, T., Naumann, M., Alenius, P., Hansson, M., Lips, U., Nausch, G.,
Tuomi, L., Wesslander, K., Laanemets, J., and Viktorsson, L.: Propagation of
impact of the recent Major Baltic Inflows from the Eastern Gotland Basin to
the Gulf of Finland, Front. Mar. Sci., 5, 222,
https://doi.org/10.3389/fmars.2018.00222, 2018.
Marzocchi, U., Bonaglia, S., van de Velde, S. J., Hall, P. O. J., Schramm,
A., Risgaard-Petersen, N., and Meysman, F. J. R.: Transient bottom water
oxygenation creates a niche for cable bacteria in long-term anoxic sediments
of the Eastern Gotland Basin, Environ. Microbiol., 20, 3031–3041,
https://doi.org/10.1111/1462-2920.14349, 2018.
Middelburg, J. J. and Levin, L. A.: Coastal hypoxia and sediment biogeochemistry, Biogeosciences, 6, 1273–1293, https://doi.org/10.5194/bg-6-1273-2009, 2009.
Nilsson, M. M., Kononets, M. Y., Ekeroth, N., Viktorsson, L., Hylén, A.,
Sommer, S., Pfannkuche, O., Almroth-Rosell, E., Atamanchuk, D., Andersson,
H. J., Roos, P., Tengberg, A., and Hall, P. O. J.: Organic carbon recycling
in Baltic Sea sediments – An integrated estimate on the system scale based
on in situ measurements, Mar. Chem., 209, 81–93,
https://doi.org/10.1016/j.marchem.2018.11.004, 2019.
Nilsson, M. M., Hylén, A., Ekeroth, N., Kononets, M. Y., Viktorsson, L.,
Almroth-Rosell, E., Roos, P., Tengberg, A., and Hall, P. O. J.: Particle
shuttling and oxidation capacity of sedimentary organic carbon on the Baltic
Sea system scale, Mar. Chem., 232, 103963, https://doi.org/10.1016/j.marchem.2021.103963, 2021.
Noffke, A., Hensen, C., Sommer, S., Scholz, F., Bohlen, L., Mosch, T.,
Graco, M., and Wallmann, K.: Benthic iron and phosphorus fluxes across the
Peruvian oxygen minimum zone, Limnol. Oceanogr., 57, 851–867,
https://doi.org/10.4319/lo.2012.57.3.0851, 2012.
Piontek, J., Endres, S., Le Moigne, F. A. C., Schartau, M., and Engel, A.:
Relevance of nutrient-limited phytoplankton production and its bacterial
remineralization for carbon and oxygen fluxes in the Baltic Sea, Front. Mar.
Sci., 6, 581, https://doi.org/10.3389/fmars.2019.00581, 2019.
R Core Team: A Language and Environment for Statistical Computing,
available at: https://www.r-project.org/ (last access: 20 August 2020), 2020.
Redfield, A. C.: The biological control of chemical factors in the
environment, Am. Sci., 46, 205–221, 1958.
Reusch, T. B. H., Dierking, J., Andersson, H. C., Bonsdorff, E., Carstensen,
J., Casini, M., Czajkowski, M., Hasler, B., Hinsby, K., Hyytiäinen, K.,
Johannesson, K., Jomaa, S., Jormalainen, V., Kuosa, H., Kurland, S.,
Ojaveer, H., Refsgaard, J. C., Sandström, A., Schwarz, G., Laikre, L.,
MacKenzie, B. R., Margonski, P., Melzner, F., Oesterwind, D., Ojaveer, H.,
Refsgaard, J. C., Sandström, A., Schwarz, G., Tonderski, K., Winder, M.,
and Zandersen, M.: The Baltic Sea as a time machine for the future coastal
ocean, Science Advances, 4, eaar8195, https://doi.org/10.1126/sciadv.aar8195, 2018.
Ruttenberg, K. C.: Development of a sequential extraction method for
different forms of phosphorus in marine sediments, Limnol. Oceanogr., 37,
1460–1482, https://doi.org/10.4319/lo.1992.37.7.1460, 1992.
Ruttenberg, K. C.: The Global Phosphorus Cycle, in: Treasie on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., Elsevier, 585–643, 2003.
Schmale, O., Krause, S., Holtermann, P. L., Power Guerra, N. C., and Umlauf,
L.: Dense bottom gravity currents and their impact on pelagic methanotrophy
at oxic/anoxic transition zones, Geophys. Res. Lett., 43, 5225–5232,
https://doi.org/10.1002/2016GL069032, 2016.
Slomp, C. P., Epping, E. H. G., Helder, W., and Van Raaphorst, W.: A key role
for iron-bound phosphorus in authigenic apatite formation in North Atlantic
continental platform sediments, J. Mar. Res., 54, 1179–1205, 1996.
SMHI: SHARKweb, available at: http://sharkweb.smhi.se, last access: 20 March 2021.
Soetaert, K., Petzoldt, T., Meysman, F. J. R., and Meire, L.: “marelac” R
package, v. 2.1.10, available at:
https://CRAN.R-project.org/package=marelac (last access: 15 May 2020), 2020.
Sommer, S., Clemens, D., Yücel, M., Pfannkuche, O., Hall, P. O. J.,
Almroth-Rosell, E., Schulz-Vogt, H. N., and Dale, A. W.: Major Bottom Water
Ventilation Events Do Not Significantly Reduce Basin-Wide Benthic N and P
Release in the Eastern Gotland Basin (Baltic Sea), Front. Mar. Sci., 4,
18, https://doi.org/10.3389/fmars.2017.00018, 2017.
Steenbergh, A. K., Bodelier, P. L. E., Hoogveld, H. L., Slomp, C. P., and
Laanbroek, H. J.: Phosphatases relieve carbon limitation of microbial
activity in Baltic Sea sediments along a redox-gradient, Limnol. Oceanogr.,
56, 2018–2026, https://doi.org/10.4319/lo.2011.56.6.2018, 2011.
Steenbergh, A. K., Bodelier, P. L. E., Heldal, M., Slomp, C. P., and
Laanbroek, H. J.: Does microbial stoichiometry modulate eutrophication of
aquatic ecosystems?, Environ. Microbiol., 15, 1572–1579,
https://doi.org/10.1111/1462-2920.12042, 2013.
Stigebrandt, A.: On the response of the Baltic proper to changes of the
total phosphorus supply, Ambio, 47, 31–44, https://doi.org/10.1007/s13280-017-0933-7, 2018.
Stigebrandt, A., Rosenberg, R., Magnusson, M., and Linders, T.: Oxygenated
deep bottoms beneath a thick hypoxic layer lack potential of benthic
colonization, Ambio, 47, 106–109, https://doi.org/10.1007/s13280-017-0938-2, 2018.
Sundby, B., Anderson, L. G., Hall, P. O. J., Iverfeldt, Å., van der Loeff, M. M. R., and Westerlund, S. F. G.: The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface, Geochim. Cosmochim. Ac., 50, 1281–1288,
https://doi.org/10.1016/0016-7037(86)90411-4, 1986.
Vahtera, E., Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H.,
Savchuk, O. P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N., and
Wulff, F.: Internal ecosystem feedbacks enhance nitrogen-fixing
cyanobacteria blooms and complicate management in the Baltic Sea, Ambio,
36, 186–194, https://doi.org/10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2, 2007.
van de Velde, S. J., Hidalgo-Martinez, S., Callebaut, I., Antler, G., James,
R. K., Leermakers, M., and Meysman, F. J. R.: Burrowing fauna mediate
alternative stable states in the redox cycling of salt marsh sediments,
Geochim. Cosmochim. Ac., 276, 31–49, https://doi.org/10.1016/j.gca.2020.02.021, 2020a.
van de Velde, S. J., Hylén, A., Marzocchi, U., Leermakers, M., Kononets,
M. Y., Choumiline, K., Hall, P. O. J., and Meysman, F. J. R.: Elevated
sedimentary removal of Fe, Mn and trace elements following a transient
oxygenation event in the Eastern Gotland Basin, central Baltic Sea, Geochim. Cosmochim. Ac., 271, 16–32, https://doi.org/10.1016/j.gca.2019.11.034, 2020b.
van Nugteren, P., Moodley, L., Brummer, G. J., Heip, C. H. R., Herman, P. M.
J., and Middelburg, J. J.: Seafloor ecosystem functioning: The importance of
organic matter priming, Mar. Biol., 156, 2277–2287,
https://doi.org/10.1007/s00227-009-1255-5, 2009.
Viktorsson, L., Ekeroth, N., Nilsson, M., Kononets, M., and Hall, P. O. J.: Phosphorus recycling in sediments of the central Baltic Sea, Biogeosciences, 10, 3901–3916, https://doi.org/10.5194/bg-10-3901-2013, 2013.
Yao, W. and Millero, F. J.: Adsorption of phosphate on manganese dioxide in
seawater, Environ. Sci. Technol., 30, 536–541, https://doi.org/10.1021/es950290x,
1996.
Zillén, L., Conley, D. J., Andrén, T., Andrén, E., and
Björck, S.: Past occurrences of hypoxia in the Baltic Sea and the role
of climate variability, environmental change and human impact, Earth-Sci. Rev., 91, 77–92, https://doi.org/10.1016/j.earscirev.2008.10.001, 2008.
Short summary
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that consume oxygen upon degradation, leading to further phosphorus release. Oxygenation is thought to trap phosphorus in the sediment and break this feedback. We studied the sediment phosphorus cycle in a previously anoxic area after an inflow of oxic water. Surprisingly, the sediment phosphorus release increased, showing that feedbacks between phosphorus release and oxygen depletion can be hard to break.
Sediments in oxygen-depleted ocean areas release high amounts of phosphorus, feeding algae that...
Altmetrics
Final-revised paper
Preprint