Articles | Volume 18, issue 19
https://doi.org/10.5194/bg-18-5327-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5327-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Riverine nitrogen supply to the global ocean and its limited impact on global marine primary production: a feedback study using an Earth system model
Miriam Tivig
CORRESPONDING AUTHOR
Biogeochemical Modelling, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Abteilung Klima und Umwelt, Deutscher Wetterdienst, Güterfelder Damm 87–91, 14532 Stahnsdorf, Germany
David P. Keller
Biogeochemical Modelling, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Andreas Oschlies
Biogeochemical Modelling, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Related authors
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Haichao Guo, Wolfgang Koeve, Andreas Oschlies, Yan-Chun He, Tronje Peer Kemena, Lennart Gerke, and Iris Kriest
Ocean Sci., 21, 1167–1182, https://doi.org/10.5194/os-21-1167-2025, https://doi.org/10.5194/os-21-1167-2025, 2025
Short summary
Short summary
We evaluated the effectiveness of the inverse Gaussian transit time distribution (IG-TTD) with respect to estimating the mean state and temporal changes of seawater age, defined as the duration since water last had contact with the atmosphere, within the tropical thermocline. Results suggest that the IG-TTD underestimates seawater age. Moreover, the IG-TTD constrained by a single tracer gives spurious trends in water age. Incorporating an additional tracer improves IG-TTD's accuracy for estimating temporal change of seawater age.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Short summary
N is a crucial nutrient that limits phytoplankton growth in large ocean areas. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification into an Earth system model with variable particulate stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation, and primary production. Benthic denitrification plays an important role in marine N and C cycling and hence the global climate.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
Jiajun Wu, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 14, 185–221, https://doi.org/10.5194/esd-14-185-2023, https://doi.org/10.5194/esd-14-185-2023, 2023
Short summary
Short summary
In this study we investigate an ocean-based carbon dioxide removal method: macroalgae open-ocean mariculture and sinking (MOS), which aims to cultivate seaweed in the open-ocean surface and to sink matured biomass quickly to the deep seafloor. Our results suggest that MOS has considerable potential as an ocean-based CDR method. However, MOS has inherent side effects on marine ecosystems and biogeochemistry, which will require careful evaluation beyond this first idealized modeling study.
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
Tianfei Xue, Ivy Frenger, A. E. Friederike Prowe, Yonss Saranga José, and Andreas Oschlies
Biogeosciences, 19, 455–475, https://doi.org/10.5194/bg-19-455-2022, https://doi.org/10.5194/bg-19-455-2022, 2022
Short summary
Short summary
The Peruvian system supports 10 % of the world's fishing yield. In the Peruvian system, wind and earth’s rotation bring cold, nutrient-rich water to the surface and allow phytoplankton to grow. But observations show that it grows worse at high upwelling. Using a model, we find that high upwelling happens when air mixes the water the most. Then phytoplankton is diluted and grows slowly due to low light and cool upwelled water. This study helps to estimate how it might change in a warming climate.
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
Short summary
We present a new model of biological marine silicate cycling for the University of Victoria Earth System Climate Model (UVic ESCM). This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. Our modifications change how the model responds to warming, with net primary production declining more strongly than in previous versions. Diatoms in particular are simulated to decline with climate warming due to their high nutrient requirements.
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Jaard Hauschildt, Soeren Thomsen, Vincent Echevin, Andreas Oschlies, Yonss Saranga José, Gerd Krahmann, Laura A. Bristow, and Gaute Lavik
Biogeosciences, 18, 3605–3629, https://doi.org/10.5194/bg-18-3605-2021, https://doi.org/10.5194/bg-18-3605-2021, 2021
Short summary
Short summary
In this paper we quantify the subduction of upwelled nitrate due to physical processes on the order of several kilometers in the coastal upwelling off Peru and its effect on primary production. We also compare the prepresentation of these processes in a high-resolution simulation (~2.5 km) with a more coarsely resolved simulation (~12 km). To do this, we combine high-resolution shipboard observations of physical and biogeochemical parameters with a complex biogeochemical model configuration.
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
Markus Pahlow, Chia-Te Chien, Lionel A. Arteaga, and Andreas Oschlies
Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, https://doi.org/10.5194/gmd-13-4663-2020, 2020
Short summary
Short summary
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2 and hence the global climate. We replace a simplistic, fixed-stoichiometry plankton module in an Earth system model with an optimal-regulation model with variable stoichiometry. Our model compares better to the observed carbon transfer from the surface to depth and surface nutrient distributions. This work could aid our ability to describe and project the role of marine ecosystems in the Earth system.
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Cited articles
Altabet, M. A.: Constraints on oceanic N balance/imbalance from sedimentary 15N
records, Biogeosciences, 4, 75–86, https://doi.org/10.5194/bg-4-75-2007, 2006. a
Bange, H., Naqvi, S., and Codispoti, L.: The nitrogen cycle in the Arabian Sea,
Prog. Oceanogr., 65, 145–158,
https://doi.org/10.1016/j.pocean.2005.03.002, 2005. a
Barron, C. and Duarte, C. M.: Dissolved organic carbon pools and export from
the coastal ocean, Global Biogeochem. Cy., 29, 1725–1738,
https://doi.org/10.1002/2014GB005056, 2015. a
Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and
Regnier, P. A. G.: The changing carbon cycle of the coastal ocean, Nature,
504, 61–70, https://doi.org/10.1038/nature12857, 2013. a
Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M.: Carbon-based ocean
productivity and phytoplankton physiology from space, Global Biogeochem.
Cyc., 19, GB1006, https://doi.org/10.1029/2004GB002299, 2005. a, b
Bernard, C. Y., Dürr, H. H., Heinze, C., Segschneider, J., and Maier-Reimer,
E.: Contribution of riverine nutrients to the silicon biogeochemistry of the
global ocean – a model study, Global Biogeochem. Cy., 8, 551–564,
https://doi.org/10.5194/bg-8-551-2011, 2011. a
Beusen, A. H. W., Bouwman, A. F., Beek, L. P. H. V., Mogollon, J. M., and
Middelburg, J. J.: Global riverine N and P transport to ocean increased
during the 20th century despite increased retention along the aquatic
continuum, Biogeosciences, 13, 2441–2451, https://doi.org/10.5194/bg-13-2441-2016,
2016. a
Billen, G. and Garnier, J.: River basin nutrient delivery to the coastal sea:
Assessing its potential to sustain new production of non-siliceous algae,
Mar. Chem., 106, 148–160, https://doi.org/10.1016/j.marchem.2006.12.017, 2007. a
Bohlen, L., Dale, A. W., and Wallmann, K.: Simple transfer functions for
calculating benthic fixed nitrogen losses and C:N:P regeneration ratios in
global biogeochemical models, Global Biogeochem. Cy., 26, GB3029,
https://doi.org/10.1029/2011GB004198, 2012. a, b
Buitenhuis, E. T., Hashioka, T., and Quéré, C. L.: Combined constraints on
global ocean primary production using observations and models, Global
Biogeochem. Cy., 27, 847–858, https://doi.org/10.1002/gbc.20074, 2013. a, b
Carr, M.-E., Friedrichs, M. A. M., Schmeltz, M., Aita, M. N., Antoine, D.,
Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare,
R., Buitenhuis, E. T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M.,
Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N.,
Ishizaka, J., Kameda, T., Quéré, C. L., Lohrenz, S., Marra, J., Mélin, F.,
Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie,
K., Tilstone, G., Waters, K., and Yamanaka, Y.: A comparison of global
estimates of marine primary production from ocean color, Deep-Sea Res.
Pt. II, 53, 741–770,
https://doi.org/10.1016/j.dsr2.2006.01.028, 2006. a, b
Claussen, M., Mysak, L. A., Weaver, A. J., Crucifix, M., Fichefet, T., Loutre,
M.-F., Weber, S., Alcamo, J., Alexeev, V., Berger, A., Calov, R., Ganopolski,
A., Goosse, H., Lohmann, G., Lunkeit, F., Mokhov, I., Petoukhov, V., Stone,
P., and Wang, Z.: Earth System Models of Intermediate Complexity: Closing the
Gap in the Spectrum of Climate System Models, Clim. Dynam., 18, 579–586,
https://doi.org/10.1007/s00382-001-0200-1, 2002. a, b
Codispoti, L. A.: Is the ocean losing nitrate?, Nature, 376, 724, 1995. a
Da Cunha, L., Buitenhuis, E., Le Quéré, C., Giraud, X., and Ludwig, W.:
Potential impact of changes in river nutrient supply on global ocean
biogeochemistry, Global Biogeochem. Cy., 521, GB4007,
https://doi.org/10.1029/2006GB002718, 2007. a, b, c, d
DeMaster, D. J. and Pope, R. H.: Nutrient dynamics in Amazon shelf waters:
results from AMASSEDS, Cont. Shelf Res., 16, 263–289, 1996. a
Dumont, E., Harrison, J. A., Kroeze, C., Bakker, E. J., and Seitzinger, S. P.:
Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean, Global
Biogeochem. Cy., 19, GB4S02, https://doi.org/10.1029/2005GB002488, 2005. a, b
Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K. J., and Weaver,
A. J.: Lifetime of Anthropogenic Climate Change: Millennial Time Scales of
Potential CO2 and Surface Temperature Perturbations, J. Clim., 22,
2501–2511, https://doi.org/10.1175/2008JCLI2554.1, 2009. a, b, c
Eisele, A. and Kerimoglu, O.: MOSSCO River data basis – Riverine Nutrient
inputs, Tech. rep., Helmholtz-Zentrum Geesthacht, available at:
https://www.hzg.de/imperia/md/images/hzg/institut_fuer_kuestenforschung/kosystemmodellierung/kosystemmodellierung/riverine_nutrient_inputs.pdf
(last access: 27 September 2021),
2015. a
Falkowski, P. G.: Evolution of the nitrogen cycle and its influence on the
biological sequestration of CO2 in the ocean, Nature, 387, 272–275,
https://doi.org/10.1038/387272a0, 1997. a
Galbraith, E. D., Gnanadesikan, A., Dunne, J. P., and Hiscock, M. R.: Regional
impacts of iron-light colimitation in a global biogeochemical model,
Biogeosciences, 7, 1043–1064, https://doi.org/10.5194/bg-7-1043-2010, 2010. a
Galloway, J. N., Dentener, F., Capone, D., Boyer, E., Howarth, R., Seitzinger,
S., Asner, G., Cleveland, C., Green, P., Holland, E., Karl, D., Michaels, A.,
Porter, J., Townsend, A., and Vörösmarty, C.: Nitrogen cycles: past,
present, and future, Biogeochemistry, 70, 153–226,
https://doi.org/10.1007/s10533-004-0370-0, 2004. a, b
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D.,
and Reagan, J. R.: Dissolved Inorganic Nutrients (phosphate,
nitrate and nitrate+nitrite, silicate), in: World Ocean Atlas 2018, edited by:
Editor, A. M. T., NOAA Atlas NESDIS 84, Vol. 4, 35 pp.,
available at: https://www.ncei.noaa.gov/data/oceans/woa/WOA18/DOC/woa18_vol4.pdf (last access: 27 September 2021),
2019. a, b
Giraud, X., Quéré, C. L., and da Cunha, L. C.: Importance of coastal nutrient
supply for global ocean biogeochemistry, Global Biogeochem. Cy., 22,
GB2025, https://doi.org/10.1029/2006GB002717, 2008. a, b, c
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation
and denitrification, Global Biogeochem. Cy., 11, 235–266,
https://doi.org/10.1029/97GB00077, 1997. a
Harrison, D. P.: Global negative emissions capacity of ocean macronutrient
fertilization, Environ. Res. Lett., 12, 035001,
https://doi.org/10.1088/1748-9326/aa5ef5, 2017. a, b
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E.,
Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A., Repeta,
D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S. A.:
Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers
to the Arctic Ocean and Surrounding Seas, Estuar. Coast., 35,
369–382, https://doi.org/10.1007/s12237-011-9386-6, 2012. a
Izett, J. G. and Fennel, K.: Estimating the Cross-Shelf Export of Riverine
Materials: Part 1. General Relationships From an Idealized Numerical Model,
Global Biogeochem. Cy., 32, 160–175, https://doi.org/10.1002/ 2017GB005667,
2018. a
Jahnke, R. A.: Global Synthesis, in: Carbon and Nutrient Fluxes in Continental
Margins, Global Change – The IGBP Series, edited by: Liu, K., Atkinson, L.,
Quiñones, R., and Talaue-McManus, L., Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-540-92735-8-16, 2010. a
Johnson, K. S., Riser, S. C., and Ravichandran, M.: Oxygen Variability Controls
Denitrification in the Bay of Bengal Oxygen Minimum Zone, Geophys.
Res. Lett., 46, 804–811, https://doi.org/10.1029/2018GL079881, 2019. a, b
Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., and Hebel, D.: The
role of nitrogen fixation in biogeochemical cycling in the subtropical North
Pacific Ocean, Nature, 388, 533–539, 1997. a
Karl, D., Micheals, A., B.Bergman, Capone, D., Carpenter, E., Letelier, R.,
Lipschultz, F., Paerl, H., Sigman, D., and Stal, L.: Dinitrogen fixation in
the world’s oceans, Biogeochemistry, 57/58, 47–98, 2002. a
Lamarque, J. F., Dentener, F., McConell, J., Ro, C.-U., Shaw, M., Vet, R.,
Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G.,
Ghan, S. J., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell, D. T.,
Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M.,
Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean
nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate
Model Intercomparison Project (ACCMIP): evaluation of historical and
projected future changes, Atmos. Chem. Phys., 13, 7997–8018,
https://doi.org/0.5194/acp-13-7997-2013, 2013. a
Landolfi, A., Kähler, P., Koeve, W., and Oschlies, A.: Global Marine N2
Fixation Estimates: From Observations to Models, Front. Microbiol.,
9, 2112, https://doi.org/10.3389/fmicb.2018.02112, 2018. a, b
Landolfi, A., Prowe, A. E. F., Pahlow, M., Somes, C. J., Chien, C.-T., Schartau, M., Koeve, W., and Oschlies, A.: Can Top-Down Controls Expand the Ecological Niche of
Marine N2 Fixers?, Front. Microbiol., 12, 690200,
https://doi.org/10.3389/fmicb.2021.690200, 2021. a
Lu, F.-H., Niab, H.-G., Liu, F., and Y.Zeng, E.: Occurrence of nutrients in
riverine runoff of the Pearl River Delta, South China, J. Hydrol.,
376, 107–115, https://doi.org/10.1016/j.jhydrol.2009.07.018, 2009. a
Lu, X., Li, S., He, M., Zhou, Y., Bei, R., Li, L., and Ziegler, A. D.: Seasonal
changes of nutrient fluxes in the Upper Changjiang basin: An example of the
Longchuanjiang River, China, J. Hydrol., 205, 344–351,
https://doi.org/10.1016/j.jhydrol.2011.05.032, 2011. a
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I.,
Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G.,
Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I.,
Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K.,
Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J.,
Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H.,
Moore, C. M., Mouriño Carballido, B., Mulholland, M. R., Needoba, J. A.,
Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P.,
Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A.,
Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr,
J. P.: Database of diazotrophs in global ocean: abundance, biomass and
nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73,
https://doi.org/10.5194/essd-4-47-2012, 2012. a, b
Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W.,
Bouwman, A., Fekete, B. M., Kroeze, C., and van Drecht, G.: Global Nutrient
Export fromWaterSheds 2 (NEWS 2): Model development and implementation,
Environ. Model. Softw., 25, 837–853,
https://doi.org/10.1016/j.envsoft.2010.01.007, 2010. a, b, c, d, e, f, g
Mayorga, E. and Seitzinger, S.: Global Nutrient Export from WaterSheds (NEWS2), Integrated Coastel Research [data set], available at: http://icr.ioc-unesco.org/index.php?option=com_content&view=article&id=49&Itemid=100008 (last access: 27 September 2021), 2010. a
Meybeck, M., Dürr, H. H., and Vörösmarty, C. J.: Global coastal
segmentation and its river catchment contributors: A new look at land-ocean
linkage, Global Biogeochem. Cy., 20, GB1S90,
https://doi.org/10.1029/2005GB002540, 2006. a
Moore, J. K. and Doney, S. C.: Iron availability limits the ocean nitrogen
inventory stabilizing feedbacks between marine denitrification and nitrogen
fixation, Global Biogeochem. Cy., 21, GB2001,
https://doi.org/10.1029/2006GB002762, 2007. a
Partanen, A.-I., Keller, D. P., Korhonen, H., and Matthews, H. D.:
Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present
and future, Geophys. Res. Lett., 43, 7600–7608,
https://doi.org/10.1002/2016GL070111, 2016. a
Ruttenberg, K. C.: The Global Phosphorus Cycle, in: Treatise on Geochemistry,
edited by: Schlesinger, W., Elsevier, University of Hawaii at Manoa, Honolulu, HI, USA,
https://doi.org/10.1016/B0-08-043751-6/08153-6, 2003. a
Schmittner, A., Oschlies, A., Giraud, X., Eby, M., and Simmons, H. L.: A global
model of the marine ecosystem for long-term simulations: Sensitivity to ocean
mixing buoyancy forcing, particle sinking, and dissolved organic matter
cycling, Global Biogeochem. Cy., 19, GB3004,
https://doi.org/10.1029/2004GB002283, 2005. a
Schmittner, A., Oschlies, A., Matthews, H. D., and Galbraith, E. D.: Future
changes in climate, ocean circulation, ecosystems, and biogeochemical cycling
simulated for a business-as-usual CO2 emission scenario until year 4000 AD,
Global Biogeochem. Cy., 22, GB1013, https://doi.org/10.1029/2007GB002953, 2008. a
Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., and Bouwman,
A. F.: Sources and delivery of carbon, nitrogen, and phosphorus to the
coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS)
models and their application, Global Biogeochem. Cy., 19, GB4S01,
https://doi.org/10.1029/2005GB002606, 2005. a, b
Seitzinger, S. P., Mayorga, E., Bouwman, A. F., Kroeze, C., Beusen, A. H. W.,
Billen, G., Drecht, G. V., Dumont, E., Fekete, B. M., Garnier, J., and
Harrison, J. A.: Global river nutrient export: A scenario analysis of past
and future trends, Global Biogeochem. Cy., 24, GB0A08,
https://doi.org/10.1029/2009GB003587, 2010. a
Sharples, J., Middelburg, J. J., Fennel, K., and Jickells, T. D.: What
proportion of riverine nutrients reaches the open ocean?, Global
Biogeochem. Cy., 31, 39–58, https://doi.org/10.1002/ 2016GB005483, 2017. a
Sigleo, A. C. and Frick, W. E.: Seasonal variations in river discharge and
nutrient export to a Northeastern Pacific estuary, Estuarine, Coast.
Shelf Sci., 73, 368–378, https://doi.org/10.1016/j.ecss.2007.01.015,
2007. a
Smith, S. V., Swaney, D. P., Talaue-McManus, L., Bartley, J. D., Sandhei,
P. T., McLaughlin, C. J., Dupra, V. C., Crossland, C. J., Buddemeier, R. W.,
Maxwell, B. A., and Wulff, F.: Humans, Hydrology, and the Distribution of
Inorganic Nutrient Loading to the Ocean, BioScience, 53-3, 235–245, 2003. a
Sohm, J. A., Webb, E. A., and Capone, D. G.: Emerging patterns of marine
nitrogen fixation, Nat. Rev. Microbiol., 9, 499–508,
https://doi.org/10.1038/nrmicro2594, 2011. a
Somes, C. J. and Oschlies, A.: On the influence of “non-Redfield” dissolved
organic nutrient dynamics on the spatial distribution of N2 fixation and the
size of the marine fixed nitrogen inventory, Global Biogeochem. Cy.,
29, 973–993, https://doi.org/10.1002/2014GB005050, 2015. a
Somes, C. J., Schmittner, A., Galbraith, E. D., Lehmann, M. F., Altabet, M. A.,
Montoya, J. P., Letelier, R. M., Mix, A. C., Bourbonnais, A., and Eby, M.:
Simulating the global distribution of nitrogen isotopes in the ocean, Global
Biogeochem. Cy., 24, GB4019, https://doi.org/10.1029/2009GB003767, 2010b. a, b
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L., Tagliabue, A.,
Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J., Gehlen, M., Ilyina,
T., John, J. G., Li, H., Long, M. C., Luo, J. Y., Nakano, H., Romanou, A.,
Schwinger, J., Stock, C., Santana-Falcón, Y., Takano, Y., Tjiputra, J.,
Tsujino, H., Watanabe, M., Wu, T., Wu, F., and Yamamoto, A.: Tracking
Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6,
Curr. Clim. Change Rep., 6, 95–119,
https://doi.org/10.1007/s40641-020-00160-0, 2020. a, b
Tivig, M., Keller, D. P., and Oschlies, A.: Supplement Data to “Feedbacks in the marine nitrogen cycle limit the impact of riverine nitrogen supply on global marine biology and biogeochemistry in an Earth System Model”, GEOMAR [data set], https://data.geomar.de/thredds/20.500.12085/59977a36-e8e7-4348-a4e8-2b13f3913590/catalog.html (last access: 27 September 2021), 2020. a
Townsend-Small, A., McClelland, J. W., Holmes, R. M., and Peterson, B. J.:
Seasonal and hydrologic drivers of dissolved organic matter and nutrients in
the upper Kuparuk River, Alaskan Arctic, Biogeochemistry, 103, 109–124,
https://doi.org/10.07/s10533-010-9451-4, 2011. a
Turner, R. E., Rabelais, N. N., Justic, D., and Dortch, Q.: Global patterns of
dissolved N, P and Si in large rivers, Biogeochemistry, 64, 297–317,
https://doi.org/10.1023/A:1024960007569, 2003. a
Voss, M., Bange, H. W., Dippner, J. W., Middelburg, J. J., Montoya, J. P., and
Ward, B.: The marine nitrogen cycle: recent discoveries, uncertainties and
the potential relevance of climate change, Philos. T.
R. Soc. B, 368, 20130121, https://doi.org/10.1098/rstb.2013.0121, 2013. a
Wang, W.-L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–211,
https://doi.org/10.1038/s41586-019-0911-2, 2019.
a, b
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C., Duffy, P. B., Ewen, T. L.,
Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner,
K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The UVic
Earth System Climate Model: Model Description, Climatology, and Applications
to Past, Present and Future Climates, Atmos.-Ocean, 39, 361–428,
https://doi.org/10.1080/07055900.2001.9649686, 2001. a, b, c, d
Westberry, T., Behrenfeld, M. J., Siegel, D. A., and Boss, E.: Carbon-based
primary production modeling with vertically resolved photoacclimation, Global
Biogeochem. Cy., 22, GB2024, https://doi.org/10.1029/2007GB003078, 2008. a, b
Short summary
Nitrogen is one of the most important elements for life in the ocean. A major source is the riverine discharge of dissolved nitrogen. While global models often omit rivers as a nutrient source, we included nitrogen from rivers in our Earth system model and found that additional nitrogen affected marine biology not only locally but also in regions far off the coast. Depending on regional conditions, primary production was enhanced or even decreased due to internal feedbacks in the nitrogen cycle.
Nitrogen is one of the most important elements for life in the ocean. A major source is the...
Altmetrics
Final-revised paper
Preprint