Articles | Volume 19, issue 8
https://doi.org/10.5194/bg-19-2313-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2313-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments
Hanni Vigderovich
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, Ben-Gurion
University of the Negev, Be'er Sheva, Israel
Werner Eckert
The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
Michal Elul
Department of Earth and Environmental Sciences, Ben-Gurion
University of the Negev, Be'er Sheva, Israel
Maxim Rubin-Blum
Israel Oceanographic and Limnological Research, Haifa, Israel
Marcus Elvert
Organic Geochemistry Group, MARUM – Center for Marine Environmental Sciences and Faculty of
Geosciences, University of Bremen, Bremen, Germany
Orit Sivan
Department of Earth and Environmental Sciences, Ben-Gurion
University of the Negev, Be'er Sheva, Israel
Related authors
No articles found.
Yarden Gerera, André Pellerin, Efrat Eliani Russak, Katey Walter Anthony, Nicholas Hasson, Yoav Oved Rosenberg, and Orit Sivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1504, https://doi.org/10.5194/egusphere-2025-1504, 2025
Short summary
Short summary
Thermokarst lakes have formed over thousands of years from permafrost thaw in the Arctic. Here we quantify the change in methane production rates as thermokarst lakes evolve by incubation-based approach of measuring and comparing methane production rates and organic carbon lability between a more mature thermokarst lake and a young dynamic thermokarst lake. We also show the use of Rock-Eval analysis of organic carbon along the sediments as a proxy for organics susceptibility for methanogenesis.
Tom Reich, Natalia Belkin, Guy Sisma-Ventura, Hagar Hauzer, Maxim Rubin-Blum, Ilana Berman-Frank, and Eyal Rahav
EGUsphere, https://doi.org/10.5194/egusphere-2025-1445, https://doi.org/10.5194/egusphere-2025-1445, 2025
Short summary
Short summary
Dark carbon fixation by chemoautotrophs take a vital part in marine primary productivity. Measured rates can be seen all the way down to the dark layers of the ocean and integrated in our study site come close to the magnitude of photosynthesis. It can also explain about ~35 % of the missing organic carbon supply needed by deep microbial communities. By using oceanographic observations and analysis this paper highlights the significant of this overlooked parameter.
Maxim Rubin-Blum, Eyal Rahav, Guy Sisma-Ventura, Yana Yudkovski, Zoya Harbuzov, Or M. Bialik, Oded Ezra, Anneleen Foubert, Barak Herut, and Yizhaq Makovsky
Biogeosciences, 22, 1321–1340, https://doi.org/10.5194/bg-22-1321-2025, https://doi.org/10.5194/bg-22-1321-2025, 2025
Short summary
Short summary
Chemotones, transition zones in chemosynthetic ecosystems, alter geochemical cycles and biodiversity. We studied seep chemotones, which are heavily burrowed by ghost shrimp. To investigate if burrowing affects habitat functionality, we surveyed the seafloor with deep-sea vehicles, analyzed sediment, and explored microbial communities in burrows. We found chemosynthetic biofilms, linking them to macromolecule turnover and nutrient cycling. This process may play a crucial role in deep-sea cycles.
Natalia Belkin, Tamar Guy-Haim, Maxim Rubin-Blum, Ayah Lazar, Guy Sisma-Ventura, Rainer Kiko, Arseniy R. Morov, Tal Ozer, Isaac Gertman, Barak Herut, and Eyal Rahav
Ocean Sci., 18, 693–715, https://doi.org/10.5194/os-18-693-2022, https://doi.org/10.5194/os-18-693-2022, 2022
Short summary
Short summary
We studied how distinct water circulations that elevate (cyclone) or descend (anticyclone) water from the upper ocean affect the biomass, activity and diversity of planktonic microorganisms in the impoverished eastern Mediterranean. We show that cyclonic and anticyclonic eddies differ in their community composition and production. Moreover, the anticyclone may be a potential bio-invasion and dispersal vector, while the cyclone may serve as a thermal refugee for native species.
Michal Elul, Maxim Rubin-Blum, Zeev Ronen, Itay Bar-Or, Werner Eckert, and Orit Sivan
Biogeosciences, 18, 2091–2106, https://doi.org/10.5194/bg-18-2091-2021, https://doi.org/10.5194/bg-18-2091-2021, 2021
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020, https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Short summary
The availability of nutrients in oligotrophic marine ecosystems is limited. Following jellyfish blooms, large die-off events result in the release of high amounts of nutrients to the water column and sediment. Our study assessed the decomposition effects of an infamous invasive jellyfish in the ultra-oligotrophic Eastern Mediterranean Sea. We found that jellyfish decomposition favored heterotrophic bacteria and altered biogeochemical fluxes, further impoverishing this nutrient-poor ecosystem.
Cited articles
Adler, M., Eckert, W., and Sivan, O.: Quantifying rates of
methanogenesis and methanotrophy in Lake Kinneret sediments (Israel) using
porewater profiles, Limnol. Oceanogr., 56, 1525–1535,
https://doi.org/10.4319/lo.2011.56.4.1525, 2011.
Aepfler, R. F., Bühring, S. I., and Elvert, M.: Substrate
characteristic bacterial fatty acid production based on amino acid
assimilation and transformation in marine sediments, FEMS Microbiol. Ecol.,
95, 1–15, https://doi.org/10.1093/femsec/fiz131, 2019.
Arshad, A., Speth, D. R., De Graaf, R. M., Op den Camp, H. J. M., Jetten, M.
S. M., and Welte, C. U. A: Metagenomics-based metabolic model of
nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like
archaea, Front. Microbiol., 6, 1–14,
https://doi.org/10.3389/fmicb.2015.01423, 2015.
Bai, Y. N., Wang, X. N., Wu, J., Lu, Y. Z., Fu, L., Zhang, F., Lau, T. C., and
Zeng, R. J.: Humic substances as electron acceptors for anaerobic oxidation
of methane driven by ANME-2d, Water Res., 164, 114935,
https://doi.org/10.1016/j.watres.2019.114935, 2019.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov,
A. S., Lesin, V. M., Nicolenko, S. I., Pham, S., Prjibelski, A. D.,
Sirotkin, A. V., Vyahhi, N., Tesler, G., Aleksyev, A. M., and Pevzner, P.
A.: SPAdes: A New Genome Assembly Algorithm and Its Applications to
Single-Cell Sequencing, J. Comput. Biol., 19, 455–477,
https://doi.org/10.1089/cmb.2012.0021, 2012.
Bar-Or, I., Ben-Dov, E., Kushmaro, A., Eckert, W., and Sivan, O.: Methane-related changes in prokaryotes along geochemical profiles in sediments of Lake Kinneret (Israel), Biogeosciences, 12, 2847–2860, https://doi.org/10.5194/bg-12-2847-2015, 2015.
Bar-Or, I., Elvert, M., Eckert, W., Kushmaro, A., Vigderovich, H., Zhu, Q.,
Ben-Dov, E., and Sivan, O.: Iron-Coupled Anaerobic Oxidation of Methane
Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive
Minerals, Environ. Sci. Technol., 51, 12293–12301,
https://doi.org/10.1021/acs.est.7b03126, 2017.
Bastviken D.: Methane, in: Encyclopedia of Inland waters, Oxford, Elsevier,
783–805,
https://doi.org/10.1016/B978-012370626-3.00117-4, 2009.
Beck, D. A. C., Kalyuzhnaya, M. G., Malfatti, S., Tringe, S. G., del Rio, T.
G., Ivanova, N., Lidstorm, M. E., and Chistoserdova, L.: A metagenomic
insight into freshwater methane-utilizing communities and evidence for
cooperation between the Methylococcaceae and the Methylophilaceae, PeerJ, 1,
1–23, https://doi.org/10.7717/peerj.23, 2013.
Biderre-Petit, C., Dugat-Bony, E., Mege, M., Parisot, N., Adrian, L.,
Moné, A., Denonfoux, J., Peyretaillade, E., Debroas. D., Boucher, D.,
and Peyret, P.: Distribution of Dehalococcoidia in the anaerobic deep water
of a remote meromictic crater lake and detection of Dehalococcoidia-derived
reductive dehalogenase homologous genes, Plos One, 11, 1–19,
https://doi.org/10.1371/journal.pone.0145558, 2016.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F.,
Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.: A
marine microbial consortium apparently mediating AOM, Nature, 407, 623–626,
https://doi.org/10.1038/35036572, 2000.
Bottrell, S. H., Parkes, R. J., Cragg, B. A., and Raiswell, R.: Isotopic
evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate
reduction in marine sediments, J. Geol. Soc., 157, 711–714,
https://doi.org/10.1144/jgs.157.4.711, 2000.
Cabrol, L., Thalasso, F., Gandois, L., Sepulveda-Jauregui, A.,
Martinez-Cruz, K., Teisserenc, R., Tananaev, N., Tveit, A., Svenning, M. M.,
and Barret, M.: Anaerobic oxidation of methane and associated microbiome in
anoxic water of Northwestern Siberian lakes, Sci. Total
Environ., 736, 139588, https://doi.org/10.1016/j.scitotenv.2020.139588,
2020.
Cai, C., Leu, A. O., Xie, G.-J., Guo, J., Feng, Y., Zhao, J.-X., Tyson, G. W.,
Yuan, Z., and Hu, S.: A
methanotrophic archaeon couples anaerobic oxidation of methane to Fe(II)
reduction, ISME J., 12, 1929–1939, https://doi.org/10.1038/s41396-018-0109-x,
2018.
Cheng, L., Shi, S. bao, Yang, L., Zhang, Y., Dolfing, J., Sun, Y., Liu,
L., Li, Q., Tu, B., Dai, L., Shi, Q., and Zhang, H.: Preferential
degradation of long-chain alkyl substituted hydrocarbons in heavy oil under
methanogenic conditions, Org. Geochem., 138, 103927, https://doi.org/10.1016/j.orggeochem.2019.103927, 2019.
Chuang, P. C., Yang, T. F., Wallmann, K., Matsumoto, R., Hu, C. Y., Chen, H.
W., Lin, S., Sun, C.-H., Li, H.-C., Wang, Y., and Dale, A. W.: Carbon isotope
exchange during anaerobic oxidation of methane (AOM) in sediments of the
northeastern South China Sea, Geochim. Cosmochim. Ac., 246, 138–155,
https://doi.org/10.1016/j.gca.2018.11.003, 2019.
Clement, J.-C., Shrestha, J., Ehrenfeld, J. G., and Jaffe, P. R.: Ammonium
oxidation coupled to
dissimilatory iron reduction under anaerobic conditions in wetland soils,
Soil biology and biochemistry, 37, 2323–2328,
https://doi.org/10.1016/j.soilbio.2005.03.027, 2005.
Conrad, R.: The global methane cycle: Recent advances in understanding the
microbial processes involved, Environ. Microbiol. Rep., 1, 285–292,
https://doi.org/10.1111/j.1758-2229.2009.00038.x, 2009.
Crowe, S. A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S.,
Pack, M. A., Kessler, J. D.,
Reeburgh, W. S., Roberts, J. A., González, L., Douglas Haffner, G.,
Mucci, A., Sundby, B., and Fowle, D. A.: The methane cycle in ferruginous
Lake Matano, Geobiology, 9, 61–78,
https://doi.org/10.1111/j.1472-4669.2010.00257.x, 2011.
Damgaard, L. R., Revsbech, N. P., and Reichardt, W.: Use of an
oxygen-insensitive microscale biosensor for
methane to measure methane concentration profiles in a rice paddy, Appl.
Environ.
Microbiol., 64, 864–870,
https://doi.org/10.1128/aem.64.3.864-870.1998, 1998.
Dershwitz, P., Bandow, N. L., Yang, J., Semrau, J. D., McEllistrem, M. T.,
Heinze, R. A., Fonseca, M., Ledesma, J. C., Jennett, J. R., DiSpirito, A.
M., Athwal, N. S., Hargrove, M. S., Bobik, T. A., Zischka, H., and
DiSpirito, A. A.: Oxygen Generation via Water Splitting by a Novel Biogenic
Metal Ion-Binding Compound, Appl. Environ. Microbiol., 87, 1–14,
https://doi.org/10.1128/aem.00286-21, 2021.
Ding, L. J., An, X. L., Li, S., Zhang, G. L., and Zhu, Y. G.: Nitrogen loss
through anaerobic ammonium
oxidation coupled to iron reduction from paddy soils in a chronosequence,
Environ. Sci.
Technol., 48, 10641–10647, https://doi.org/10.1021/es503113s, 2014.
Elul, M., Rubin-Blum, M., Ronen, Z., Bar-Or, I., Eckert, W., and Sivan, O.: Metagenomic insights into the metabolism of microbial communities that mediate iron and methane cycling in Lake Kinneret iron-rich methanic sediments, Biogeosciences, 18, 2091–2106, https://doi.org/10.5194/bg-18-2091-2021, 2021.
Elvert, M., Boetius, A., Knittel, K., and Jørgensen, B. B.:
Characterization of specific membrane fatty acids as chemotaxonomic markers
for sulfate-reducing bacteria involved in anaerobic oxidation of methane,
Geomicrobiol. J., 20, 403–419, https://doi.org/10.1080/01490450303894,
2003.
Ettwig, Katharina F, Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot,
S., Kuypers, M. M. M., Schreiber, F.,
Dutilh, B. E., Zedelius, J., de Beer, D. Gloerich, J., Wessels, H. J. C. T.,
van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen K. T., Op den
Camp, H. J. M., Jansen-Megens, E. M., Francojs, K. J., Stunnenberg, H.,
Weissenbach, J., Jetten, M. S. M., and Strous, M.: Nitrite-driven anaerobic
methane oxidation by oxygenic bacteria, Nature, 464, 543–548,
https://doi.org/10.1038/nature08883, 2010.
Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., and
Kartal, B.: Archaea catalyze iron-
dependent anaerobic oxidation of methane, P. Natl. Acad. Sci. USA, 113, 12792–12796,
https://doi.org/10.1073/pnas.1609534113, 2016.
Evans, P. N., Parks, D. H., Chadwick, G. L., Robbins, S. J., Orphan, V. J.,
Golding, S. D., and Tyson, G. W.:
Methane metabolism in the archaeal phylum Bathyarchaeota revealed by
genome-centric metagenomics, Science, 350, 434–438, https://doi.org/10.1126/science.aac7745, 2015.
Fan, L., Dippold, M. A., Ge, T., Wu, J., Thiel, V., Kuzyakov, Y., and
Dorodnikov, M.: Anaerobic oxidation of methane in paddy soil: Role of
electron acceptors and fertilization in mitigating CH4 fluxes, Soil
Biol. Biochem., 141, 107685, https://doi.org/10.1016/j.soilbio.2019.107685,
2020.
Froelich, P. N., Klinkhammer, G. P., Lender, M. L., Luedtke, N. A., Heath,
G. R., Cullen, D., Dauphin, P.,
Hammond, D., Hartman, B., and Maynard, V.: Geochem. Cosmochim. Ac., 43,
1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Gropp, J., Iron, M. A., and Halevy, I.: Theoretical estimates of equilibrium
carbon and hydrogen isotope effects in microbial methane production and
anaerobic oxidation of methane, Geochem. Cosmochim. Ac., 295, 237–264,
https://doi.org/10.1016/j.gca.2020.10.018, 2021.
Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D.,
Richardson, P. H., and DeLong, E. F.: Reverse methanogenesis: Testing the
hypothesis with environmental genomics, Science, 305, 1457–1462,
https://doi.org/10.1126/science.1100025, 2004.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: Past: paleontological
statistics software package for education and data analysis, Palaeontol.
Electron., 4, 9 pp., 2001.
Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P.,
Yuan, Z., and Tyson, G. W.: Anaerobic oxidation of methane coupled to
nitrate reduction in a novel archaeal lineage, Nature, 500, 567–570,
https://doi.org/10.1038/nature12375, 2013.
Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S.: Field and
laboratory, evidence for a methane-sulfate reducer consortium, Global
Biogeochem. Cy., 8, 451–463, https://doi.org/10.1029/94GB01800, 1994.
Holler, T., Wegener, G., Niemann, H., Deusner, C., Ferdelman, T. G.,
Boetius, A., Brunner, B., and Widdel, F.: Carbon and sulfur back flux during
anaerobic microbial oxidation of methane and coupled sulfate reduction, P.
Natl. A. Sci. USA., 108, E1484–E1490, https://doi.org/10.1073/pnas.1106032108, 2011.
Holmkvist, L., Ferdelman, T. G., and Jørgensen, B. B.: A cryptic sulfur
cycle driven by iron in the methane zone of marine sediment (Aarhus Bay,
Denmark), Geochim. Cosmochim. Ac., 75, 3581–3599,
https://doi.org/10.1016/j.gca.2011.03.033, 2011.
Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C., Sharon, I.,
Frischkorn, K. R., Williams, K. H., Tringe, S. G., and Banfield, J. F.:
Community genomic analyses constrain the distribution of metabolic traits
across the Chloroflexi phylum and indicate roles in sediment carbon cycling,
Microbiome, 1, 1–17, https://doi.org/10.1186/2049-2618-1-22, 2013.
Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., and Wang, Z.:
MetaBAT 2: An adaptive binning algorithm for robust and efficient genome
reconstruction from metagenome assemblies, PeerJ, 2019, 1–13,
https://doi.org/10.7717/peerj.7359, 2019.
Kellermann, M. Y., Wegener, G., Elvert, M., Yoshinaga, M. Y., Lin, Y. S.,
Holler, T., Mollar, P. X., Knittel K., and Hinrichs, K. U.: Autotrophy as a
predominant mode of carbon fixation in anaerobic methane-oxidizing microbial
communities, P. Natl. A. Sci. USA, 109, 19321–19326,
https://doi.org/10.1073/pnas.1208795109, 2012.
Kits, K. D., Klotz, M. G., and Stein, L. Y.: Methane oxidation coupled to
nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas
denitrificans, sp. nov. type strain FJG1, Environ. Microbiol., 17,
3219–3232, https://doi.org/10.1111/1462-2920.12772, 2015.
Knittel, K. and Boetius, A.: Anaerobic oxidation of methane: Progress with
an unknown process, Annu. Rev. Microbiol., 63, 311–334,
https://doi.org/10.1146/annurev.micro.61.080706.093130, 2009.
Kurth, J. M., Smit, N. T., Berger, S., Schouten, S., Jetten, M. S. M., and
Welte C. U.: Anaerobic methanotrophic archaea of the ANME-2d clade feature
lipid composition that differs from other ANME archaea, FEMS Microbiol.
Ecol., 95, fiz082, https://doi.org/10.1093/femsec/fiz082, 2019.
Lin, Y. S., Lipp, J. S., Yoshinaga, M. Y., Lin, S. H., Elvert, M., and
Hinrichs, K. U.: Intramolecular stable carbon isotopic analysis of archaeal
glycosyl tetraether lipids, Rapid Commun. Mass Sp., 24, 2817–2826,
https://doi.org/10.1002/rcm.4707, 2010.
Lovley, D. R. and Klug, M. J.: Sulfate reducers can outcompete methanogens
at freshwater sulfate concentrations, Appl. Environ. Microbiol., 45,
187–192, https://doi.org/10.1128/aem.45.1.187-192.1983, 1983.
Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., and
Woodward, J. C.: Humic
substances as electron acceptors for microbial respiration, Nature, 382,
445–448, https://doi.org/10.1038/382445a0, 1996.
Lu, Y. Z., Fu, L., Ding, J., Ding, Z. W., Li, N., and Zeng, R. J.: Cr(VI)
reduction coupled with anaerobic
oxidation of methane in a laboratory reactor, Water Res., 102, 445–452,
https://doi.org/10.1016/j.watres.2016.06.065, 2016.
Martinez-Cruz, K., Leewis, M., Charold, I., Sepulveda-Jauregui, A., Walter,
K., Thalasso, F., and Beth, M.: Science of the Total Environment Anaerobic
oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments,
Sci. Total Environ., 607/608, 23–31,
https://doi.org/10.1016/j.scitotenv.2017.06.187, 2017.
Meador, T. B., Gagen, E. J., Loscar, M. E., Goldhammer, T., Yoshinaga, M.
Y., Wendt, J., Thomm, M., and Hinrichs, K. U.: Thermococcus kodakarensis
modulates its polar membrane lipids and elemental composition according to
growth stage and phosphate availability, Front. Microbiol., 5, 1–13,
https://doi.org/10.3389/fmicb.2014.00010, 2014.
Meister, P., Liu, B., Khalili, A., Böttcher, M. E., and Jørgensen, B.
B.: Factors controlling the carbon isotope composition of dissolved
inorganic carbon and methane in marine porewater: An evaluation by
reaction-transport modelling, J. Mar. Syst., 200, 103227,
https://doi.org/10.1016/j.jmarsys.2019.103227, 2019.
Moran, J. J., House, C. H., Freeman, K. H., and Ferry, J. G.: Trace methane
oxidation studied in several Euryarchaeota under diverse conditions,
Archaea, 1(5), 303–309, https://doi.org/10.1155/2005/650670, 2005.
Mostovaya, A., Wind-Hansen, M., Rousteau, P., Bristow, L. A., and Thamdrup,
B.: Sulfate- and iron- dependent anaerobic methane oxidation occuring
side-by-side in freshwater lake sediments, Limnol. Oceanogr., 67, 231–246,
https://doi.org/10.1002/lno.11988, 2021.
Nollet, L., Demeyer, D., and Verstraete, W.: Effect of 2-bromoethanesulfonic
acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of
reductive acetogenesis in the ruminal ecosystem by selective inhibition of
methanogenesis, Appl. Environ. Microbiol., 63, 194–200,
https://doi.org/10.1128/aem.63.1.194-200.1997, 1997.
Norði, K. Á. and Thamdrup, B.: Nitrate-dependent anaerobic methane
oxidation in freshwater sediment, Geochim. Cosmochim. Ac., 132, 141–150,
https://doi.org/10.1016/j.gca.2014.01.032, 2014.
Norði, K Á., Thamdrup, B., and Schubert, C. J.: Anaerobic oxidation
of methane in an iron-rich Danish
freshwater lake sediment, Limnol. Oceanogr., 58, 546–554,
https://doi.org/10.4319/lo.2013.58.2.0546, 2013.
Nurk, S., Bankevich, A., Antipov, D., Gurevich, A., Korobeynikov, A.,
Lapidus, A., Prjibelsky, A., Pyshkin, A., Sirotkin, A., Sirotkin, Y,
Stepanauskas, R., McLean, J., Lasken, R., Clingenpeel, S. R., Woyke, T.,
Tesler, G., Alekseyev, M. A., and Pevzner, P. A.: Assembling genomes and
mini-metagenomes from highly chimeric reads, in: Research in Computational
Molecular Biology, RECOMB 2013, Lecture Notes in Computer Science, Vol. 7821,
edited by: Deng, M., Jiang, R., Sun, F., and Zhang, X., Springer, Berlin,
Heidelberg, 158–170, https://doi.org/10.1007/978-3-642-37195-0, 2013.
Nüsslein, B., Chin, K. J., Eckert, W., and Conrad, R.: Evidence for
anaerobic syntrophic acetate oxidation during methane production in the
profundal sediment of subtropical Lake Kinneret (Israel), Environ.
Microbiol., 3, 460–470,
https://doi.org/10.1046/j.1462-2920.2001.00215.x, 2001.
Oremland, R. S. and Capone, D. G.: Use of “Specific” Inhibitors in
Biogeochemistry and Microbial Ecology, in: Advances in microbial ecology,
Vol. 10, edited by: Marshall, K. C., Plenum Press, New York and London,
285–362, https://doi.org/10.2307/4514, 1988.
Orphan, V. J., House, C. H., and Hinrichs, K.: Methane-Consuming Archaea
Revealed by Directly Coupled Isotopic and Phylogenetic Analysis, Science,
293, 484–488, https://doi.org/10.1126/science.1061338, 2001.
Oswald, K., Milucka, J., Brand, A., Hach, P., Littmann, S., Wehrli, B.,
Albersten, M., Daims, H., Wagner, M., Kuypers, M. M. M., Schubert, C. J.,
and Milucka, J.: Aerobic gammaproteobacterial methanotrophs mitigate methane
emissions from oxic and anoxic lake waters, Limnol. Oceanogr., 61, 101–118,
https://doi.org/10.1002/lno.10312, 2016.
Parks, D. H., Chuvochina, M., Rinke, C., Mussig, A. J., Chaumeil, P.-A., and
Hugenholtz, P.: GTDB: an ongoing census of bacterial and archaeal diversity
through a phylogenetically consistent, rank normalized and complete
genome-based taxonomy, Nucl. Acids Res., 202, 1–10,
https://doi.org/10.1093/nar/gkab776, 2021.
Raghoebarsing, A. A., Pol, A., Van De Pas-Schoonen, K. T., Smolders, A. J.
P., Ettwig, K. F., Rijpstra, W. I. C., Schouten, S., Sinninghe Damsté,
J. S., Op den Camp, H. J. M., Jetten, M. S. M., and Strous, M.: A microbial
consortium couples anaerobic methane oxidation to denitrification, Nature,
440, 918–921, https://doi.org/10.1038/nature04617, 2006.
Reeburgh, W. S.: Oceanic Methane Biogeochemistry, Chem. Rev., 38,
486–513, https://doi.org/10.1002/chin.200720267, 2007.
Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S.,
Song, C., Melack, J., Raymond, P.
A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I.,
and Eyre, B. D.: Half of global methane emissions come from highly variable
aquatic ecosystem source, Nat. geosci., 14, 225-230, https://doi.org/10.1038/s41561-021-00715-2, 2021.
Rubin-Blum, M.: Vigderovich et al., 2022 markdown file, figshare [code], https://doi.org/10.6084/m9.figshare.19585933.v1, 2022.
Schubert, C. J., Vazquez, F., Lösekann-Behrens, T., Knittel, K.,
Tonolla, M., and Boetius, A.: Evidence
for anaerobic oxidation of methane in sediments of a freshwater system (Lago
di Cadagno), FEMS Microbiol. Ecol., 76, 26–38, https://doi.org/10.1111/j.1574-6941.2010.01036.x, 2011.
Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs,
K.-U., and Joye, S. B.: High rates of
anaerobic methane oxidation in freshwater wetlands reduce potential
atmospheric methane emissions, Nat. Commun., 6, 1–8,
https://doi.org/10.1038/ncomms8477, 2015.
Sela-Adler, M., Herut, B., Bar-Or, I., Antler, G., Eliani-Russak, E., Levy,
E., Makovsky, Y., and Sivan, O.: Geochemical evidence for biogenic methane
production and consumption in the shallow sediments of the SE Mediterranean
shelf (Israel), Cont. Shelf Res., 101, 117–124,
https://doi.org/10.1016/j.csr.2015.04.001, 2015.
Shrestha, J., Rich, J. J., Ehrenfeld, J. G., and Jaffe, P. R.: Oxidation of
ammonium to nitrite under iron-reducing conditions in wetland soils: Laboratory, field demonstrations, and
push-pull rate determination, Soil Sci., 174, 156–164,
https://doi.org/10.1097/SS.0b013e3181988fbf, 2009.
Sieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M.,
Tringe, S. G., and Banfield, J. F.: Recovery of genomes from metagenomes via
a dereplication, aggregation and scoring strategy, Nat. Microbiol., 3,
836–843, https://doi.org/10.1038/s41564-018-0171-1, 2018.
Sinke, A. J.C., Cornelese, A. A., Cappenberg, T. E., and Zehnder, A. J. B.:
Seasonal variation in sulfate
reduction and methanogenesis in peaty sediments of eutrophic Lake
Loosdrecht, The Netherlands, Biogeochemistry, 16, 43–61,
https://doi.org/10.1007/BF02402262, 1992.
Sivan, O, Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S. G., and
Eckert, W.: Geochemical evidence for
iron-mediated anaerobic oxidation of methane, Limnol. Oceanogr., 56,
1536–1544, https://doi.org/10.4319/lo.2011.56.4.1536, 2011.
Stookey, L. L.: Ferrozine-a new spectrophotometric reagent for iron, Anal.
Chem., 42, 779–781, https://doi.org/10.1021/ac60289a016, 1970.
Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., and Hinrichs, K.-U.:
Intact polar membrane lipids in prokaryotes and sediments deciphered by
high-performance liquid chromatography/electrospray ionization multistage
mass spectrometry – New biomarkers for biogeochemistry and microbial
ecology, Rapid Commun. Mass Sp., 18, 617–628,
https://doi.org/10.1002/rcm.1378, 2004.
Su, G., Zopfi, J., Yao, H., Steinle, L., Niemann, H., and Lehmann, M. F.:
Manganese/iron-supported sulfate-dependent anaerobic oxidation of methane by
archaea in lake sediments, Limnol. Oceanogr., 65, 863–875,
https://doi.org/10.1002/lno.11354, 2020.
Tamames, J. and Puente-Sánchez, F.: SqueezeMeta, A Highly Portable,
Fully Automatic Metagenomic Analysis Pipeline, Front. Microbiol., 9, 3349,
https://doi.org/10.3389/fmicb.2018.03349, 2019.
Tan, X., Xie, G. J., Nie, W. B., Xing, D-F., Liu, B. F., Ding, J., and Ren,
N. Q.: Fe(III)-mediated
anaerobic ammonium oxidation: A novel microbial nitrogen cycle pathway and
potential applications, Crit. Rev. Environ. Sci. Technol., 0, 1–33,
https://doi.org/10.1080/10643389.2021.1903788, 2021.
Timmers, P. H. A., Welte, C. U., Koehorst, J. J., Plugge, C. M., Jetten, M.
S. M., and Stams, A. J. M.: Reverse Methanogenesis and Respiration in
Methanotrophic Archaea, Archaea, 2017, 1654237, https://doi.org/10.1155/2017/1654237,
2017.
Treude, T., Niggemann, J., Kallmeyer, J., Wintersteller, P., Schubert, C.
J., Boetius, A., and Jørgensen, B. B.: Anaerobic oxidation of methane and
sulfate reduction along the Chilean continental margin, Geochim. Cosmochim.
Ac., 69, 2767–2779, https://doi.org/10.1016/j.gca.2005.01.002, 2005.
Treude, T., Krause, S., Maltby, J., Dale, A. W., Coffin, R., and Hamdan, L.
J.: Sulfate reduction and methane oxidation activity below the
sulfate-methane transition zone in Alaskan Beaufort Sea continental margin
sediments: Implications for deep sulfur cycling, Geochim. Cosmochim. Ac.,
144, 217–237, https://doi.org/10.1016/j.gca.2014.08.018, 2014.
Valentine D. L.: Biogeochemistry and microbial ecology of methane oxidation
in anoxic environments:
A review, A. van Leeuw. J. Microb., 81, 271–282,
https://doi.org/10.1023/A:1020587206351, 2002.
Valenzuela, E. I., Prieto-Davó, A., López-Lozano, N. E.,
Hernández-Eligio, A., Vega-Alvarado, L., Juárez, K.,
García-González, A. S., López, M. G., and Cervantes, F. J.:
Anaerobic methane oxidation driven by microbial reduction of natural organic
matter in a tropical wetland, Appl. Environ. Microbiol., 83, 1–15,
https://doi.org/10.1128/AEM.00645-17, 2017.
Valenzuela, E. I., Avendaño, K. A., Balagurusamy, N., Arriaga, S.,
Nieto-Delgado, C., Thalasso, F., and Cervantes, F. J.: Electron shuttling
mediated by humic substances fuels anaerobic methane oxidation and carbon
burial in wetland sediments, Sci. Total Environ., 650, 2674–2684,
https://doi.org/10.1016/j.scitotenv.2018.09.388, 2019.
Vigderovich, H.: Data sets for Vigderovich et al., 2022, Zenodo [data set], https://doi.org/10.5281/zenodo.6489360, 2022.
Vigderovich, H., Liang, L., Herut, B., Wang, F., Wurgaft, E., Rubin-Blum, M., and Sivan, O.: Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf, Biogeosciences, 16, 3165–3181, https://doi.org/10.5194/bg-16-3165-2019, 2019.
Wang, L., Miao, X., Ali, J., Lyu, T., and Pan, G.: Quantification of Oxygen
Nanobubbles in Particulate Matters and Potential Applications in Remediation
of Anaerobic Environment, ACS Omega, 3, 10624–10630,
https://doi.org/10.1021/acsomega.8b00784, 2018.
Wegener, G., Niemann, H., Elvert, M., Hinrichs, K.-U., and Boetius, A.:
Assimilation of methane and inorganic carbon by microbial communities
mediating the anaerobic oxidation of methane, Environ. Microbiol. 10,
2287–2298, https://doi.org/10.1111/j.1462-2920.2008.01653.x, 2008.
Wegener, G., Gropp, J., Taubner, H., Halevy, I., and Elvert, M.:
Sulfate-dependent reversibility of intracellular reactions explains the
opposing isotope effects in the anaerobic oxidation of methane, Sci.
Adv., 7, 1–14, https://doi.org/10.1126/sciadv.abe4939, 2021.
Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in
marine and freshwater
environments: CO2 reduction vs. acetate fermentation-Isotope evidence,
Geochim. Cosmochim. Ac., 50, 693–709, https://doi.org/10.1016/0016-7037(86)90346-7, 1986.
Wu, Y. W., Tang, Y.-H., Tringe, S. G., Simmons, B. A., and Singer, S. W.:
MaxBin: an automated binning method to recover individual genomes from
metagenomes using, Microbiome, 2, 4904–4909,
2014.
Wuebbles, D. J. and Hayhoe, K.: Atmospheric methane and global change,
Earth-Sci. Rev., 57, 177–210,
https://doi.org/10.1016/S0012-8252(01)00062-9, 2002.
Xu, Z., Masuda, Y., Wang, X., Ushijima, N., Shiratori, Y., Senoo, K., and
Itoh, H.: Genome-Based
Taxonomic Rearrangement of the Order Geobacterales Including the Description
of Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov, Front.
Microbiol., 12, 737531, https://doi.org/10.3389/fmicb.2021.737531, 2021.
Yorshansky, O.: Iron Reduction in Deep Marine Sediments of the Eastern
Mediterranean Continental Shelf and the Yarqon Estuary, M.S. thesis, Ben
Gurion University of the Negev, https://doi.org/10.5281/zenodo.6457287, 2019.
Yoshinaga, M. Y., Holler, T., Goldhammer, T., Wegener, G., Pohlman, J. W.,
Brunner, B., Kuypers, M. M. M., Hinrichs, K.-U., and Elvert, M.: Carbon
isotope equilibration during sulphate-limited anaerobic oxidation of
methane, Nat. Geosci., 7, 190–194, https://doi.org/10.1038/ngeo2069,
2014.
Zehnder, A. J. and Brock, T. D.: Methane formation and methane oxidation by
methanogenic bacteria, J. Bacteriol., 137, 420–432,
https://doi.org/10.1128/jb.137.1.420-432.1979 1979.
Zhang, X., Xia, J., Pu, J., Cai, C., Tyson, G. W., Yuan, Z., and Hu, S.:
Biochar-Mediated Anaerobic Oxidation of Methane, Environ. Sci. Technol.,
53, 6660–6668, https://doi.org/10.1021/acs.est.9b01345, 2019.
Zheng, Y., Wang, H., Liu, Y., Zhu, B., Li, J., Yang, Y., Qin, W., Chen, L.,
Wu, X., Chistoserdova, L., and Zhao, F.: Methane-Dependent Mineral Reduction
by Aerobic Methanotrophs under Hypoxia, Environ. Sci. Technol. Lett., 7,
606–612, https://doi.org/10.1021/acs.estlett.0c00436, 2020.
Short summary
Anaerobic oxidation of methane (AOM) is one of the major processes limiting the release of the greenhouse gas methane from natural environments. Here we show that significant AOM exists in the methane zone of lake sediments in natural conditions and even after long-term (ca. 18 months) anaerobic slurry incubations with two stages. Methanogens were most likely responsible for oxidizing the methane, and humic substances and iron oxides are likely electron acceptors to support this oxidation.
Anaerobic oxidation of methane (AOM) is one of the major processes limiting the release of the...
Altmetrics
Final-revised paper
Preprint