Articles | Volume 18, issue 19
https://doi.org/10.5194/bg-18-5513-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-5513-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Particulate organic carbon dynamics in the Gulf of Lion shelf (NW Mediterranean) using a coupled hydrodynamic–biogeochemical model
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS, 14
Avenue Edouard Belin, 31400 Toulouse, France
Caroline Ulses
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS, 14
Avenue Edouard Belin, 31400 Toulouse, France
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, 14 Avenue Edouard
Belin, 31400 Toulouse, France
Claude Estournel
Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS, 14
Avenue Edouard Belin, 31400 Toulouse, France
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, 14 Avenue Edouard
Belin, 31400 Toulouse, France
Patrick Marsaleix
LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, 14 Avenue Edouard
Belin, 31400 Toulouse, France
Related authors
No articles found.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Thierry Moutin, Dominique Lefevre, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Cathy Wimart-Rousseau, and Pascal Conan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4028, https://doi.org/10.5194/egusphere-2025-4028, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In this study we examined how oxygen is absorbed, released, and transported in the Levantine Sea, a nutrient-poor part of the Eastern Mediterranean. Using computer models with ocean data, we found that the sea takes up oxygen from the air in winter, carries it to deeper layers, and exports it to nearby seas. The Rhodes Gyre is a major hotspot, while winter heat loss drives shifts between oxygen gain and loss, showing how climate controls oxygen supply.
Claude Estournel, Tristan Estaque, Caroline Ulses, Quentin-Boris Barral, and Patrick Marsaleix
Ocean Sci., 21, 1487–1503, https://doi.org/10.5194/os-21-1487-2025, https://doi.org/10.5194/os-21-1487-2025, 2025
Short summary
Short summary
During the summer of 2022 in the eastern Gulf of Lion (NW Mediterranean), exceptionally warm temperatures were observed down to depths of 30 m, along with massive mortality of benthic species. It has been shown that these deep marine heatwaves are linked to southeasterly wind episodes, which induce deep plunges of surface water overheated by the atmospheric heatwave. These events are rare in summer, but their impact on ecosystems is dramatic and will only increase with climate change.
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024, https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary
Short summary
Mixing is a crucial aspect of the ocean, but its accurate representation in computer simulations is made challenging by errors that result in unwanted mixing, compromising simulation realism. Here we illustrate the spurious effect that tides can have on simulations of south-east Asia. Although they play an important role in determining the state of the ocean, they can increase numerical errors and make simulation outputs less realistic. We also provide insights into how to reduce these errors.
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024, https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
Short summary
A high-resolution model was built to study the South China Sea (SCS) water, heat, and salt budgets. Model performance is demonstrated by comparison with observations and simulations. Important discards are observed if calculating offline, instead of online, lateral inflows and outflows of water, heat, and salt. The SCS mainly receives water from the Luzon Strait and releases it through the Mindoro, Taiwan, and Karimata straits. SCS surface interocean water exchanges are driven by monsoon winds.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Alice Carret, Florence Birol, Claude Estournel, and Bruno Zakardjian
Ocean Sci., 19, 903–921, https://doi.org/10.5194/os-19-903-2023, https://doi.org/10.5194/os-19-903-2023, 2023
Short summary
Short summary
This study presents a methodology to investigate the ability of satellite altimetry to observe a coastal current, the Northern Current, in the NW Mediterannean Sea. We use a high-resolution regional model, validated with HF radars and in situ data. The model is used as a reference and compared to three different missions (Jason 2, SARAL and Sentinel-3), studying both the surface velocity and the sea surface height signature of the current. The performance of the three missions was also compared.
Marine Herrmann, Thai To Duy, and Claude Estournel
Ocean Sci., 19, 453–467, https://doi.org/10.5194/os-19-453-2023, https://doi.org/10.5194/os-19-453-2023, 2023
Short summary
Short summary
The South Vietnam upwelling develops in summer along and off the Vietnamese coast. It brings cold and nutrient-rich waters to the surface, allowing photosynthesis essential to marine ecosystems and fishing resources. We show here that its daily variations are mainly due to the wind, thus predictable, in the southern shelf and coastal regions. However, they are more chaotic in the offshore area, and especially in the northern area, due to the influence of eddies of a highly chaotic nature.
Thai To Duy, Marine Herrmann, Claude Estournel, Patrick Marsaleix, Thomas Duhaut, Long Bui Hong, and Ngoc Trinh Bich
Ocean Sci., 18, 1131–1161, https://doi.org/10.5194/os-18-1131-2022, https://doi.org/10.5194/os-18-1131-2022, 2022
Short summary
Short summary
The South Vietnam Upwelling develops in the coastal and offshore regions of the southwestern South China Sea under the influence of summer monsoon winds. Cold, nutrient-rich waters rise to the surface, where photosynthesis occurs and is essential for fishing activity. We have developed a very high-resolution model to better understand the factors that drive the variability of this upwelling at different scales: daily chronology to summer mean of wind and mesoscale to regional circulation.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Cited articles
Accornero, A., Picon, P., De Bovée, F., Charrière, B., and Buscail,
R.: Organic carbon budget at the sediment-water interface on the Gulf of
Lions continental margin, Cont. Shelf Res., 23, 79–92,
https://doi.org/10.1016/S0278-4343(02)00168-1, 2003.
Alberola, C., Millot, C., and Font, J.: On the seasonal and mesoscale
variabilities of the Northern Current during the PRIMO-0 experiment in the
western Mediterranean-sea, Oceanol. Acta, 18, 163–192, 1995.
Alekseenko, E., Raybaud V., Espinasse B., Carlotti F., Queguiner B.,
Thouvenin B., Garreau P., and Baklouti M.: Seasonal dynamics and stoichiometry
of the planktonic community in the NW Mediterranean Sea: a 3D modeling
approach, Ocean Dynam., 64, 179–207, https://doi.org/10.1007/s10236-013-0669-2, 2014.
Auger, P. A., Diaz, F., Ulses, C., Estournel, C., Neveux, J., Joux, F., Pujo-Pay, M., and Naudin, J. J.: Functioning of the planktonic ecosystem on the Gulf of Lions shelf (NW Mediterranean) during spring and its impact on the carbon deposition: a field data and 3-D modelling combined approach, Biogeosciences, 8, 3231–3261, https://doi.org/10.5194/bg-8-3231-2011, 2011.
Bauer, J. E. and Druffel, E. R. M.: Oceans margins as a significant source of
organic matter to the deep open ocean, Nature, 392, 482–485,
https://doi.org/10.1038/33122, 1998.
Behrenfeld, M. J., Westberry, T. K., Boss, E. S., O'Malley, R. T., Siegel, D. A., Wiggert, J. D., Franz, B. A., McClain, C. R., Feldman, G. C., Doney, S. C., Moore, J. K., Dall'Olmo, G., Milligan, A. J., Lima, I., and Mahowald, N.: Satellite-detected fluorescence reveals global physiology of ocean phytoplankton, Biogeosciences, 6, 779–794, https://doi.org/10.5194/bg-6-779-2009, 2009.
Bentsen, M., Evensen, G., Drange, H., and Jenkins, A. D.: Coordinate
transformation on a sphere using conformal mapping, Mon. Weather Rev.,
127, 2733–2740, https://doi.org/10.1175/1520-0493(1999)127<2733:CTOASU>2.0.CO;2, 1999.
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability
in algal biomass and primary production in the Mediterranean Sea, as derived
from 4 years of SeaWiFS observations, Global Biogeochem. Cy., 18, 1,
https://doi.org/10.1029/2003GB002034, 2004.
Bouffard, J., Vignudelli, S., Herrmann, M., Lyard, F., Marsaleix, P., Ménard, Y.,
and Cipollini, P.: Comparison of ocean dynamics with a regional
circulation model and improved altimetry in the North-western Mediterranean,
Terrestrial, Atmos. Ocean. Sci., 19, 117–133,
https://doi.org/10.3319/TAO.2008.19.1-2.117(SA), 2008.
Bourrin, F., Many, G., Durrieu de Madron, X., Martín, J., Puig, P.,
Houpert, L., and Béguery, L.: Glider monitoring of shelf suspended
particle dynamics and transport during storm and flooding conditions, Cont.
Shelf Res., 109, 135–149, https://doi.org/10.1016/j.csr.2015.08.031, 2015.
Briton, F., Cortese, D., Duhaut, T., and Guizien, K.: High-resolution
modelling of ocean circulation can reveal retention spots important for
biodiversity conservation, Aquat. Conserv., 28, 882–893, https://doi.org/10.1002/aqc.2901, 2018.
Carret, A., Birol, F., Estournel, C., Zakardjian, B., and Testor, P.: Synergy between in situ and altimetry data to observe and study Northern Current variations (NW Mediterranean Sea), Ocean Sci., 15, 269–290, https://doi.org/10.5194/os-15-269-2019, 2019.
Campbell, R., Diaz, F., Hu, Z. Y., Doglioli, A., Petrenko, A., and Dekeyser,
I.: Nutrients and plankton spatial distributions induced by a coastal eddy in
the Gulf of Lion. Insights from a numerical model, Prog. Oceanogr.,
109, 47–69, https://doi.org/10.1016/j.pocean.2012.09.005, 2013.
Cathalot, C., Rabouille, C., Tisnérat-Laborde, N., Toussaint, F.,
Kerhervé, P., Buscail, R., and Lansard, B.: The fate of river
organic carbon in coastal areas: a study in the Rhône River delta using
multiple isotopic (δ13C, Δ14C) and organic tracers,
Geochim. Cosmochim. Ac., 118, 33–55,
https://doi.org/10.1016/j.gca.2013.05.001, 2013.
Conan, P., Pujo-Pay, M., Raimbault, P., and Leveau, M.: Variabilité
hydrologique et biologique du golfe du Lion, II. Productivité sur le
bord interne du courant, Oceanol. Ac., 21, 767–782,
https://doi.org/10.1016/S0399-1784(99)80005-X, 1998.
Cruzado, A. and Velasquez, Z. R.: Nutrients and phytoplankton in the Gulf of
Lions, northwestern Mediterranean, Cont. Shelf Res., 10, 931–942,
https://doi.org/10.1016/0278-4343(90)90068-W, 1990.
Daewel, U. and Schrum, C.: Low-frequency variability in North Sea and
Baltic Sea identified through simulations with the 3-D coupled
physical–biogeochemical model ECOSMO, Earth Syst. Dynam., 8, 801–815,
https://doi.org/10.5194/esd-8-801-2017, 2017.
Dagg, M., Benner, R., Lohrenz, S., and Lawrence, D.: Transformation of
dissolved and particulate materials on continental shelves influenced by
large rivers: plume processes, Cont. Shelf Res., 24, 833–858,
https://doi.org/10.1016/j.csr.2004.02.003, 2004.
Dagg, M. J., Bianchi, T., McKee, B., and Powell, R.: Fates of dissolved and
particulate materials from the Mississippi river immediately after discharge
into the northern Gulf of Mexico, USA, during a period of low wind stress,
Cont. Shelf Res., 28, 1443–1450, https://doi.org/10.1016/j.csr.2006.12.009,
2008.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D., Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G., and Sein, D. V.: Future evolution of marine heatwaves in the
Mediterranean Sea, Clim. Dynam. 53, 1371–1392, https://doi.org/10.1007/s00382-019-04661-z, 2019.
Davis, R. E., Eriksen, C. C., and Jones, C. P.: Autonomous buoyancy-driven
underwater gliders, The technology and applications of autonomous underwater
vehicles, The technology and applications
of autonomous underwater vehicles, 37–58, 2002.
Diaz, F., Raimbault, P., and Conan, P.: Small-scale study of primary
productivity during spring in a Mediterranean coastal area (Gulf of Lions),
Cont. Shelf Res., 20, 975–996, 2000.
Dufau-Julliand, C., Marsaleix, P., Petrenko, A., and Dekeyser, I.:
Three-dimensional modeling of the Gulf of Lion's hydrodynamics (northwest
Mediterranean) during January 1999 (MOOGLI3 Experiment) and late winter
1999: Western Mediterranean Intermediate Water's (WIW's) formation and its
cascading over the shelf break, J. Geophys. Res.-Oceans,
109, C11, https://doi.org/10.1029/2003JC002019, 2004.
Durrieu de Madron, X., Abassi, A., Heussner, S., Monaco, A., Aloisi, J. C.,
Radakovitch, O., Giresse, P., Buscail, R., and Kerherveì, P.: Particulate
matter and organic carbon budgets for the Gulf of Lions (NW Mediterranean),
Oceanol. Ac., 23, 717–730,
https://doi.org/10.1016/S0399-1784(00)00119-5, 2000.
Durrieu de Madron, X., Denis, L., Diaz, F., Garcia, N., Guieu, C., Grenz,
C., and Ridame, C.: Nutrients and carbon budgets for the Gulf of Lion during
the Moogli cruises, Oceanol. Ac., 26, 421–433,
https://doi.org/10.1016/S0399-1784(03)00024-0, 2003.
Durrieu de Madron, X., Houpert, L., Puig, P., Sanchez-Vidal, A., Testor, P.,
Bosse, A., and Raimbault, P.: Interaction of dense shelf water cascading
and open-sea convection in the northwestern Mediterranean during winter
2012, Geophys. Res. Lett., 40, 1379–1385,
https://doi.org/10.1002/grl.50331, 2013.
Eppley, R. W.: Temperature and phytoplankton growth in the sea, Fish. Bull.,
70, 1063–1085, 1972.
Estournel, C., Kondrachoff, V., Marsaleix, P., and Vehil, R.: The plume of
the Rhone: numerical simulation and remote sensing, Cont. Shelf Res., 17,
899–924, https://doi.org/10.1016/S0278-4343(96)00064-7, 1997.
Estournel, C., Durrieu de Madron, X., Marsaleix, P., Auclair, F., Julliand,
C., and Vehil, R.: Observation and modeling of the winter coastal oceanic
circulation in the Gulf of Lion under wind conditions influenced by the
continental orography (FETCH experiment), J. Geophys. Res.-Oceans, 108, C3, https://doi.org/10.1029/2001JC000825, 2003.
Estournel, C., Auclair, F., Lux, M., Nguyen, C., and Marsaleix, P.: “Scale oriented” embedded modeling of the North-Western Mediterranean in the frame of MFSTEP, Ocean Sci., 5, 73–90, https://doi.org/10.5194/os-5-73-2009, 2009.
Estournel, C., Testor, P., Damien, P., D'Ortenzio, F., Marsaleix, P., Conan,
P., and Prieur, L.: High resolution modeling of dense water formation in the
north-western Mediterranean during winter 2012–2013: Processes and budget,
J. Geophys.-Res.-Oceans, 121, 5367–5392,
https://doi.org/10.1002/2016JC011935, 2016.
Fraysse, M., Pairaud, I., Ross, O. N., Faure, V. M., and Pinazo, C.:
Intrusion of Rhone River diluted water into the Bay of Marseille: Generation
processes and impacts on ecosystem functioning, J. Geophys.-Res.-Oceans, 119, 6535–6556, https://doi.org/10.1002/2014JC010022,
2014.
Fraysse, M., Pinazo, C., Faure, V. M., Fuchs, R., Lazzari, P., Raimbault,
P., and Pairaud, I.: Development of a 3D coupled physical-biogeochemical
model for the Marseille coastal area (NW Mediterranean Sea): what complexity
is required in the coastal zone?, PlOS ONE, 8, e80012,
https://doi.org/10.1371/journal.pone.0080012, 2013.
Gangloff, A., Verney, R., Doxaran, D., Ody, A., and Estournel, C.:
Investigating Rhône River plume (Gulf of Lions, France) dynamics using
metrics analysis from the MERIS 300 m Ocean Color archive (2002–2012), Cont.
Shelf Res., 144, 98–111, https://doi.org/10.1016/j.csr.2017.06.024, 2017.
Gao, S. and Wang, Y. P.: Changes in material fluxes from the Changjiang
River and their implications on the adjoining continental shelf ecosystem,
Cont. Shelf. Res., 28, 1490–1500,
https://doi.org/10.1016/j.csr.2007.02.010, 2008.
Gohin, F.: Annual cycles of chlorophyll-a, non-algal suspended particulate
matter, and turbidity observed from space and in-situ in coastal waters,
Ocean Sci., 7, 705–732, https://doi.org/10.5194/os-7-705-2011, 2011.
Got, H. and Aloisi, J. C.: The Holocene sedimentation on the Gulf of Lions
margin: a quantitative approach, Cont. Shelf Res., 10, 841–855,
https://doi.org/10.1016/0278-4343(90)90062-Q, 1990.
Guyennon, A., Baklouti, M., Diaz, F., Palmieri, J., Beuvier, J., Lebaupin-Brossier, C., Arsouze, T., Béranger, K., Dutay, J.-C., and Moutin, T.: New insights into the organic carbon export in the Mediterranean Sea from 3-D modeling, Biogeosciences, 12, 7025–7046, https://doi.org/10.5194/bg-12-7025-2015, 2015.
Herrmann, M., Estournel, C., Somot, S., Déqué, M., Marsaleix, P.,
and Sevault, F.: Impact of interannual variability and climate change on
dense water cascading in the Gulf of Lions, Cont. Shelf Res., 28,
2092–2112, 2008.
Herrmann, M., Diaz, F., Estournel, C., Marsaleix, P., and Ulses, C.: Impact
of atmospheric and oceanic interannual variability on the Northwestern
Mediterranean Sea pelagic planktonic ecosystem and associated carbon cycle,
J. Geophys. Res.-Oceans, 118, 5792–5813,
https://doi.org/10.1002/jgrc.20405, 2013.
Herrmann, M., Estournel, C., Adloff, F., and Diaz, F.: Impact of climate
change on the northwestern Mediterranean Sea pelagic planktonic ecosystemand
associated carbon cycle. J. Geophys. Res.-Oceans 119, 1–22, https://doi.org/10.1002/2014JC010016, 2014.
Hofmann, E. E., Cahill, B., Fennel, K., Friedrichs, M. A., Hyde, K., Lee,
C., and Xue, J.: Modeling the dynamics of continental shelf carbon, Annu. Rev. Mar. Sci., 3, 93–122,
https://doi.org/10.1146/annurev-marine-120709-142740, 2011.
Hu, Z. Y., Petrenko, A. A., Doglioli, A. M., and Dekeyser, I.: Study of a
mesoscale anticyclonic eddy in the western part of the Gulf of Lion, J. Mar. Syst., 88, 3–11, https://doi.org/10.1016/j.jmarsys.2011.02.008,
2011.
Kessouri, F., Ulses, C., Estournel, C., Marsaleix, P., D'Ortenzio, F.,
Severin, T., and Conan, P.: Vertical mixing effects on phytoplankton
dynamics and organic carbon export in the western Mediterranean Sea, J. Geophys. Res.-Oceans, 123, 1647–1669,
https://doi.org/10.1002/2016JC012669, 2018.
Kessouri, F., Ulses, C., Estournel, C., Marsaleix, P., Severin, T.,
Pujo-Pay, M., and Taillandier, V.: Nitrogen and phosphorus budgets in the
Northwestern Mediterranean deep convection region, J. Geophys. Res.-Oceans, 122, 9429–9454, https://doi.org/10.1002/2016JC012665,
2017.
Lajaunie-Salla, K., Diaz, F., Wimart-Rousseau, C., Wagener, T., Lefèvre, D., Yohia, C., Xueref-Remy, I., Nathan, B., Armengaud, A., and Pinazo, C.: Implementation and assessment of a carbonate system model (Eco3M-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France), Geosci. Model Dev., 14, 295–321, https://doi.org/10.5194/gmd-14-295-2021, 2021.
Lapouyade, A. and Durrieu de Madron, X.: Seasonal variability of the
advective transport of particulate matter and organic carbon in the Gulf of
Lion (NW Mediterranean), Oceanol. Ac., 24, 295–312,
https://doi.org/10.1016/S0399-1784(01)01148-3, 2001.
Large, W. G. and Yeager, S. G.: Diurnal to decadal global forcing for ocean
and sea-ice models: The data sets and flux climatologies (NCAR Tech. Note
NCAR/TN-4601STR), Boulder, CO: National Center of Atmospheric Research,
https://doi.org/10.5065/D6KK98Q6, 2004.
Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and Crise, A.: Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach, Biogeosciences, 9, 217–233, https://doi.org/10.5194/bg-9-217-2012, 2012.
Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli, M., Oddo, P., and Vichi, M.: The impacts of climate change and environmental management
policies on the trophic regimes in the Mediterranean Sea: scenario analyses,
J. Mar. Syst., 135, 137–149, https://doi.org/10.1016/j.jmarsys.2013.06.005, 2014.
Lefevre, D., Minas, H. J., Minas, M., Robinson, C., Williams, P. J., Le, B., and
Woodward, E. M. S.: Review of gross community production, primary production,
net community production and dark community respiration in the Gulf of Lion,
Deep-Sea Res. Pt. II, 44, 801–832,
https://doi.org/10.1016/S0967-0645(96)00091-4, 1997.
Legendre, L.: The significance of microalgal blooms for fisheries and for
the export of particulate organic carbon in oceans, J. Plankt. Res., 12, 681–699, https://doi.org/10.1093/plankt/12.4.681, 1990.
Lohrenz, S. E., Redalje, D. G., Cai, W. J., Acker, J., and Dagg, M.: A
retrospective analysis of nutrients and phytoplankton productivity in the
Mississippi River plume, Cont. Shelf. Res., 28, 1466–1475,
https://doi.org/10.1016/j.csr.2007.06.019, 2008.
Liénart, C., Savoye, N., Bozec, Y., Breton, E., Conan, P., David, V.,
Feunteun, E., Grangeré, K., Kerhervé, P., and Sultan, E.:
Dynamics of particulate organic matter composition in coastal systems: a
spatio-temporal study at multi-systems scale, Prog. Oceanogr., 156, 221–239,
https://doi.org/10.1016/j.pocean.2017.03.001, 2017.
Liénart, C., Savoye, N.,David, V., Ramond, P., Tress, P. R., Hanquiez,
V., Marieu, V., Aubert, F., Aubin, S., Bichon, S., Boinet, C., Bourasseau,
L., Bozec, Y., and Susperregui, N.: Dynamics of particulate
organic matter composition in coastal systems: Forcing of spatio-temporal
variability at multi-systems scale, Prog. Oceanogr., 162, 271–289,
https://doi.org/10.1016/j.pocean.2018.02.026, 2018.
Liu, G. and Chai, F.: Seasonal and interannual variability of primary and
export production in the South China Sea: a three-dimensional
physical-biogeochemical model study, ICES J. Mar. Sci., 66,
420–431, https://doi.org/10.1093/icesjms/fsn219, 2009.
Liu, K.-K., Atkinson, L., Quinones, R., and Talaue-NcManus, L.: Carbon and
Nutrient Fluxes in Continental Margins: A Global Synthesis, Springer,
Berlin, Germany, https://doi.org/10.1007/978-3-540-92735-8, 2010.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of
water and nutrients to the Mediterranean and Black Sea: major drivers for
ecosystem changes during past and future decades?, Prog. Oceanogr.,
80, 199–217, https://doi.org/10.1016/j.pocean.2009.02.001, 2009.
Ludwig, W., Bouwman, A. F., Dumont, E., and Lespinas, F.: Water and nutrient
fluxes from major Mediterranean and Black Sea rivers: Past and future trends
and their implications for the basin-scale budgets, Global Biogeochem. Cy., 24, 4, https://doi.org/10.1029/2009GB003594, 2010.
Macias, D., Garcia-Gorriz, E., and Stips, A.: Major fertilization sources and
mechanisms for Mediterranean Sea coastal ecosystems, Limnol. Oceanogr., 63,
897–914, https://doi.org/10.1002/lno.10677, 2018.
Maillet, G. M., Vella, C., Berné, S., Friend, P. L., Amos, C. L.,
Fleury, T. J., and Normand, A.: Morphological changes and sedimentary
processes induced by the December 2003 flood event at the present mouth of
the Grand Rhône River (southern France), Mar. Geol.,, 234, 159–177,
https://doi.org/10.1016/j.margeo.2006.09.025, 2006.
Many, G., Bourrin, F., Durrieu de Madron, X., Ody, A., Doxaran, D., and
Cauchy, P.: Glider and satellite monitoring of the variability of the
suspended particle distribution and size in the Rhône ROFI, Prog. Oceanogr., 163, 123–135, https://doi.org/10.1016/j.pocean.2017.05.006,
2018.
Marsaleix, P.: Sources of the hydrodynamic code used in “Particulate organic carbon dynamics in the Gulf of Lion shelf (NW Mediterranean) using a coupled hydrodynamic–biogeochemical model” by Many et al. 2021, [code], available at: https://sirocco.obs-mip.fr/ocean-models/s-model/download/, last access: 21 September 2021.
Marsaleix, P., Estournel, C., Kondrachoff, V., and Vehil, R.: A numerical
study of the formation of the Rhône River plume, J. Mar.
Syst., 14, 99–115, https://doi.org/10.1016/S0924-7963(97)00011-0, 1998.
Marsaleix, P., Auclair, F., and Estournel, C.: Considerations on Open
Boundary Conditions for Regional and Coastal Ocean Models, J. Atmos. Ocean. Technol., 23, 1604–1613,
https://doi.org/10.1175/JTECH1930.1, 2006.
Marsaleix, P., Auclair, F., Floor, J. W., Herrmann, M. J., Estournel, C.,
Pairaud, I., and Ulses, C.: Energy conservation issues in sigma-coordinate
free-surface ocean models, Ocean Modell., 20, 61–89,
https://doi.org/10.1016/j.ocemod.2007.07.005, 2008.
Minas, M. and Minas, H. J.: Primary production in the Gulf of Lions with
considerations to the Rhone River inputs, Water Pollut. Res. Rep.,
13, 112–125, 1989.
Mikolajczak, G., Estournel, C., Ulses, C., Marsaleix, P., Bourrin, F.,
Martín, J., Pairaud, I., Puig, P., Leredde, Y., Many, G., Seyfried, L.,
and Durrieu de Madron, X.: Impact of storms on residence times and export of
coastal waters during a mild autumn/winter period in the Gulf of Lion, Cont.
Shelf Res., 207, 104192, https://doi.org/10.1016/j.csr.2020.104192, 2020.
Moullec, F., Barrier, N., Drira, S., Guilhaumon, F., Marsaleix, P., Somot,
S., Ulses, C, Velez, L., and Shin, Y.-S.: An end-to-end model reveals losers
and winners in a warming Mediterranean Sea, Front. Mar. Sci., 6, 345, https://doi.org/10.3389/fmars.2019.00345, 2019.
Moutin, T., Raimbault, P., Golterman, H. L., and Coste, B.: The input of
nutrients by the Rhône River into the Mediterranean Sea: Recent
observations and comparison with earlier data, Hydrobiologia, 373, 237,
https://doi.org/10.1023/A:1017020818701, 1998.
Naudin, J. J., Cauwet, G., Chretiennot-Dinet, M. J., Deniaux, B., Devenon,
J.-L., and Pauc, H.: River discharge and wind influence upon particulate
transfer at the land-ocean interaction: Case study of the Rhone River plume,
Estuar. Coast. Shelf Sci., 45, 303–316,
https://doi.org/10.1006/ecss.1996.0190, 1997.
Olita, A., Sorgente, R., Ribotti, A., Fazioli, L., and Perilli, A.: Pelagic
primary production in the Algero-Provençal Basin by means of multisensor
satellite data: focus on interannual variability and its drivers, Ocean
Dynam., 61, 1005–1016, https://doi.org/10.1007/s10236-011-0405-8, 2011.
Pagès, R., Baklouti, M., Barrier, N., Ayache, M., Sevault, F., Somot, S. and Moutin,
T.: Projected Effects of Climate-Induced Changes in Hydrodynamics on the
Biogeochemistry of the Mediterranean Sea Under the RCP 8.5 Regional Climate
Scenario, Front. Mar. Sci., 7, 563615, https://doi.org/10.3389/fmars.2020.563615, 2020.
Palanques, A., Durrieu de Madron, X., Puig, P., Fabres, J., Guillén, J.,
Calafat, A., and Bonnin, J.: Suspended sediment fluxes and transport
processes in the Gulf of Lions submarine canyons, The role of storms and
dense water cascading, Mar. Geol., 234, 43–61,
https://doi.org/10.1016/j.margeo.2006.09.002, 2006.
Pastor, L., Cathalot, C., Deflandre, B., Viollier, E., Soetaert, K., Meysman, F. J. R., Ulses, C., Metzger, E., and Rabouille, C.: Modeling biogeochemical processes in sediments from the Rhône River prodelta area (NW Mediterranean Sea), Biogeosciences, 8, 1351–1366, https://doi.org/10.5194/bg-8-1351-2011, 2011.
Petrenko, A.: Variability of circulation features in the Gulf of Lion NW
Mediterranean Sea. Importance of inertial currents, Oceanol. Ac., 26,
323–338, https://doi.org/10.1016/S0399-1784(03)00038-0., 2003.
Petrenko, A., Leredde, Y., and Marsaleix, P.: Circulation in a stratified and
wind-forced Gulf of Lions, NW Mediterranean Sea: In situ and modeling data,
Cont. Shelf Res., 25, 7–27, https://doi.org/10.1016/j.csr.2004.09.004,
2005.
Petrenko, A., Dufau, C., and Estournel, C.: Barotropic eastward currents in
the western Gulf of Lion, north-western Mediterranean Sea, during stratified
conditions, J. Mar. Syst., 74, 406–428.
https://doi.org/10.1016/j.jmarsys.2008.03.004, 2008.
Pinazo, C., Marsaleix, P., Millet, B., Estournel, C., and Véhil, R.: Spatial and
temporal variability of phytoplankton biomass in upwelling areas of the
northwestern mediterranean: a coupled physical and biogeochemical modelling
approach, J. Mar. Syst., 7, 161–191,
https://doi.org/10.1016/0924-7963(95)00028-3, 1996.
Puig, P., Palanques, A., Orange, D. L., Lastras, G., and Canals, M.: Dense
shelf water cascades and sedimentary furrow formation in the Cap de Creus
Canyon, northwestern Mediterranean Sea, Cont. Shelf Res., 28, 2017–2030,
https://doi.org/10.1016/j.csr.2008.05.002, 2008.
Pujo-Pay, M., Conan, P., Joux, F., Oriol, L., Naudin, J., and Cauwet, G.:
Impact of phytoplankton and bacterial production on nutrient and DOM uptake
in the Rhône River plume (NW Mediterranean), Mar. Ecol. Prog. Ser., 315, 43–54, https://doi.org/10.3354/meps315043, 2006.
Reffray, G., Fraunié, P., and Marsaleix, P.: Secondary flows induced by
wind forcing in the Rhône region of freshwater influence, Ocean
Dynam., 54, 179–196, https://doi.org/10.1007/s10236-003-0079-y, 2004.
Ribera d'Alcalà, M., Civitarese, G., Conversano, F., and Lavezza, R.:
Nutrient ratios and fluxes hint at overlooked processes in the Mediterranean
Sea, J. Geophys. Res.-Oceans, 108, C9,
https://doi.org/10.1029/2002JC001650, 2003.
Richon, C., Dutay, J.-C., Bopp, L., Le Vu, B., Orr, J. C., Somot, S., and Dulac, F.: Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario, Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, 2019.
Ross, O. N., Fraysse, M., Pinazo, C., and Pairaud, I.: Impact of an intrusion by the
Northern Current on the biogeochemistry in the eastern Gulf of Lion, NW
Mediterranean, Estuar. Coast. Shelf Sci., 170, 1–9,
https://doi.org/10.1016/j.ecss.2015.12.022, 2016.
Sackmann, B. S., Perry, M. J., and Eriksen, C. C.: Seaglider observations of variability in daytime fluorescence quenching of chlorophyll-a in Northeastern Pacific coastal waters, Biogeosciences Discuss., 5, 2839–2865, https://doi.org/10.5194/bgd-5-2839-2008, 2008.
Sadaoui, M., Ludwig, W., Bourrin, F., and Raimbault, P.: Controls, budgets
and variability of riverine sediment fluxes to the Gulf of Lions (NW
Mediterranean Sea), J. Hydrol., 540, 1002–1015,
https://doi.org/10.1016/j.jhydrol.2016.07.012, 2016.
Sanchez-Vidal, A., Higueras, M., Martí, E., Liquete, C., Calafat, A.,
Kerhervé, P., and Canals, M.: Riverine transport of terrestrial organic
matter to the North Catalan margin, NW Mediterranean Sea, Prog. Oceanogr., 118, 71–80, https://doi.org/10.1016/j.pocean.2013.07.020,
2013.
Sanchez-Vidal, A., Pasqual, C., Kerhervé, P., Calafat, A., Heussner, S.,
Palanques, A., and Puig, P.: Impact of dense shelf water cascading on the
transfer of organic matter to the deep western Mediterranean basin,
Geophys. Res. Lett., 35, 5, https://doi.org/10.1029/2007GL032825,
2008.
Sempéré, R., CharrieÌre, B., Van Wambeke, F., and Cauwet, G.: Carbon
inputs of the Rhône River to the Mediterranean Sea: Biogeochemical
Implications, Global Biogeochem. Cy., 14, 669–681,
https://doi.org/10.1029/1999GB900069, 2000.
Soetaert, K., Herman, P. M. J., Middelburg, J. J., Heip, C., Smith, C. L.,
Tett, P., and Wild-Allen, K.: Numerical modelling of the shelf break
ecosystem: Reproducing benthic and pelagic measurements, Deep Sea Res. Pt. II, 48, 3141–3177, https://doi.org/10.1016/S0967-0645(01)00035-2, 2001.
Somot, S., Sevault, F., and Déqué, M.: Transient climate change
scenario simulation of the Mediterranean Sea for the twenty-first century
using a high-resolution ocean circulation model, Clim. Dynam., 27, 851–879,
https://doi.org/10.1007/s00382-006-0167-z, 2006.
Taucher, J. and Oschlies, A.: Can we predict the direction of marine
primary production change under global warming?, Geophys. Res. Lett., 38, 2, https://doi.org/10.1029/2010GL045934, 2011.
Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., and
Cossarini, G.: Assimilation of coastal and open sea biogeochemical data to
improve phytoplankton simulation in the Mediterranean Sea, Ocean Modell.,
132, 46–60, https://doi.org/10.1016/j.ocemod.2018.09.007, 2018.
Testor, P., Mortier, L., Coppola, L., Claustre, H., D'Ortenzio, F., Bourrin,
F., Durrieu de Madron, X., and Raimbault, P.: Tucpa deployment (EGO glider:
tenuse) (Mediterranean Sea – Western basin), SEANOE,
https://doi.org/10.17882/56441, 2018.
Thomalla, S. J., Moutier, W., Ryan-Keogh, T. J., Gregor, L., and Schütt,
J.: An optimized method for correcting fluorescence quenching using optical
backscattering on autonomous platforms, Limnol. Oceanogr.-Meth.,
16, 132–144, https://doi.org/10.1002/lom3.10234, 2018.
Thunell, R., Benitez-Nelson, C., Varela, R., Astor, Y., and Muller-Karger,
F.: Particulate organic carbon fluxes along upwelling-dominated continental
margins: Rates and mechanisms, Global Biogeochem. Cy., 21, 1,
https://doi.org/10.1029/2006GB002793, 2007.
Tusseau-Vuillemin, M. H., Mortier, L., and Herbaut, C.: Modeling nitrate
fluxes in an open coastal environment (Gulf of Lions): Transport versus
biogeochemical processes, J. Geophys. Res.-Oceans, 103,
7693–7708, https://doi.org/10.1029/97JC03709, 1998.
Ulses, C., Auger, P.-A., Soetaert, K., Marsaleix, P., Diaz, F., Coppola, L.,
and Estournel, C.: Budget of organic carbon in the North-Western
Mediterranean Open Sea over the period 2004–2008 using 3-D coupled
physical-biogeochemical modeling, J. Geophys. Res.-Oceans,
121, 7026–7055, https://doi.org/10.1002/2016JC011818, 2016.
Ulses, C., Estournel, C., Bonnin, J., Durrieu de Madron, X., and Marsaleix,
P.: Impact of storms and dense water cascading on shelf-slope exchanges in
the Gulf of Lion (NW Mediterranean), J. Geophys. Res., 113,
C02010, https://doi.org/10.1029/2006JC00379, 2008a.
Ulses, C., Estournel, C., Durrieu de Madron, X., and Palanques, A.:
Suspended sediment transport in the Gulf of Lions (NW Mediterranean): Impact
of extreme storms and floods, Cont. Shelf Res., 28, 2048–2070,
https://doi.org/10.1016/j.csr.2008.01.015, 2008b.
Ulses, C., Estournel, C., Puig, P., Durrieu de Madron, X., and Marsaleix,
P.: Dense shelf water cascading in the northwestern Mediterranean during the
cold winter 2005: Quantification of the export through the Gulf of Lion and
the Catalan margin, Geophys. Res. Lett., 35, 7,
https://doi.org/10.1029/2008GL033257, 2008c.
Short summary
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used to study the mechanisms that drive the particulate organic carbon (POC). The model reproduces the annual cycle of primary production well. The shelf appears as an autotrophic ecosystem with a high production and as a source of POC for the adjacent basin. The increase in temperature induced by climate change could impact the trophic status of the shelf.
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used...
Altmetrics
Final-revised paper
Preprint