Articles | Volume 18, issue 19
https://doi.org/10.5194/bg-18-5513-2021
https://doi.org/10.5194/bg-18-5513-2021
Research article
 | 
12 Oct 2021
Research article |  | 12 Oct 2021

Particulate organic carbon dynamics in the Gulf of Lion shelf (NW Mediterranean) using a coupled hydrodynamic–biogeochemical model

Gaël Many, Caroline Ulses, Claude Estournel, and Patrick Marsaleix

Related authors

Driving mechanisms of the dissolved oxygen budget in the Levantine Sea: a coupled physical-biogeochemical modelling approach
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Thierry Moutin, Dominique Lefevre, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Cathy Wimart-Rousseau, and Pascal Conan
EGUsphere, https://doi.org/10.5194/egusphere-2025-4028,https://doi.org/10.5194/egusphere-2025-4028, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Extreme sensitivity of the northeastern Gulf of Lion (western Mediterranean) to subsurface heatwaves: physical processes and insights into effects on gorgonian populations in the summer of 2022
Claude Estournel, Tristan Estaque, Caroline Ulses, Quentin-Boris Barral, and Patrick Marsaleix
Ocean Sci., 21, 1487–1503, https://doi.org/10.5194/os-21-1487-2025,https://doi.org/10.5194/os-21-1487-2025, 2025
Short summary
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024,https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024,https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023,https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary

Cited articles

Accornero, A., Picon, P., De Bovée, F., Charrière, B., and Buscail, R.: Organic carbon budget at the sediment-water interface on the Gulf of Lions continental margin, Cont. Shelf Res., 23, 79–92, https://doi.org/10.1016/S0278-4343(02)00168-1, 2003. 
Alberola, C., Millot, C., and Font, J.: On the seasonal and mesoscale variabilities of the Northern Current during the PRIMO-0 experiment in the western Mediterranean-sea, Oceanol. Acta, 18, 163–192, 1995. 
Alekseenko, E., Raybaud V., Espinasse B., Carlotti F., Queguiner B., Thouvenin B., Garreau P., and Baklouti M.: Seasonal dynamics and stoichiometry of the planktonic community in the NW Mediterranean Sea: a 3D modeling approach, Ocean Dynam., 64, 179–207, https://doi.org/10.1007/s10236-013-0669-2, 2014. 
Auger, P. A., Diaz, F., Ulses, C., Estournel, C., Neveux, J., Joux, F., Pujo-Pay, M., and Naudin, J. J.: Functioning of the planktonic ecosystem on the Gulf of Lions shelf (NW Mediterranean) during spring and its impact on the carbon deposition: a field data and 3-D modelling combined approach, Biogeosciences, 8, 3231–3261, https://doi.org/10.5194/bg-8-3231-2011, 2011. 
Bauer, J. E. and Druffel, E. R. M.: Oceans margins as a significant source of organic matter to the deep open ocean, Nature, 392, 482–485, https://doi.org/10.1038/33122, 1998. 
Download
Short summary
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used to study the mechanisms that drive the particulate organic carbon (POC). The model reproduces the annual cycle of primary production well. The shelf appears as an autotrophic ecosystem with a high production and as a source of POC for the adjacent basin. The increase in temperature induced by climate change could impact the trophic status of the shelf.
Share
Altmetrics
Final-revised paper
Preprint