Articles | Volume 19, issue 5
https://doi.org/10.5194/bg-19-1421-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-1421-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: Sea-level change, anaerobic methane oxidation, and the glacial–interglacial phosphorus cycle
Bjorn Sundby
ISMER, Université du Québec à Rimouski, Rimouski, QC,
Canada H4C 3J9
GEOTOP and Earth & Planetary Sciences, McGill University, Montreal, QC, Canada H3A 0E8
Pierre Anschutz
CORRESPONDING AUTHOR
Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, 33615 Pessac, France
Pascal Lecroart
Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, 33615 Pessac, France
Alfonso Mucci
GEOTOP and Earth & Planetary Sciences, McGill University, Montreal, QC, Canada H3A 0E8
Related authors
No articles found.
William A. Nesbitt, Samuel W. Stevens, Alfonso O. Mucci, Lennart Gerke, Toste Tanhua, Gwénaëlle Chaillou, and Douglas W. R. Wallace
EGUsphere, https://doi.org/10.5194/egusphere-2025-2400, https://doi.org/10.5194/egusphere-2025-2400, 2025
Short summary
Short summary
We use 20 years of oxygen measurements and recent carbon data with a tracer-calibrated 1D model to quantify oxygen loss and inorganic carbon accumulation in the deep waters of the Gulf and St. Lawrence Estuary. We further utilize the model to give a first estimate of the impact of adding pure oxygen, a by-product from green hydrogen production to these deep waters. Results show this could restore oxygen to year-2000 levels, but full recovery would require a larger input.
Mathilde Jutras, Alfonso Mucci, Gwenaëlle Chaillou, William A. Nesbitt, and Douglas W. R. Wallace
Biogeosciences, 20, 839–849, https://doi.org/10.5194/bg-20-839-2023, https://doi.org/10.5194/bg-20-839-2023, 2023
Short summary
Short summary
The deep waters of the lower St Lawrence Estuary and gulf have, in the last decades, experienced a strong decline in their oxygen concentration. Below 65 µmol L-1, the waters are said to be hypoxic, with dire consequences for marine life. We show that the extent of the hypoxic zone shows a seven-fold increase in the last 20 years, reaching 9400 km2 in 2021. After a stable period at ~ 65 µmol L⁻¹ from 1984 to 2019, the oxygen level also suddenly decreased to ~ 35 µmol L-1 in 2020.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Chantal Mears, Helmuth Thomas, Paul B. Henderson, Matthew A. Charette, Hugh MacIntyre, Frank Dehairs, Christophe Monnin, and Alfonso Mucci
Biogeosciences, 17, 4937–4959, https://doi.org/10.5194/bg-17-4937-2020, https://doi.org/10.5194/bg-17-4937-2020, 2020
Short summary
Short summary
Major research initiatives have been undertaken within the Arctic Ocean, highlighting this area's global importance and vulnerability to climate change. In 2015, the international GEOTRACES program addressed this importance by devoting intense research activities to the Arctic Ocean. Among various tracers, we used radium and carbonate system data to elucidate the functioning and vulnerability of the hydrographic regime of the Canadian Arctic Archipelago, bridging the Pacific and Atlantic oceans.
Cited articles
Anschutz, P. and Chaillou, G.: Deposition and fate of reactive Fe, Mn, P,
and C in suspended particulate matter in the Bay of Biscay, Cont. Shelf Res., 29, 1038–1043, 2009.
Anschutz, P. and Deborde, J.: Spectrophotometric determination of phosphate
in matrices from sequential leaching of sediments, Limnol. Oceanogr.-Meth.,
14, 245–256, 2016.
Anschutz, P., Zhong, S., Sundby, B., Mucci, A., and Gobeil, C.: Burial
efficiency of phosphorus and the geochemistry of iron in continental margin
sediments, Limnol Oceanogr., 43, 53–64, 1998.
Archer, D.: Methane hydrate stability and anthropogenic climate change, Biogeosciences, 4, 521–544, https://doi.org/10.5194/bg-4-521-2007, 2007.
Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the
glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38,
159–189, 2000.
Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.:
Vostok ice core provides 160 000-year record of atmospheric CO2,
Nature, 329, 408–414, 1987.
Basak, C., Fröllje, H., Lamy, F., Gersonde, R., Benz, V., Anderson, R. F.,
Molina-Kercher, M., and Pahnke, K.: Breakup of last glacial deep
stratification in the South Pacific, Science, 359, 900–904, 2018.
Berner, R. A.: Early Diagenesis: A Theoretical Approach, Princeton
University Press, ISBN 9780691082608, 1980.
Berner, R. A., Ruttenberg, K. C., Ingall, E. D., and Rao, J. L.: The nature
of phosphorus burial in modern marine sediments, in: Interactions of C, N, P
and S biogeochemical cycles and global change, edited by: Wollast, R.,
Mackenzie, F. T., and Chou, L., Springer, Berlin, Heidelberg, 365–378, ISBN 978-3-642-76066-2, 1993.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F.,
Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.:
A marine microbial consortium apparently mediating anaerobic oxidation of
methane, Nature, 407, 623–626, 2000.
Bohrmann, G. and Torres, M. E.: Gas hydrates in marine sediments, in: Marine
Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer, Berlin,
Heidelberg, 481–512, ISBN 978-3-540-32143-9, 2006.
Borowski, W. S., Paull, C. K., and Ussler, W.: Global and local variations
of interstitial sulfate gradients in deep-water, continental margin
sediments: Sensitivity to underlying methane and gas hydrates, Mar. Geol.,
159, 131–154, 1999.
Boudreau, B. P.: The diffusive tortuosity of fine-grained unlithified
sediments, Geochim. Cosmochim. Ac., 60, 3139–3142, 1996.
Boyle, E. A.: Paired carbon isotope and cadmium data from benthic
foraminifera: Implications for changes in oceanic phosphorus, oceanic
circulation, and atmospheric carbon dioxide, Geochim. Cosmochim. Ac., 50,
265–276, 1986.
Bratton, J. F.: Clathrate eustacy: Methane hydrate melting as a mechanism
for geologically rapid sea-level fall, Geology, 27, 915–918, 1999.
Broecker, W. S: Glacial to interglacial changes in ocean chemistry, Prog. Oceanogr., 11, 151–197, 1982a.
Broecker, W. S.: Ocean chemistry during glacial time, Geochim. Cosmochim. Ac., 46, 1689–1705, 1982b.
Broecker, W. S.: Glacial Cycles, Geochem. Perspect., 7, 167–181, 2018.
Burdige, D. J. and Komada, T.: Anaerobic oxidation of methane and the
stoichiometry of remineralization processes in continental margin sediments,
Limnol. Oceanogr., 56, 1781–1796, 2011.
Burdige, D. J. and Komada, T.: Using ammonium pore water profiles to assess
stoichiometry of deep remineralization processes in methanogenic continental
margin sediments, Geochem. Geophy. Geosy., 14, 1626–1643,
2013.
Burwicz, E. B., Rüpke, L. H., and Wallmann, K.:
Estimation of the global amount of submarine gas hydrates formed via
microbial methane formation based on numerical reaction-transport modeling
and a novel parameterization of Holocene sedimentation, Geochim. Cosmochim.
Ac., 75, 4562–4576, 2011.
Canfield, D. E.: Reactive iron in marine sediments, Geochim. Cosmochim. Ac., 53, 619–632, 1989.
Canfield, D. E., Thamdrup, B., and Hansen, J. W.: The anaerobic degradation
of organic matter in Danish coastal sediments: iron reduction, manganese
reduction, and sulfate reduction, Geochim. Cosmochim. Ac., 57,
3867–3883, 1993.
Cartapanis, O., Bianchi, D., Jaccard, S. L., and Galbraith, E. D.: Global
pulses of organic carbon burial in deep-sea sediments during glacial maxima,
Nat. Comm., 7, 1–7, 2016.
Charbonnier, C., Mouret, A., Howa, H., Schmidt, S., Gillet, H., and Anschutz, P.: Quantification of diagenetic transformation of continental margin
sediments at the Holocene time scale, Cont. Shelf Res., 180, 63–74, 2019.
Colman, A. S. and Holland, H. D.: The global diagenetic flux of phosphorus
from marine sediments to the oceans: redox sensitivity and the control of
atmospheric oxygen levels, SEPM Spec. P., 66, 53–75, https://doi.org/10.2110/pec.00.66.0053, 2000.
Contreras, S., Meister, P., Liu, B., Prieto-Mollar, X., Hinrichs, K. U.,
Khalili, A., Felderman, T. G., Kuypers, M. M. M., and Jørgensen, B. B.:
Cyclic 100-ka (glacial-interglacial) migration of subseafloor redox zonation
on the Peruvian shelf, P. Natl. Acad. Sci. USA, 110, 18098–18103, 2013.
Costello, M. J., Smith, M., and Fraczek, W.: Correction to Surface area and
the seabed area, volume, depth, slope, and topographic variation for the
world's seas, oceans, and countries, Environ. Sci. Tech., 49, 7071–7072,
2015.
Delaney, M.: Phosphorus accumulation in marine sediments and the oceanic
phosphorus cycle, Global Biogeochem. Cy., 12, 563–572, 1998.
Dillon, W. P., and Paull, C. K.: Marine gas-hydrate II: Geophysical
evidence, in: Natural Gas Hydrates., Properties, Occurrence and Recovery,
edited by: Cox, J. L., Butterworth, Boston, Mass., 73–90, ISBN 978-0250406319, 1983.
Egger, M., Jilbert, T., Behrends, T., Rivard, C., and Slomp, C. P.: Vivianite
is a major sink for phosphorus in methanogenic coastal surface sediments,
Geochim. Cosmochim. Ac., 169, 217–235, 2015.
Egger, M., Kraal, P., Jilbert, T., Sulu-Gambari, F., Sapart, C. J., Röckmann, T., and Slomp, C. P.: Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea, Biogeosciences, 13, 5333–5355, https://doi.org/10.5194/bg-13-5333-2016, 2016.
Egger, M., Hagens, M., Sapart, C. J., Dijkstra, N., van Helmond, N. A. G. M.,
Mogollón, J. M., Risgaard-Peterson, N., van der Veen, C., Kasten, S.,
Riedenger, N., Böttcher, M. E., Röchmann, T., Jørgensen, B. B.,
and Slomp, C. P.: Iron oxide reduction in methane-rich deep Baltic Sea
sediments, Geochim.. Cosmochim. Ac., 207, 256–276, 2017.
Egger, M., Riedinger, N., Mogollón, J. M., and Jørgensen, B. B.:
Global diffusive fluxes of methane in marine sediments, Nat. Geosci., 11,
421–425, 2018.
Falkowski, P. G.: Evolution of the nitrogen cycle and its influence on the
biological sequestration of CO2 in the ocean, Nature, 387,
272–275, 1997.
Filippelli, G. M.: Controls on phosphorus concentration and accumulation in
oceanic sediments, Mar. Geol., 139, 231–240, 1997.
Filippelli, G. M.: The global phosphorus cycle: past, present, and future,
Elements, 4, 89–95, 2008.
Filippelli, G. M., Latimer, J. C., Murray, R. W., and Flores, J. A.:
Productivity records from the Southern Ocean and the equatorial Pacific
Ocean: Testing the Glacial Shelf-Nutrient Hypothesis, Deep-Sea Res. Pt. II,
54, 2443–2452, 2007.
Fischer, D., Mogollón, J. M., Strasser, M., Pape, T., Bohrmann, G.,
Fekete, N., Spiess, V., and Kasten, S.: Subduction zone earthquake as
potential trigger of submarine hydrocarbon seepage, Nature Geosci., 6,
647–651, 2013.
Foster, G. L. and Rohling, E. J.: Relationship between sea-level and climate
forcing by CO2 on geological timescales, P. Natl. Acad. Sci. USA,
110, 1209–1214, 2013.
Froelich, P. N.: Kinetic control of dissolved phosphate in natural rivers
and estuaries: A primer on the phosphate buffer mechanism, Limnol.
Oceanogr., 33, 649–668, 1988.
Galbraith, E. D, Sigman, D., Pedersen, T., and Robinson, R. S.: Nitrogen in past marine environments, in: Nitrogen in the Marine Environment, edited
by: Capone, D., Bronk, M., Mulholland, M., and Carpenter, D., 2nd edn.,
Elsevier, 1497–1535, https://doi.org/10.1016/B978-0-12-372522-6.00034-7, 2008.
Ganeshram, R. S., Pedersen, T. F., Calvert, S. E., and Murray, J. W.: Large
changes in oceanic nutrient inventories from glacial to interglacial
periods, Nature, 376, 755–758, 1995.
Ganeshram, R. S., Pedersen, T. F., Calvert, S., and François, R.:
Reduced nitrogen fixation in the glacial ocean inferred from changes in
marine nitrogen and phosphorus inventories, Nature, 415, 156–159,
2002.
Geprägs, P., Torres, M. A., Mau, S., Kasten, S., Römer, M., and
Bohrmann, G.: Carbon cycling fed by methane seepage at the shallow
Cumberland Bay, South Georgia, sub-Antarctic, Geochem. Geophy. Geosy.,
17, 1401–1418, 2016.
Gorman, A. R., Holbrook, W. S., Hornbach, M. J., Hackwith, K. L.,
Lizarralde, D., and Pecher, I.: Migration of methane gas through the hydrate
stability zone in a low-flux hydrate province, Geology, 30, 327–330,
2002.
Hain, M. P., Sigman, D. M., and Haug, G. H.: The Biological Pump in the
Past. Treatise on Geochemistry (2nd edn.), The Oceans and Marine
Geochemistry, 8, 485–517, 2014.
Henkel, S., Strasser, M., Schwenk, T., Hanebuth, T. J. J., Hüsener, J.,
Arnold, G. L., Winkelmann, D., Formolo, M., Tomasini, J., Krastel, S., and
Kasten, S.: An interdisciplinary investigation of a recent submarine mass
transport deposit at the continental margin off Uruguay, Geochem. Geophy.
Geosy., 12, 1–19, 2011.
Henkel, S., Mongollòn, J. M., Nöthen, K., Franke, C., Bogus, K.,
Robin, E., Bahr, A., Blumenberg, M., Pape, T., Siefert, R., März, C., de
Lange, G. J., and Kasten, S.: Diagenetic barium cycling in Black Sea
sediments – A case study for anoxic marine environments, Geochim. Cosmochim. Ac., 88, 88–105, 2012.
Hensen, C., Landenberger, H., Zabel, M., and Schulz, H. D.: Quantification of
diffusive benthic fluxes of nitrate, phosphate, and silicate in the southern
Atlantic Ocean, Global Biogeochem. Cy., 12, 193–210, 1998.
Hsu, T. W., Jiang, W. T., and Wang, Y.: Authigenesis of vivianite as
influenced by methane-induced sulfidization in cold-seep sediments off
southwestern Taiwan, J. Asian Earth Sci., 89, 88–97, 2014.
Hyacinthe, C. and Van Cappellen, P.: An authigenic iron phosphate phase in
estuarine sediments: composition, formation and chemical reactivity, Mar.
Chem., 91, 227–251, 2004.
Jørgensen, B. B. and Kasten, S.: Sulfur cycling and methane oxidation,
in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer, Berlin, Heidelberg, 271–302, ISBN 978-3-540-32143-9, 2006.
Kennett, J. P., Cannariato, K. G., Hendy, I. L., and Behl, R. J.: Methane
hydrates in Quaternary climate change: The clathrate gun hypothesis,
American Geophysical Union, Washington, DC, ISBN 0-87590-296-0, 2003.
Kohfeld, K. E., Le Quéré, C., Harrison, S. P., and Anderson, R. F.:
Role of marine biology in glacial-interglacial CO2 cycles, Science,
308, 74–78, 2005.
Kölling, M, Bouimetarhan, I., Bowles, M. W., Felis, T, Goldhammer, T,
Hinrichs, K.-U., Schulz, M., and Zabel, M: Consistent CO2 release by
pyrite oxidation on continental shelves prior to glacial terminations,
Nat. Geosci., 12, 929–934, 2019.
Komada, T., Burdige, D. J., Li, H. L., Magen, C., Chanton, J. P., and Cada,
A. K.: Organic matter cycling across the sulfate-methane transition zone of
the Santa Barbara Basin, California Borderland, Geochim. Cosmochim. Ac.,
176, 259–278, 2016.
Kostka, J. E. and Luther III, G. W.: Partitioning and speciation of solid
phase iron in saltmarsh sediments, Geochim. Cosmochim. Ac., 58,
1701–1710, 1994.
Krom, M. D. and Berner, R. A.: The diffusion coefficients of sulfate,
ammonium, and phosphate ions in anoxic marine sediments, Limnol. Oceanogr.,
25, 327–337, 1980.
Krom, M. D. and Berner, R. A.: The diagenesis of phosphorus in a nearshore
marine sediment, Geochim. Cosmochim, Ac., 45, 207–216, 1981.
Kvenvolden, K. A.: Gas hydrates – Geological perspective and global change,
Rev. Geophys., 31, 173–187, 1993.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea-level
and global ice volumes from the Last Glacial Maximum to the Holocene, P.
Natl. Acad. Sci. USA, 111, 15296–15303, 2014.
Lenton, T. M. and Klausmeier, C. A.: Biotic stoichiometric controls on the deep ocean N:P ratio, Biogeosciences, 4, 353–367, https://doi.org/10.5194/bg-4-353-2007, 2007.
Lenton, T. M. and Watson, A. J.: Redfield revisited: 1. Regulation of
nitrate, phosphate, and oxygen in the ocean, Global Biogeochem. Cy., 14,
225–248, 2000.
Lijklema, L.: The role of iron in the exchange of phosphate between water
and sediments, in: Interactions Between Sediments and Fresh Water, edited
by: Golterman, H. L., Dr. W. Junk Publishers, The Hague, 313–317, ISBN 9789022006320, 1977.
Liu, J., Izon, G., Wang, J., Antler, G., Wang, Z., Zhao, J., and Egger, M.: Vivianite formation in methane-rich deep-sea sediments from the South China Sea, Biogeosciences, 15, 6329–6348, https://doi.org/10.5194/bg-15-6329-2018, 2018.
März, C., Hoffmann, J., Bleil, U., de Lange, G., and Kasten, S.:
Diagenetic changes of magnetic and geochemical signals by anaerobic methane
oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean), Mar.
Geol., 255, 118–130, 2008.
März, C., Riedinger, N., Sena, C., and Kasten, S.: Phosphorus dynamics
around the sulphate-methane transition in continental margin sediments:
Authigenic apatite and Fe(II) phosphates, Mar. Geol., 404, 84–96, 2018.
Meister, P., McKenzie, J. A., Vasconcelos, C., Bernasconi, S., Frank, M.,
Gutjahr, M., and Schrag, D. P.: Dolomite formation in the dynamic deep
biosphere: results from the Peru Margin, Sedimentology, 54, 1007–1032,
2007.
Meister, P., Bernasconi, S. M., Vasconcelos, C., and McKenzie, J. A.:
Sea-level changes control diagenetic dolomite formation in hemipelagic
sediments of the Peru Margin, Mar. Geol., 252, 166–173, 2008.
Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers, Am. J. Sci., 282, 401–450, 1982.
Millero, F. J., Huang, F., Zhu X., and Zhang, J.-Z.: Adsorption and
desorption of phosphate on calcite and aragonite in seawater, Aquat.
Geochem., 7, 33–56, 2001.
Nauhaus, K., Boetius, A., Krüger, M., and Widdel, F.: In vitro
demonstration of anaerobic oxidation of methane coupled to sulphate
reduction in sediment from a marine gas hydrate area, Environ. Microbiol.,
4, 296–305, 2002.
Niewöhner, C., Hensen, C., Kasten, S., Zabel, M., and Schulz, H. D.:
Deep sulfate reduction completely mediated by anaerobic methane oxidation in
sediments of the upwelling area off Namibia, Geochim. Cosmochim. Ac., 62,
455–464, 1998.
Palastanga, V., Slomp, C. P., and Heinze, C.: Glacial-interglacial variability in ocean oxygen and phosphorus in a global biogeochemical model, Biogeosciences, 10, 945–958, https://doi.org/10.5194/bg-10-945-2013, 2013.
Paull, C. K., Ussler, W., and Dillon, W. P.: Is the extent of glaciation
limited by marine gas hydrates?, Geophys. Res. Lett., 18, 432–434, 1991.
Peacock, S., Lane, E., and Restrepo, J. M.: A possible sequence of events
for the generalized glacial-interglacial cycle, Global Biogeochem. Cy., 20,
GB2010, doi.org/10.1029/2005GB002448, 2006.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin,
L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric
history of the past 420 000 years from the Vostok ice core, Antarctica,
Nature, 399, 429–436, 1999.
Poulton, S. W. and Canfield, D. E.: Development of a sequential extraction
procedure for iron: implications for iron partitioning in continentally
derived particulates, Chem. Geol., 214, 209–221, 2005.
Riedinger, N., Formolo, M. J., Lyons, T. W., Henkel, S., Beck, A., and Kasten,
S.: An inorganic geochemical argument for coupled anaerobic oxidation of
methane and iron reduction in marine sediments, Geobiology, 12, 172–181,
2014.
Roberts, A. P.: Magnetic mineral diagenesis, Earth-Science Rev., 151, 1–47, 2015.
Rothe, M., Kleeberg, A., and Hupfer, M.: The occurrence, identification and
environmental relevance of vivianite in waterlogged soils and aquatic
sediments, Earth-Sci. Rev., 158, 51–64, 2016.
Ruppel, C. D. and Kessler, J. D.: The interaction of climate change and
methane hydrates, Rev. Geophys., 55, 126–168, 2017.
Ruttenberg, K. C.: The global phosphorus cycle, in: Treatise on Geochemistry, edited by: Schleisinger, W. H., Elsevier, 585–643, ISBN 0-08-044343-5, 2003.
Ruttenberg, K. C.: The global phosphorus cycle, in: Treatise on
Geochemistry, 2nd edn., edited by: Karl, D. M. and Schlesinger, W. H., Elsevier
Science, 499–558, https://doi.org/10.1016/B978-0-08-095975-7.00813-5, 2014.
Sarmiento, J. J. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, ISBN 9780691017075, 2006.
Schulz, H. D. and Zabel, M.: Marine Geochemistry, 2nd edn., Springer-Verlag, Berlin, Heidelberg, ISBN 978-3-540-32143-9, 2006.
Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, C., Meischner, D.,
Schmelzer, I., and Smeed, D. A.: Sea-level fluctuations during the last
glacial cycle, Nature, 423, 853–858, 2003.
Sigman, D. M. and Boyle, E. A.: Glacial/interglacial variations in
atmospheric carbon dioxide. Nature, 407, 859–869, 2000.
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles
in atmospheric CO2 concentration, Nature, 466, 47–55, 2010.
Slomp, C. P., Epping, E. H. G., Helder, W., and Van Raaphorst, W.: A key role
for iron-bound phosphorus in authigenic apatite formation in North Atlantic
continental platform sediments, J. Mar. Res., 54, 1179–1205, 1996.
Slomp, C. P., Mort, H. P., Jilbert, T., Reed, D. C., Gustafsson, B. G., and
Wolthers, M.: Coupled dynamics of iron and phosphorus in sediments of an
oligotrophic coastal basin and the impact of anaerobic oxidation of methane,
PloS ONE, 8, e62386, https://doi.org/10.1371/journal.pone.0062386, 2013
Smith, S. V.: Phosphorus versus nitrogen limitation in the marine
environment, Limnol. Oceanogr., 29, 1149–1160, 1984.
Sundby, B., Gobeil, C., Silverberg, N., and Mucci A.: The phosphorus cycle in
coastal marine sediments, Limnol. Oceanogr., 37, 1129–1145, 1992.
Sundby, B., Lecroart, P., Anschutz, P., Katsev, S., and Mucci, A.: When deep
diagenesis in Arctic Ocean sediments compromises manganese-based
geochronology, Mar. Geol., 366, 62–68, 2015.
Tsandev, I., Slomp, C. P., and Van Cappellen, P.: Glacial-interglacial
variations in marine phosphorus cycling: Implications for ocean
productivity, Global Biogeochem. Cy., 22, GB4004, https://doi.org/10.1029/2007GB003054, 2008.
Tyrrell, T.: The relative influences of nitrogen and phosphorus on oceanic primary production, Nature, 400, 525–531, 1999.
Wallmann, K.: Feedbacks between oceanic redox states and marine
productivity: A model perspective focused on benthic phosphorus cycling,
Global Biogeochem. Cy., 17, 1084, https://doi.org/10.1029/2002GB001968, 2003.
Wallmann, K.: Phosphorus imbalance in the global ocean?, Global Biogeochem.
Cy., 24, GB4030, https://doi.org/10.1029/2009GB003643, 2010.
Wallmann, K., Schneider, B., and Sarnthein, M.: Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric pCO2 and seawater composition over the last 130 000 years: a model study, Clim. Past, 12, 339–375, https://doi.org/10.5194/cp-12-339-2016, 2016.
Wunder, L. C., Aromokeye, D. A., Yin, X., Richter-Heitmann, T.,
Willis-Poratti, G., Schnakenberg, A., Otersen, C., Dohrmann, I., Römer,
M., Bohrmann, G., Kasten, S., and Friedrich, M. W.: Iron and sulfate reduction
structure microbial communities in (sub-)Antarctic sediments, ISME J.,
15, 3587–3604, 2021.
Yao, W. and Millero, F. J.: Adsorption of phosphate on manganese dioxide in
seawater, Environ. Sci. Tech., 30, 536–541, 1996.
Short summary
A glacial–interglacial methane-fuelled redistribution of reactive phosphorus between the oceanic and sedimentary phosphorus reservoirs can occur in the ocean when falling sea level lowers the pressure on the seafloor, destabilizes methane hydrates, and triggers the dissolution of P-bearing iron oxides. The mass of phosphate potentially mobilizable from the sediment is similar to the size of the current oceanic reservoir. Hence, this process may play a major role in the marine phosphorus cycle.
A glacial–interglacial methane-fuelled redistribution of reactive phosphorus between the oceanic...
Altmetrics
Final-revised paper
Preprint