Articles | Volume 19, issue 1
https://doi.org/10.5194/bg-19-201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bacteriohopanetetrol-x: constraining its application as a lipid biomarker for marine anammox using the water column oxygen gradient of the Benguela upwelling system
Zoë R. van Kemenade
CORRESPONDING AUTHOR
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal
Netherlands Institute for Sea Research, Den Burg, the Netherlands
Laura Villanueva
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal
Netherlands Institute for Sea Research, Den Burg, the Netherlands
Department of Earth Sciences, Geochemistry, Faculty of Geosciences,
University of Utrecht, Utrecht, the Netherlands
Ellen C. Hopmans
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal
Netherlands Institute for Sea Research, Den Burg, the Netherlands
Peter Kraal
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal
Netherlands Institute for Sea Research, Den Burg, the Netherlands
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
Harry J. Witte
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal
Netherlands Institute for Sea Research, Den Burg, the Netherlands
Jaap S. Sinninghe Damsté
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal
Netherlands Institute for Sea Research, Den Burg, the Netherlands
Department of Earth Sciences, Geochemistry, Faculty of Geosciences,
University of Utrecht, Utrecht, the Netherlands
Darci Rush
Department of Marine Microbiology and Biogeochemistry, NIOZ Royal
Netherlands Institute for Sea Research, Den Burg, the Netherlands
Related authors
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past, 21, 957–971, https://doi.org/10.5194/cp-21-957-2025, https://doi.org/10.5194/cp-21-957-2025, 2025
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that, 7200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Anna Cutmore, Nora Richter, Nicole Bale, Stefan Schouten, and Darci Rush
EGUsphere, https://doi.org/10.5194/egusphere-2025-1796, https://doi.org/10.5194/egusphere-2025-1796, 2025
Short summary
Short summary
This study uses bacterial compounds, bacteriohopanepolyols (BHPs), preserved in Black Sea sediments to trace major environmental changes over the past 20,000 years. As the basin shifted from a freshwater lake to a permanently oxygen-poor marine environment, we observe clear changes in bacterial communities and environmental conditions. These findings offer new insight into how microbes responded to significant hydrological changes during the last deglaciation and Holocene.
Peter Kraal, Kristin A. Ungerhofer, Darci Rush, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2025-1870, https://doi.org/10.5194/egusphere-2025-1870, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Element cycles in oxygen-depleted areas such as upwelling areas inform future deoxygenation scenarios. The Benguela upwelling system shows strong decoupling of nitrogen and phosphorus cycling due to seasonal shelf anoxia. Anaerobic processes result in pelagic nitrogen loss as N2. At the same time, sediments are rich in fish-derived and bacterial phosphorus, with high fluxes of excess phosphate, altering deep-water nitrogen:phosphorus ratios. Such alterations can affect ocean functioning.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Jaap S. Sinninghe Damsté, Lisa A. Warden, Carlo Berg, Klaus Jürgens, and Matthias Moros
Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, https://doi.org/10.5194/cp-18-2271-2022, 2022
Short summary
Short summary
Reconstruction of past climate conditions is important for understanding current climate change. These reconstructions are derived from proxies, enabling reconstructions of, e.g., past temperature, precipitation, vegetation, and sea surface temperature (SST). Here we investigate a recently developed SST proxy based on membrane lipids of ammonium-oxidizing archaea in the ocean. We show that low salinities substantially affect the proxy calibration by examining Holocene Baltic Sea sediments.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Cited articles
Abdala Asbun, A., Besseling, M. A., Balzano, S., van Bleijswijk, J. D. L.,
Witte, H. J., Villanueva, L., and Engelman, J. C.: Cascabel: A Scalable and Versatile
Amplicon Sequence Data Analysis Pipeline Delivering Reproducible and
Documented Results, Front. Genet., 11, 489357, https://doi.org/10.3389/fgene.2020.489357,
2020.
Awata, T., Tanabe, K., Kindaichi, T., Ozaki, N., and Ohashi, A.: Influence of
temperature and salinity on microbial structure of marine anammox bacteria,
Water Sci. Technol., 66, 958–964, 2012.
Awata, T., Oshiki, M., Kindaichi, T., Ozaki, N., Ohashi, A., and Okabe, S.:
Physiological characterization of an anaerobic ammonium-oxidizing bacterium
belonging to the “Candidatus Ca. Scalindua” group, Appl. Environ. Microbiol.,
79, 4145–4148, https://doi.org/10.1128/AEM.00056-13, 2013.
Bailey, G. W.: Organic carbon flux and development of oxygen deficiency on
the modern Benguela continental shelf south of 22∘ S: Spatial and
temporal variability, Geol. Soc. Spec. Publ., 58, 171–183,
https://doi.org/10.1144/GSL.SP.1991.058.01.12, 1991.
Bale, N. J., Villanueva, L., Fan, H., Stal, L. J., Hopmans, E. C., Schouten,
S., and Sinninghe Damsté, J. S.: Occurrence and activity of anammox
bacteria in surface sediments of the southern North Sea, FEMS Microbiol.
Ecol., 89, 99–110, https://doi.org/10.1111/1574-6941.12338, 2014.
Bale, N. J., Ding, S., Hopmans, E. C., Arts, M. G. I., Villanueva, L.,
Boschman, C., Haas, A. F., Schouten, S., and Sinninghe Damsté, J. S.:
Lipidomics of Environmental Microbial Communities. I: Visualization of
Component Distributions Using Untargeted Analysis of High-Resolution Mass
Spectrometry Data, Front. Microbiol., 12, 659302, https://doi.org/10.3389/fmicb.2021.659302,
2021.
Berndmeyer, C., Thiel, V., Schmale, O., and Blumenberg, M.: Biomarkers for
aerobic methanotrophy in the water column of the stratified Gotland Deep
(Baltic Sea), Org. Geochem., 55, 103–111, https://doi.org/10.1016/j.orggeochem.2012.11.010, 2013.
Bligh, E. G. and Dyer, W. J.: A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911–917, https://doi.org/10.1139/o59-099, 1959.
Blumenberg, M., Mollenhauer, G., Zabel, M., Reimer, A., and Thiel, V.:
Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling
System (BUS), Org. Geochem., 41, 1119–1129, 2010.
Boumann, H. A., Hopmans, E. C., Van De Leemput, I., Op Den Camp, H. J. M.,
Van De Vossenberg, J., Strous, M., Jetten, M. S. M., Sinninghe Damsté,
J. S., and Schouten, S.: Ladderane phospholipids in anammox bacteria comprise
phosphocholine and phosphoethanolamine headgroups, FEMS Microbiol. Lett.,
258, 297–304, https://doi.org/10.1111/j.1574-6968.2006.00233.x, 2006.
Boyer, D., Cole, J., and Bartholomae, C.: Southwestern Africa: Northern
Benguela Current region, Mar. Pollut. Bull., 41, 123–140, 2000.
Brandsma, J., van de Vossenberg, J., Risgaard-Petersen, N., Schmid, M. C.,
Engström, P., Eurenius, K., Hulth, S., Jaeschke, A., Abbas, B., Hopmans,
E. C., Strous, M., Schouten, S., Jetten, M. S. M., and Damsté, J. S. S.:
A multi-proxy study of anaerobic ammonium oxidation in marine sediments of
the Gullmar Fjord, Sweden, Environ. Microbiol. Rep., 3, 360–366,
https://doi.org/10.1111/j.1758-2229.2010.00233.x, 2011.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal
waters, Science, 359, 6371, https://doi.org/10.1126/science.aam7240, 2018.
Brüchert, V., Currie, B., Peard, K. R., Lass, U., Endler, R.,
Dübecke, A., Julies, E., Leipe, T., and Zitzmann, S.: Biogeochemical and Physical Control on Shelf Anoxia and Water Column Hydrogen Sulphide in the Benguela Coastal Upwelling System Off Namibia, in: Past and Present Water Column Anoxia, Nato Science Series: IV: Earth and Environmental Sciences, edited by: Neretin, L., Springer, Dordrecht, the Netherlands, 64, https://doi.org/10.1007/1-4020-4297-3_07, 2006.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, Costello, E.K., Fierer, N., Gonzalez Peña, A., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld J., and Knight, R.: QIIME allows analysis of high throughput community sequencing data, Nat. Methods, 7, 335–336, https://doi.org/10.1038/nmeth.f.303, 2010.
Chapman, P. and Shannon, L. V.: Seasonality in the oxygen minimum layers at
the extremities of the Benguela system, South African J. Mar. Sci., 5,
85–94, https://doi.org/10.2989/025776187784522162, 1987.
Codispoti, L. A., Brandes, J. A., Christensen, J. P., Devol, A. H., Naqvi,
S. W. A., Paerl, H. W., and Yoshinari, T.: The oceanic fixed nitrogen and
nitrous oxide budgets: Moving targets as we enter the Anthropocene?, Sci.
Mar., 65, 85–105, https://doi.org/10.3989/scimar.2001.65s285, 2001.
Ekau, W. and Verheye, H. M.: Influence of oceanographic fronts and low
oxygen on the distribution of ichthyoplankton in the Benguela and southern
Angola currents, Afr. J. Mar. Sci., 27, 629–639,
https://doi.org/10.2989/18142320509504123, 2005.
Gruber, N.: The Dynamics of the Marine Nitrogen Cycle and its Influence on Atmospheric CO2 Variations. In: The Ocean Carbon Cycle and Climate, NATO Science Series IV: Earth and Environmental Sciences, edited by: Follows, M. and Ogus, Z., Springer, Dordrecht, 40, https://doi.org/10.1007/978-1-4020-2087-2_4, 2004.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation
and denitrification, Global Bioeochem. Cy., 11, 235–266, 1997.
Hamersley, M. R., Lavik, G., Woebken, D., Rattray, J. E., Lam, P., Hopmans,
E. C., Sinninghe Damsté, J. S., Krüger, S., Graco, M.,
Gutiérrez, D., and Kuypers, M. M. M.: Anaerobic ammonium oxidation in the
Peruvian oxygen minimum zone, Limnol. Oceanogr., 52, 923–933,
https://doi.org/10.4319/lo.2007.52.3.0923, 2007.
Harvey, H. R., Fallon, R. D., and Patton, J. S.: The effect of organic matter
and oxygen on the degradation of bacterial membrane lipids in marine
sediments, Geochim. Cosmochim. Ac., 50, 795–804,
https://doi.org/10.1016/0016-7037(86)90355-8, 1986.
Hopmans, E. C., Smit, N., T., Schwartz-Narbonne, R., Sinnighe Damsté, J. S., and Rush, D.: Analysis of non-derivatized bacteriohopanepolyols using UHPLC-HRMS reveals great structural diversity in environmental lipid assemblages, Org. Geochem., 160, 104285, https://doi.org/10.1016/j.orggeochem.2021.104285, 2021.
Jaeschke, A., Rooks, C., Trimmer, M., Nicholls, J. C., Hopmans, E.C.,
Schouten, S., and Sinninghe Damsté, J.S.: Comparison of ladderane
phospholipids and core lipids as indicators for anaerobic ammonium oxidation
(anammox) in marine sediments, Geochim. Cosmochim. Ac., 73, 2077–2088, https://doi.org/10.1016/j.gca.2009.01.013, 2009a.
Jaeschke, A., Ziegler, M., Hopmans, E. C., Reichart, G. J., Lourens, L. J.,
and Schouten, S.: Molecular fossil evidence for anaerobic ammonium oxidation
in the Arabian Sea over the last glacial cycle, Paleoceanography, 24,
1–11, https://doi.org/10.1029/2008PA001712, 2009b.
Jaeschke, A., Abbas, B., Zabel, M., Hopmans, E. C., Schouten, S., and
Sinninghe Damsté, J. S.: Molecular evidence for anaerobic
ammonium-oxidizing (anammox) bacteria in continental shelf and slope
sediments off northwest Africa, Limnol. Oceanogr., 55, 365–376,
https://doi.org/10.4319/lo.2010.55.1.0365, 2010.
Jensen, M. M., Kuypers, M. M. M., Lavik, G., and Thamdrup, B.: Rates and
regulation of anaerobic ammonium oxidation and denitrification in the Black
Sea, Limnol. Oceanogr., 53, 23–36, https://doi.org/10.4319/lo.2008.53.1.0023, 2008.
Jetten, M. S. M., van Niftrik, L., Strous, M., Kartal, B., Kjeltens, J. T., and op den Camp, H. J. M.: Biochemistry and molecular biology of anammox bacteria,
Crit. Rev. Biochem., 44, 65–84, https://doi.org/10.1109/cleoe-eqec.2009.5193615, 2009.
Kalvelage, T., Jensen, M. M., Contreras, S., Revsbech, N. P., Lam, P.,
Günter, M., LaRoche, J., Lavik, G., and Kuypers, M. M. M.: Oxygen
sensitivity of anammox and coupled N-cycle processes in oxygen minimum
zones, PLoS One, 6, e29299, https://doi.org/10.1371/journal.pone.0029299, 2011.
Kartal, B., Koleva, M., Arsov, R., van der Star, W., Jetten, M. S., and
Strous, M.: Adaptation of a freshwater anammox population to high salinity
wastewater, J. Biotechnol., 126, 546–53, https://doi.org/10.1016/j.jbiotec.2006.05.012, 2006.
Kimura, M.: A simple method for estimating evolutionary rate of base
substitutions through comparative studies of nucleotide sequences, J. Mol.
Evol., 16, 111–120, 1980.
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K.: MEGA X: Molecular
Evolutionary Genetics Analysis across computing platforms, Mol. Biol. Evol.,
35, 1547–1549, 2018.
Kuypers, M. M. M., Silekers, A. O., Lavik, G., Schmid, M., Jøorgensen, B.
B., Kuenen, J. G., Sinninghe Damsté, J. S., Strous, M., and Jetten, M. S.
M.: Anaerobic ammonium oxidation by anammox bacteria in the Black Sea,
Nature, 422, 608–611, https://doi.org/10.1038/nature01472, 2003.
Kuypers, M. M. M., Lavik, G., Woebken, D., Schmid, M., Fuchs, B. M., Amann,
R., Jørgensen, B. B., and Jetten, M. S. M.: Massive nitrogen loss from the
Benguela upwelling system through anaerobic ammonium oxidation, P. Natl.
Acad. Sci. USA, 102, 6478–6483, https://doi.org/10.1073/pnas.0502088102, 2005.
Lam, P., Lavik, G., Jensen, M. M., Van Vossenberg, J. De, Schmid, M.,
Woebken, D., Gutiérrez, D., Amann, R., Jetten, M. S. M., and Kuypers, M.
M. M.: Revising the nitrogen cycle in the Peruvian oxygen minimum zone,
P. Natl. Acad. Sci. USA, 106, 4752–4757,
https://doi.org/10.1073/pnas.0812444106, 2009.
Louw, D. C., van der Plas, A. K., Mohrholz, V., Wasmund, N., Junker, T., and
Eggert, A.: Seasonal and interannual phytoplankton dynamics and forcing
mechanisms in the Northern Benguela upwelling system, J. Mar. SyStat.,
157, 124–134, https://doi.org/10.1016/j.jmarsys.2016.01.009, 2016.
Matys, E. D., Sepúlveda, J., Pantoja, S., Lange, C. B., Caniupán, M.,
Lamy, F., and Summons, R. E.: Bacteriohopanepolyols along redox gradients in
the Humboldt Current System off northern Chile, Geobiology, 15, 844–857,
https://doi.org/10.1111/gbi.12250, 2017.
Mercier, H., Arhan, M., and Lutjeharms, J. R. E.: Upper-layer circulation in
the eastern Equatorial and South Atlantic Ocean in January–March 1995, Deep.
Res. Pt. I, 50, 863–887,
https://doi.org/10.1016/S0967-0637(03)00071-2, 2003.
Mohrholz, V., Bartholomae, C. H., van der Plas, A. K., and Lass, H. U.: The
seasonal variability of the northern Benguela undercurrent and its relation
to the oxygen budget on the shelf, Cont. Shelf Res., 28, 424–441,
https://doi.org/10.1016/j.csr.2007.10.001, 2008.
Mollenhauer, G., Inthorn, M., Vogt, T., Zabel, M., Sinninghe Damsté, J.
S., and Eglinton, T. I.: Aging of marine organic matter during cross-shelf
lateral transport in the Benguela upwelling system revealed by
compound-specific radiocarbon dating, Geochem. Geophy. Geosy.,
8, Q09004, https://doi.org/10.1029/2007GC001603, 2007.
Monteiro, F. M., Pancost, R. D., Ridgwell, A., and Donnadieu, Y.: Nutrients
as the dominant control on the spread of anoxia and euxinia across the
Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison,
Paleoceanography, 27, 1–17, https://doi.org/10.1029/2012PA002351, 2012.
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473,
https://doi.org/10.1038/s41561-018-0152-2, 2018.
Ourisson, G. and Albrecht, P.: Geohopanoids: The Most Abundant Natural
Products on Earth?, Acc. Chem. Res., 25, 398–402, https://doi.org/10.1021/ar00021a003,
1992.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters: assessing
small subunit rRNA primers for marine microbiomes with mock communities,
time series and global field samples, Environ. Microbiol., 18, 1403–1414,.
https://doi.org/10.1111/1462-2920.13023, 2016.
Paulmier, A. and Ruiz-Pino, D.: Oxygen minimum zones (OMZs) in the modern
ocean, Prog. Oceanogr., 80, 113–128,
https://doi.org/10.1016/j.pocean.2008.08.001, 2009.
Peiseler, B. and Rohmer, M.: Prokaryotic triterpenoids of the hopane series.
Bacteriohopanetetrols of new side-chain configuration from Acetobacter
species, J. Chem. Res., 298–299, 1992.
Pinto, A. J. and Raskin, L.: PCR Biases Distort Bacterial and Archaeal
Community Structure in Pyrosequencing Datasets, PLOS ONE, 7, e4309, https://doi.org/10.1371/journal.pone.0043093, 2012.
Pitcher, A., Villanueva, L., Hopmans, E. C., Schouten, S., Reichart, G. J.,
and Sinninghe Damsté, J. S.: Niche segregation of ammonia-oxidizing
archaea and anammox bacteria in the Arabian Sea oxygen minimum zone, ISME
J., 5, 1896–1904, https://doi.org/10.1038/ismej.2011.60, 2011.
Rattray, J. E., Van De Vossenberg, J., Hopmans, E. C., Kartal, B., Van
Niftrik, L., Rijpstra, W. I. C., Strous, M., Jetten, M. S. M., Schouten, S.,
and Damsté, J. S. S.: Ladderane lipid distribution in four genera of
anammox bacteria, Arch. Microbiol., 190, 51–66,
https://doi.org/10.1007/s00203-008-0364-8, 2008.
Rattray, J. E., Van Vossenberg, J. De, Jaeschke, A., Hopmans, E. C.,
Wakeham, S. G., Lavik, G., Kuypers, M. M. M., Strous, M., Jetten, M. S. M.,
Schouten, S., and Sinninghe Damsté, J. S.: Impact of temperature on
ladderane lipid distribution in anammox bacteria, Appl. Environ. Microbiol.,
76, 1596–1603, https://doi.org/10.1128/AEM.01796-09, 2010.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of
organisms on the composition of sea water, in: The Sea, Vol. 2, edited by: Hill, M.
N., Interscience Publishers, New York, New York, 26–77, ISBN 9780674017283, 1963.
Richards, F. A., Cline, J. D., Broenkow, W. W., and Atkinson, L. P.: Some
consequences of the decomposition of Organic Matter in Lake Nitinat, an
anoxic fjord, Limnol. Oceanogr., 10, 185–201, 1965.
Rush, D., Jaeschke, A., Hopmans, E. C., Geenevasen, J. A. J., Schouten, S.,
and Sinninghe Damsté, J. S.: Short chain ladderanes: Oxic biodegradation
products of anammox lipids, Geochim. Cosmochim. Ac., 75, 1662–1671,
https://doi.org/10.1016/j.gca.2011.01.013, 2011.
Rush, D., Sinninghe Damsté, J. S., Poulton, S. W., Thamdrup, B.,
Garside, A. L., Acuña González, J., Schouten, S., Jetten, M. S. M.,
and Talbot, H. M.: Anaerobic ammonium-oxidising bacteria: A biological
source of the bacteriohopanetetrol stereoisomer in marine sediments,
Geochim. Cosmochim. Ac., 140, 50–64, https://doi.org/10.1016/j.gca.2014.05.014, 2014.
Rush, D. and Sinnighe Damsté, J. S.: Lipids as paleomarkers to constrain the marine nitrogen cycle, Environ. Microbiol., 19, 2119–2132, https://doi.org/10.1111/1462-2920.13682, 2017.
Rush, D., Talbot, H. M., Van Der Meer, M. T. J., Hopmans, E. C., Douglas, B.,
and Sinninghe Damsté, J. S.: Biomarker evidence for the occurrence of
anaerobic ammonium oxidation in the eastern Mediterranean Sea during
Quaternary and Pliocene sapropel formation, Biogeosciences, 16,
2467–2479, https://doi.org/10.5194/bg-16-2467-2019, 2019.
Sáenz, J. P., Wakeham, S. G., Eglinton, T. I., and Summons, R. E.: New
constraints on the provenance of hopanoids in the marine geologic record:
Bacteriohopanepolyols in marine suboxic and anoxic environments, Org.
Geochem., 42, 1351–1362, https://doi.org/10.1016/j.orggeochem.2011.08.016, 2011.
Schmid, M., Walsh, K., Webb, R., Rijpstra, W. I. C., Van De Pas-Schoonen,
K., Verbruggen, M. J., Hill, T., Moffett, B., Fuerst, J., Schouten, S.,
Damsté, J. S. S., Harris, J., Shaw, P., Jetten, M., and Strous, M.:
Candidatus “Ca. Scalindua brodae”, sp. nov., Candidatus “Ca. Scalindua wagneri”,
sp. nov., Two New Species of Anaerobic Ammonium Oxidizing Bacteria,
SyStat. Appl. Microbiol., 26, 529–538, https://doi.org/10.1078/072320203770865837,
2003.
Schmid, M. C., Risgaard-Petersen, N., Van De Vossenberg, J., Kuypers, M. M.
M., Lavik, G., Petersen, J., Hulth, S., Thamdrup, B., Canfield, D.,
Dalsgaard, T., Rysgaard, S., Sejr, M. K., Strous, M., Op Den Camp, H. J. M.,
and Jetten, M. S. M.: Anaerobic ammonium-oxidizing bacteria in marine
environments: Widespread occurrence but low diversity, Environ. Microbiol.,
9, 1476–1484, https://doi.org/10.1111/j.1462-2920.2007.01266.x, 2007.
Schwartz-Narbonne, R., Schaeffer, P., Hopmans, E. C., Schenesse, M.,
Charlton, E. A., Jones, D. M., Sinninghe Damsté, J. S., Farhan Ul Haque,
M., Jetten, M. S. M., Lengger, S. K., Murrell, J. C., Normand, P., Nuijten,
G. H. L., Talbot, H. M., and Rush, D.: A unique bacteriohopanetetrol
stereoisomer of marine anammox, Org. Geochem., 143, 103994,
https://doi.org/10.1016/j.orggeochem.2020.103994, 2020.
Sinninghe Damsté, J. S., Strous, M., Rijpstra, W. I. C., Hopmans, E. C.,
Geenevasen, J. A. J., Van Duin, A. C. T., Van Niftrik, L. A., and Jetten, M.
S. M.: Linearly concatenated cyclobutane lipids form a dense bacterial
membrane, Nature, 419, 708–712, https://doi.org/10.1038/nature01128, 2002.
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Geenevasen, J. A. J.,
Strous, M., and Jetten, M. S. M.: Structural identification of ladderane and
other membrane lipids of planctomycetes capable of anaerobic ammonium
oxidation (anammox), FEBS J., 272, 4270–4283,
https://doi.org/10.1111/j.1742-4658.2005.04842.x, 2005.
Strous, M., van Gerven, E., Kuenen, J. G., and Jetten, M. S. M.: Effects of
aerobic and microaerobic conditions on anaerobic ammonium-oxidizing
(anammox) sludge, Appl. Environ. Microbiol., 63, 2446–2448, https://doi.org/10.1128/aem.63.6.2446-2448.1997, 1997.
Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., van de
Pas-Schoonen, K. T., Webb, R., Kuenen, J. G., and Jetten, M. S. M.: Missing
lithotroph identified as new planctomycete, Nature, 400, 446–449, 1999.
Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., and Hinrichs, K.: Intact
polar membrane lipids in prokaryotes and sediments deciphered by
high-performance liquid chromatography/electrospray ionization multistage
mass spectrometry – new biomarkers for biogeochemistry and microbial
ecology, Rapid Commun. Mass Sp., 18, 617–628, https://doi.org/10.1002/rcm.1378, 2004.
Talbot, H. M., Bischoff, J., Inglis, G. N., Collinson, M. E., and Pancost, R.
D.: Polyfunctionalised bio- and geohopanoids in the Eocene Cobham Lignite,
Org. Geochem., 96, 77–92, https://doi.org/10.1016/j.orggeochem.2016.03.006, 2016.
Thamdrup, B., Dalsgaard, T., Jensen, M. M., Ulloa, O., Farías, L., and
Escribano, R.: Anaerobic ammonium oxidation in the oxygen-deficient waters
off northern Chile, Limnol. Oceanogr., 51, 2145–2156,
https://doi.org/10.4319/lo.2006.51.5.2145, 2006.
Van de Graaf, A. A., Mulder, A., De Bruijn, P., Jetten, M. S. M., Robertson,
L. A., and Kuenen, J. G.: Anaerobic oxidation of ammonium is a biologically
mediated process, Appl. Environ. Microbiol., 61, 1246–1251,
https://doi.org/10.1128/aem.61.4.1246-1251.1995, 1995.
Van De Graaf, A. A., De Bruijn, P., Robertson, L. A., Jetten, M. S. M., and
Kuenen, J. G.: Metabolic pathway of anaerobic ammonium oxidation on the
basis of 15N studies in a fluidized bed reactor, Microbiology, 143,
2415–2421, https://doi.org/10.1099/00221287-143-7-2415, 1997.
van Dongen, B. E., Talbot, H. M., Schouten, S., Pearson, P. N., and Pancost,
R. D.: Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa
area, Tanzania, Org. Geochem., 37, 539–557,
https://doi.org/10.1016/j.orggeochem.2006.01.003, 2006.
van Mooy, B. A. S. and Fredricks, H. F.: Bacterial and eukaryotic intact polar
lipids in the eastern subtropical South Pacific: Water-column distribution,
planktonic sources, and fatty acid composition, Geochim. Cosmochim. Ac., 74, 6499–6516,
https://doi.org/10.1016/j.gca.2010.08.026, 2010,
Villanueva, L., Speth, D. R., van Alen, T., Hoischen, A., and Jetten, M. S.
M.: Shotgun metagenomic data reveals significant abundance but low diversity
of “Candidatus Ca. Scalindua” marine anammox bacteria in the Arabian Sea
oxygen minimum zone, Front. Microbiol., 5, 1–9,
https://doi.org/10.3389/fmicb.2014.00031, 2014.
Woebken, D., Lam, P., Kuypers, M. M. M., Naqvi, S. W. A., Kartal, B.,
Strous, M., Jetten, M. S. M., Fuchs, B. M., and Amann, R.: A microdiversity
study of anammox bacteria reveals a novel Candidatus Ca. Scalindua phylotype in
marine oxygen minimum zones, Environ. Microbiol., 10, 3106–3119,
https://doi.org/10.1111/j.1462-2920.2008.01640.x, 2008.
Wörmer, L., Lipp, J. S., and Hinrichs, K. U: Comprehensive analysis of
microbial lipids in environmental samples through HPLC-MS protocols, in:
Hydrocarbon and lipid microbiology protocols, Springer, Berlin, Heidelber,
289–317, https://doi.org/10.1007/8623_2015_183, 2015.
Yang, Y., Li, M., Li, H., Li, X. Y., Lin, J. G., Denecke, M., and Gu, J. D.: Specific
and effective detection of anammox bacteria using PCR primers targeting the
16S rRNA gene and functional genes, Sci. Total Environ., 10, 139387, https://doi.org/10.1016/j.scitotenv.2020.139387, 2020.
Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A.: PEAR: a fast and
accurate Illumina Paired-End reAd mergeR, Bioinformatics, 30, 614–620,
https://doi.org/10.1093/bioinformatics/btt593, 2014.
Short summary
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We assess the distribution of bacteriohopanetetrol-x (BHT-x), used to trace past anammox, along a redox gradient in the water column of the Benguela upwelling system. BHT-x / BHT ratios of >0.18 correspond to the presence of living anammox bacteria and oxygen levels <50 μmol L−1. This allows for a more robust application of BHT-x to trace past marine anammox and deoxygenation in dynamic marine systems.
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We...
Altmetrics
Final-revised paper
Preprint