Articles | Volume 19, issue 10
https://doi.org/10.5194/bg-19-2583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2583-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trawling effects on biogeochemical processes are mediated by fauna in high-energy biogenic-reef-inhabited coastal sediments
Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, P.O. Box 140, 4400
AC, Yerseke, the Netherlands
Marine Biology Section, Department of Biology, Ghent University,
Krijgslaan 281/S8, 9000 Ghent, Belgium
Jochen Depestele
Fisheries Research Group, Research Institute for Agriculture, Fisheries and Food (ILVO),
Ankerstraat 1, 8400 Oostende, Belgium
Gert Van Hoey
Marine Biology Section, Department of Biology, Ghent University,
Krijgslaan 281/S8, 9000 Ghent, Belgium
Fisheries Research Group, Research Institute for Agriculture, Fisheries and Food (ILVO),
Ankerstraat 1, 8400 Oostende, Belgium
João Fernandes
Instituto Politécnico de Leiria, CETEMARES, Avenida do Porto de
Pesca 30, 2520-620 Peniche, Portugal
Incubadora de Empresas da Figueira da Foz, Lab. MAREFOZ, R.
Acácias lote 40A, 3090-380 Figueira da Foz, Portugal
Pieter van Rijswijk
Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, P.O. Box 140, 4400
AC, Yerseke, the Netherlands
Karline Soetaert
Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, P.O. Box 140, 4400
AC, Yerseke, the Netherlands
Marine Biology Section, Department of Biology, Ghent University,
Krijgslaan 281/S8, 9000 Ghent, Belgium
Related authors
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Marilaure Grégoire, Luc Vandenbulcke, Séverine Chevalier, Mathurin Choblet, Ilya Drozd, Jean-François Grailet, Evgeny Ivanov, Loïc Macé, Polina Verezemskaya, Haolin Yu, Lauranne Alaerts, Ny Riana Randresihaja, Victor Mangeleer, Guillaume Maertens de Noordhout, Arthur Capet, Catherine Meulders, Anne Mouchet, Guy Munhoven, and Karline Soetaert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4196, https://doi.org/10.5194/egusphere-2025-4196, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes the ocean BiogeochemicAl Model for Hypoxic and Benthic Influenced areas (BAMHBI). BAMHBI is a moderate complexity marine biogeochemical model that describes the cycling of carbon, nitrogen, phosphorus, silicon and oxygen through the marine foodweb. BAMHBI is a stand-alone biogeochemical model that can be coupled to any hydrodynamical model and is particularly appropriate for modelling low oxygen environments and the generation of sulfidic waters.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Marius Buydens, Emil De Borger, Lorenz Meire, Samuel Bodé, Antonio Schirone, Karline Soetaert, Ann Vanreusel, and Ulrike Braeckman
EGUsphere, https://doi.org/10.5194/egusphere-2025-102, https://doi.org/10.5194/egusphere-2025-102, 2025
Short summary
Short summary
As the Greenland Ice Sheet retreats, it is important to understand how this impacts the carbon burial in Greenland fjords. By comparing a fjord with marine-terminating glaciers versus one fed by a land-terminating glacier, we see that the productive waters associated to marine-terminating glaciers not necessary lead to enhanced carbon burial. Instead, we highlight the complex interplay of physical, biological, and sedimentary processes that mediate carbon dynamics in these fjords.
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Anna-Selma van der Kaaden, Dick van Oevelen, Christian Mohn, Karline Soetaert, Max Rietkerk, Johan van de Koppel, and Theo Gerkema
Ocean Sci., 20, 569–587, https://doi.org/10.5194/os-20-569-2024, https://doi.org/10.5194/os-20-569-2024, 2024
Short summary
Short summary
Cold-water corals (CWCs) and tidal waves in the interior of the ocean have been connected in case studies. We demonstrate this connection globally using hydrodynamic simulations and a CWC database. Internal-tide generation shows a similar depth pattern with slope steepness and latitude as CWCs. Our results suggest that internal-tide generation can be a useful predictor of CWC habitat and that current CWC habitats might change following climate-change-related shoaling of internal-tide generation.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Chiu H. Cheng, Jaco C. de Smit, Greg S. Fivash, Suzanne J. M. H. Hulscher, Bas W. Borsje, and Karline Soetaert
Earth Surf. Dynam., 9, 1335–1346, https://doi.org/10.5194/esurf-9-1335-2021, https://doi.org/10.5194/esurf-9-1335-2021, 2021
Short summary
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Cited articles
Allen, J. I. and Clarke, K. R.: Effects of demersal trawling on ecosystem
functioning in the North Sea: A modelling study, Mar. Ecol. Prog. Ser., 336,
63–75, https://doi.org/10.3354/meps336063, 2007.
Aller, R. C.: Benthic fauna and biogeochemical processes in marine
sediments: the role of burrow structures, in: Nitrogen cycling in coastal marine environments, edited by: Blackburn, T. H. and Sørensen, J., Scope, Chichester, 301–338, 1988.
Amaro, T. P. F., Duineveld, G. C. A., Bergman, M. J. N., Witbaard, R., and
Scheffer, M.: The consequences of changes in abundance of Callianassa
subterranea and Amphiura filiformis on sediment erosion at the Frisian Front
(south-eastern North Sea), Hydrobiologia, 589, 273–285,
https://doi.org/10.1007/s10750-007-0750-2, 2007.
Bates, D., Mächler, M., Bolker, B. M., and Walker, S. C.: Fitting
linear mixed-effects models using lme4, J. Stat. Softw., 67, 1–48,
https://doi.org/10.18637/jss.v067.i01, 2015.
Bolam, S. G., Coggan, R. C., Eggleton, J., Diesing, M., and Stephens, D.:
Sensitivity of macrobenthic secondary production to trawling in the English
sector of the Greater North Sea: A biological trait approach, J. Sea Res.,
85, 162–177, https://doi.org/10.1016/j.seares.2013.05.003, 2014.
Boute, P. G., Soetaert, M., Reid Navarro, J. A., and Lankheet, M. J.: Effects of
electrical pulse stimulation on behaviour and survival of marine benthic
invertebrates, Front. Mar. Sci., 7, 592650,
https://doi.org/10.3389/fmars.2020.592650, 2020.
Bradshaw, C., Jakobsson, M., Brüchert, V., Bonaglia, S., Mörth,
C.-M., Muchowski, J., Stranne, C., and Sköld, M.: Physical Disturbance
by Bottom Trawling Suspends Particulate Matter and Alters Biogeochemical
Processes on and Near the Seafloor, Front. Mar. Sci., 8, 683331,
https://doi.org/10.3389/fmars.2021.683331, 2021.
Braeckman, U., Provoost, P., Gribsholt, B., Van Gansbeke, D., Middelburg, J.
J., Soetaert, K., Vincx, M., and Vanaverbeke, J.: Role of macrofauna
functional traits and density in biogeochemical fluxes and bioturbation,
Mar. Ecol. Prog. Ser., 399, 173–186, https://doi.org/10.3354/meps08336,
2010.
Callaway, R., Desroy, N., Dubois, S., Fournier, J., Frost, M., Godet, L.,
Hendrick, V. J., and Rabaut, M.: Ephemeral Bio-engineers or Reef-building
Polychaetes: How Stable are Aggregations of the Tube Worm Lanice conchilega
(Pallas, 1766)?, Integr. Comp. Biol., 50, 237–250,
https://doi.org/10.1093/icb/icq060, 2010.
Craeymeersch, J. A., Escaravage, V., Steenbergen, J., Wijsman, J.,
Wijnhoven, S., and Kater, B.: De bodemfauna in het Nederlands deel van de
Scheldemonding, Issue Ministerie van infrastructuur en Waterstaat Report,
Institute for Marine Resources and Ecosystem Studies, Netherlands, 105 pp.,
2006.
Dray, S. and Dufour, A.: Ade4: Analysis of Ecological Data, Exploratory and
Euclidean Methods in Environmental Sciences, 22, 1–20, 2007.
Dauwe, B., Herman, P. M. J., and Heip, C. H. R.: Community structure and
bioturbation potential of macrofauna at four North Sea stations with
contrasting food supply, Mar. Ecol. Prog. Ser., 173, 67–83,
https://doi.org/10.3354/meps173067, 1998.
De Borger, E., Tiano, J., Braeckman, U., Rijnsdorp, A. D., and Soetaert, K.: Impact of bottom trawling on sediment biogeochemistry: a modelling approach, Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, 2021.
De Smet, B., D'Hondt, A. S., Verhelst, P., Fournier, J., Godet, L., Desroy,
N., Rabaut, M., Vincx, M., and Vanaverbeke, J.: Biogenic reefs affect
multiple components of intertidal soft-bottom benthic assemblages: The
Lanice conchilega case study, Estuar. Coast., 152, 44–55,
https://doi.org/10.1016/j.ecss.2014.11.002, 2015.
De Smet, B., Van Oevelen, D., Vincx, M., Vanaverbeke, J., and Soetaert, K.:
Lanice conchilega structures carbon flows in soft-bottom intertidal areas,
Mar. Ecol. Prog. Ser., 552, 47–60, https://doi.org/10.3354/meps11747,
2016a.
De Smet, B., Braeckman, U., Soetaert, K., Vincx, M., and Vanaverbeke, J.:
Predator effects on the feeding and bioirrigation activity of
ecosystem-engineered Lanice conchilega reefs, J. Exp. Mar. Biol. Ecol., 475,
31–37, https://doi.org/10.1016/j.jembe.2015.11.005, 2016b.
Degraer, S., Moerkerke, G., Rabaut, M., Van Hoey, G., Du Four, I., Vincx,
M., Henriet, J. P., and Van Lancker, V.: Very-high resolution side-scan
sonar mapping of biogenic reefs of the tube-worm Lanice conchilega, Remote
Sens. Environ., 112, 3323–3328,
https://doi.org/10.1016/j.rse.2007.12.012, 2008.
Degraer, S. and Hostens, K.: Assessment of the conservation value of the Vlakte
van de Raan Site of Community Interest. MARECO report 16/02. Royal Belgian
Institute of Natural Sciences, Operational Directorate Natural Environment,
Aquatic and Terrestrial Ecology, Mar. Ecol. Manage., Brussels, 16 pp., 2016.
Depestele, J., Ivanovic, A., Degrendele, K., Esmaeili, M., Polet, H., Roche,
M., Summerbell, K., Teal, L. R., Vanelslander, B., and O'Neil, F. G.:
Measuring and assessing the physical impact of beam trawling, ICES J. Mar.
Sci., 73, 15–26, https://doi.org/10.1093/icesjms/fst176, 2016.
Depestele, J., Degrendele, K., Esmaeili, M., Ivanovi, A., Kro, S., Neill, F.
G. O., Parker, R., Polet, H., Roche, M., Teal, L. R., Vanelslander, B., and
Rijnsdorp, A. D.: Comparison of mechanical disturbance in soft sediments due
to tickler-chain SumWing trawl vs. electro-fitted PulseWing trawl, ICES J.
Mar. Sci., 124, 1–18, https://doi.org/10.1093/icesjms/fsy124, 2018.
Dewicke, A., Rottiers, V., Mees, J., and Vincx, M.: Evidence for an
enriched hyperbenthic fauna in the Frisian front (North Sea), J. Sea Res,
47, 121–139, https://doi.org/10.1016/S1385-1101(02)00106-5, 2002.
Dickens, G. R., Koelling, M., Smith, D. C., and Schnieders, L.: Rhizon
sampling of pore waters on scientific drilling expeditions: An example from
the IODP expedition 302, Arctic Coring Expedition (ACEX), Sci. Drill., 4,
22–25, https://doi.org/10.2204/iodp.sd.4.08.2007, 2007.
Eigaard, O. R., Bastardie, F., Breen, M., Dinesen, G. E., Hintzen, N. T.,
Laffargue, P., Mortensen, L. O., Nielsen, J. R., Nilsson, H. C., Neill, F.
G. O., Smith, C., Sørensen, T. K., Polet, H., Reid, D. G., Sala, A., Sko,
M., Tully, O., Zengin, M., and Rijnsdorp, A. D.: Estimating seabed pressure
from demersal trawls, seines, and dredges based on gear design and
dimensions, ICES J. Mar. Sci., 74, 47–865, 2016.
Fariñas-Franco, J. M., Allcock, A. L., and Roberts, D.: Protection
alone may not promote natural recovery of biogenic habitats of high
biodiversity damaged by mobile fishing gears, Mar. Environ. Res.,
135, 18–28,
https://doi.org/10.1016/j.marenvres.2018.01.009, 2018.
Feldens, P., Schulze, I., Papenmeier, S., Schönke, M., and von
Deimling, J. S.: Improved interpretation of marine sedimentary environments
using multi-frequency multibeam backscatter data, Swiss. J., 8, 1–14,
https://doi.org/10.3390/geosciences8060214, 2018.
Ferguson, A. J. P., Oakes, J., and Eyre, B. D.: Bottom trawling reduces
benthic denitrification and has the potential to influence the global
nitrogen cycle, Limnol. Oceanogr., 5, 237–235, https://doi.org/10.1002/lol2.10150, 2020.
Foshtomi, M. Y., Leliaert, F., Derycke, S., Willems, A., Vincx, M., and
Vanaverbeke, J.: The effect of bio-irrigation by the polychaete Lanice
conchilega on active denitrifiers: Distribution, diversity and composition
of nosZ gene, PLoS ONE, 13, 1–25,
https://doi.org/10.1371/journal.pone.0192391, 2018.
Grabowski, J. H., Bachman, M., Demarest, C., Eayrs, S., Harris, B. P.,
Malkoski, V., Packer, D., and Stevenson, D.: Assessing the Vulnerability of
Marine Benthos to Fishing Gear Impacts, Rev. Fish. Sci. Aquac., 22,
142–155, https://doi.org/10.1080/10641262.2013.846292, 2014.
Hale, R., Godbold, J. A., Sciberras, M., Dwight, J., Wood, C., Hiddink, J.
G., and Solan, M.: Mediation of macronutrients and carbon by
post-disturbance shelf sea sediment communities, Biogeochemistry, 135,
121–133, https://doi.org/10.1007/s10533-017-0350-9, 2017.
Hiddink, J. G., Jennings, S., Sciberras, M., Szostek, C. L., Hughes, K. M.,
and Ellis, N.: Global analysis of depletion and recovery of seabed biota
after bottom trawling disturbance, P. Natl. Acad. Sci. USA, 114, 8301–8306,
https://doi.org/10.1073/pnas.1618858114, 2017.
ICES: Report of the Working Group on Electric Trawling (WGELECTRA),
ICES Report WGELECTRA 2018, 17–19 April 2018, IJmuiden, the Netherlands,
155 pp., 2018.
ICES: Working Group on Electrical Trawling (WGELECTRA), ICES Scientific
Reports, 1:71, Ghent, Belgium, 81 pp.,
https://doi.org/10.17895/ices.pub.5619, 2019.
ICES: Working Group on Electrical Trawling (WGELECTRA), ICES Scientific
Reports, 2:37, 108 pp., https://doi.org/10.17895/ices.pub.5619, 2020.
Jodo, M., Kawamoto, K., Tochimoto, M., and Coverly, S. C.: Determination of
nutrients in seawater by analysis rate and reduced interference on
segmented-flow analysis with higher ammonia, J. Autom. Chem., 14,
163–167, 1992.
Kaiser, M. J., Collie, J. S., Hall, S. J., Jennings, S., and Poiner, I. R.:
Modification of marine habitats by trawling activities: prognosis and
solutions, Fish. Fish., 3, 114–136, 2002.
Kaiser, M. J., Clarke, K. R., Hinz, H., Austen, M. C. V, Somerfield, P. J.,
and Karakassis, I.: Global analysis of response and recovery of benthic
biota to fishing, Mar. Ecol. Prog. Ser., 311, 1–14, 2006.
Kristensen, E. and Kostka, J. E.: Macrofaunal Burrows and Irrigation in
Marine Sediment: Microbiological and Biogeochemical Interactions,
Interactions Between Macro- and Microorganisms in Marine Sediments, The
Ecogeomorphology of Tidal Marshes Coastal and Estuarine Studies 59,
Copyright 2004 by the American Geophysical Union, 125–157,
https://doi.org/10.1029/CE060p0125, 2013.
Koller, M. and Stahel, W.: Sharpening Wald-type inference in robust regression for
small samples, Computational Statistics and Data Analysis, 55, 2504–2515,
2011.
Lurton, X., Eleftherakis, D., and Augustin, J. M.: Analysis of seafloor
backscatter strength dependence on the survey azimuth using multibeam
echosounder data, Mar. Geophys. Res., 39, 183–203, 2018.
Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera,
M., Verbeke, T., Koller, M., Conceicao, E. L., and Anna di Palma, M.: robustbase: Basic
Robust Statistics, R package version 0.93-6,
http://robustbase.r-forge.r-project.org/ (last access: 20 May 2022), 2020.
McCave, I. N., Bryant, R. J., Cook, H. F., and Coughanowr, C. A.:
Evaluation of a laser-differation-size analyzer for use with natural
sediments, Res. Meth. Pap., 56, 561–564, 1986.
Mengual, B., Cayocca, F., Le Hir, P., Draye, R., Laffargue, P., Vincent, B.,
and Garlan, T.: Influence of bottom trawling on sediment resuspension in
the “Grande-Vasière” area (Bay of Biscay, France), Ocean Dynam.,
66, 1181–1207, https://doi.org/10.1007/s10236-016-0974-7, 2016.
Mermillod-Blondin, F. and Rosenberg, R.: Ecosystem engineering: the impact of
bioturbation on biogeochemical processes in marine and freshwater benthic
habitats, Aquat. Sci., 68, 434–442, 2006.
Morys, C., Brüchert, V., and Bradshaw, C.: Impacts of bottom trawling
on benthic biogeochemistry in muddy sediments: Removal of surface sediment
using an experimental field study, Mar. Environ. Res., 169,
105384, https://doi.org/10.1016/j.marenvres.2021.105384, 2021.
Nieuwenhuize, J., Maas, Y. E. M., and Middelburg, J. J.: Rapid analysis of
organic carbon and nitrogen in particulate materials, Mar. Chem., 45,
217–224, 1994.
Olsgard, F., Schaanning, M. T., Widdicombe, S., Kendall, M. A., and Austen,
M. C.: Effects of bottom trawling on ecosystem functioning, J. Exp. Mar.
Biol. Ecol., 366, 123–133,
https://doi.org/10.1016/j.jembe.2008.07.036, 2008.
Paradis, S., Goni, M., Masqué, P., Duran, R., Aronja-Camas, M.,
Palanques, A., and Puig, P.: Persistence of Biogeochemical Alterations of
Deep-Sea Sediments by Bottom Trawling, Geophys. Res. Lett.,
48, e2020GL091279, https://doi.org/10.1029/2020GL091279, 2021.
Palanques, A., Puig, P., Guillén, J., Demestre, M., and Martín,
J.: Effects of bottom trawling on the Ebro continental shelf sedimentary
system (NW Mediterranean), Cont. Shelf Res, 72, 83–98,
https://doi.org/10.1016/j.csr.2013.10.008, 2014.
Pecceu, E., Hostens, K., and Maes, F.: Governance analysis of MPAs in the
Belgian part of the North Sea, Mar. Policy, 71, 265–274,
https://doi.org/10.1016/j.marpol.2015.12.017, 2016.
Polet, H., Delanghe, F., and Verschoore, R.: On electrical fishing for
brown shrimp (Crangon crangon) I, Laboratory experiments, Fish. Res., 72,
1–12, 2005.
Poos, J., Hintzen, N. T., van Rijssel, J. C., and Rijnsdorp, A.: Efficiency
changes in bottom trawling for flatfish species as a result of the
replacement of mechanical stimulation by electric stimulation, ICES J. Mar.
Sci., 77, 2635–2645, https://doi.org/10.1093/icesjms/fsaa126, 2020.
Queirós, A. M., Hiddink, J. G., Kaiser, M. J., and Hinz, H.: Effects of
chronic bottom trawling disturbance on benthic biomass, production and size
spectra in different habitats, J. Exp. Mar. Biol. Ecol., 335, 91–103,
https://doi.org/10.1016/j.jembe.2006.03.001, 2006.
R Core Team R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 20 May 2022), 2021.
Rabaut, M.: Lanice conchilega, fisheries and marine conservation, PhD, Ghent University, Ghent, Belgium, 354 pp. 2009.
Rabaut, M., Braeckman, U., Hendrickx, F., Vincx, M., and Degraer, S.:
Experimental beam-trawling in Lanice conchilega reefs: Impact on the
associated fauna, Fish. Res., 90, 209–216,
https://doi.org/10.1016/j.fishres.2007.10.009, 2008.
Rijnsdorp, A. D., Hiddink, J. G., van Denderen, P. D., Hintzen, N. T.,
Eigaard, O. R., Valanko, S., Bastardie, F., Bolam, S. G., Boulcott, P.,
Egekvist, J., Garcia, C., van Hoey, G., Jonsson, P., Laffargue, P., Nielsen,
J. R., Piet, G. J., Sköld, M., and van Kooten, T.: Different bottom
trawl fisheries have a differential impact on the status of the North Sea
seafloor habitats, ICES J. Mar. Sci., 77, 1772–1786,
https://doi.org/10.1093/icesjms/fsaa050, 2020a.
Rijnsdorp, A. D., Depestele, J., Eigaard, O. R., Hintzen, N. T., Ivanovic,
A., Molenaar, P., O'Neill, F. G., Polet, H., Poos, J. J., and van Kooten,
T.: Mitigating seafloor disturbance of bottom trawl fisheries for North Sea
sole Solea solea by replacing mechanical with electrical stimulation, PLoS
ONE, 15, e0228528, https://doi.org/10.1371/journal.pone.0228528, 2020b.
Rijnsdorp, A. D., Depestele, J., Molenaar, P., Eigaard, O. R., Ivanović,
A., and O'Neill, F. G.: Sediment mobilization by bottom trawls: A model
approach applied to the Dutch North Sea beam trawl fishery, ICES J. Mar.
Sci., 78, 1574–1586, https://doi.org/10.1093/icesjms/fsab029, 2021.
Ritchie, R. J.: Consistent sets of spectrophotometric chlorophyll equations
for acetone, methanol and ethanol solvents, Photosynth. Res., 89, 27–41,
https://doi.org/10.1007/s11120-006-9065-9, 2006.
Roche, M., Degrendele, K., Vrignaud, C., Loyer, S., Le Bas, T., Augustin,
J.-M., and Lurton, X.: Control of the repeatability of high frequency
multibeam echosounder backscatter by using natural reference areas, Mar.
Geophys. Res., 39, 89–104, 2018.
Romero-Ramirez, A., Gremare, A., Desmalades, M., and Duchene, J. C.:
Semi-automatic analysis and interpretation of sediment profile images,
Environ. Modell. Softw., 47, 42–54,
https://doi.org/10.1016/j.envsoft.2013.04.008, 2013.
Rosenberg, R., Nilsson, H., Grémare, A., and Amouroux, J.: Effects of
demersal trawling on marine sedimentary habitats analysed by sediment
profile imagery, J. Exp. Mar. Biol. Ecol., 285, 465–477,
https://doi.org/10.1016/S0022-0981(02)00577-4, 2003.
Sciberras, M., Hiddink, J. G., Jennings, S., Szostek, C. L., Hughes, K. M.,
Kneafsey, B., Clarke, L. J., Ellis, N., Rijnsdorp, A. D., McConnaughey, R.
A., Hilborn, R., Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A.
M., Suuronen, P., and Kaiser, M. J.: Response of benthic fauna to
experimental bottom fishing: A global meta-analysis, Fish. Fish., 19,
1–18, https://doi.org/10.1111/faf.12283, 2018.
Sciberras, M., Parker, R., Powell, C., Robertson, C., Krïger, S., Bolam,
S., and Geert, H. J.: Impacts of bottom fishing on the sediment
infaunal community and biogeochemistry of cohesive and non-cohesive
sediments, Limnol. Oceanogr., 61, 2076–2089,
https://doi.org/10.1002/lno.10354, 2016.
Seeberg-Elverfeldt, J., Schluter, M., Feseker, T., and Kolling, M.: Rhizon
sampling of porewaters near the sediment-water interface of aquatic systems,
Limnol. Oceanogr.-Meth., 3, 361–371, https://doi.org/PiiS0012-821x(02)01064-6, 2005.
Seiter, K., Hensen, C., and Zabel, M.: Benthic carbon mineralization on a
global scale, Global Biogeochem. Cy., 19, GB1010,
https://doi.org/10.1029/2004GB002225, 2005.
Shotbolt, L.: Pore water sampling from lake and estuary sediments using
Rhizon samplers, J. Paleolimnol., 44, 695–700,
https://doi.org/10.1007/s10933-008-9301-8, 2010.
Soetaert, K., Herman, P. M. J., Middelburg, J. J., Heip, C., Smith, C. L.,
Tett, P., and Wild-Allen, K.: Numerical modelling of the shelf break
ecosystem: Reproducing benthic and pelagic measurements, Deep Sea Res. Pt. II, 48, 3141–3177,
https://doi.org/10.1016/S0967-0645(01)00035-2, 2001.
Soetaert, K., Van den Meersche, K., and van Oevelen D.: limSolve: Solving linear
inverse models, R package version 1.5.1, https://cran.r-project.org/web/packages/limSolve/vignettes/limSolve.pdf (last access: 20 May 2022), 2009.
Soetaert, M., Chiers, K., Duchateau, L., Polet, H., Verschueren, B.,
and Decostere, A.: Determining the safety range of electrical pulses for
two benthic invertebrates: brown shrimp (Crangon crangon L.) and ragworm
(Alitta virens S.), ICES J. Mar. Sci., 72, 973–980, 2015a.
Soetaert, M., Decostere, A., Polet, H., Verschueren, B., and Chiers,
K.: Electrotrawling: A promising alternative fishing technique warranting
further exploration, Fish. Fish., 16, 104–124,
https://doi.org/10.1111/faf.12047, 2015b.
Soetaert, M., De Haan, D., Verschueren, B., Decostere, A., Puvanendran, V.,
Saunders, J., Polet, H., and Chiers, K.: Atlantic Cod Show a Highly
Variable Sensitivity to Electric-Induced Spinal Injuries, Mar. Coast. Fish.,
8, 412–424, https://doi.org/10.1080/19425120.2016.1180332, 2016.
Stratmann, T., Soetaert, K., Wei, C. L., Lin, Y. S., and van Oevelen, D.:
The SCOC database, a large, open, and global database with sediment
community oxygen consumption rates, Sci. Data, 6, 242,
https://doi.org/10.1038/s41597-019-0259-3, 2019.
Tiano, J. C., Witbaard, R., Bergman, M. J. N., Rijswijk, P., Van Tramper,
A., Van Oevelen, D., and Soetaert, K.: Acute impacts of bottom trawl gears
on benthic metabolism and nutrient cycling, ICES J. Mar. Sci., 76, 1917–1930,
https://doi.org/10.1093/icesjms/fsz027, 2019.
Tiano, J. C., van der Reijden, K. J., O'Flynn, S., Beauchard, O., van der
Ree, S., van der Wees, J., Ysebaert, T., and Soetaert, K.: Experimental
bottom trawling finds resilience in large-bodied infauna but vulnerability
for epifauna and juveniles in the Frisian, Front. Mar. Environ. Res.,
159, 104964, https://doi.org/10.1016/j.marenvres.2020.104964, 2020.
Tiano, J. C., Borger, E. De, Flynn, S. O., Cheng, C. H., Van Oevelen, D.,
and Soetaert, K.: Physical and electrical disturbance experiments uncover
potential bottom fishing impacts on benthic ecosystem functioning, J. Exp.
Mar. Biol. Ecol., 545, 151628,
https://doi.org/10.1016/j.jembe.2021.151628, 2021.
Tillin, H. M., Hiddink, J. G., Jennings, S., and Kaiser, M. J.: Chronic
bottom trawling alters the functional composition of benthic invertebrate
communities on a sea-basin scale, Mar. Ecol. Prog. Ser., 318, 31–45, 2006.
van Denderen, P. D. Van, Bolam, S. G., Hiddink, J. G., Jennings, S., Kenny,
A., Rijnsdorp, A. D., and van Kooten, T.: Similar effects of bottom trawling
and natural disturbance on composition and function of benthic communities
across habitats, Mar. Ecol. Prog. Ser. 541, 31–43,
https://doi.org/10.3354/meps11550, 2015.
van de Velde, S., Van Lancker, V., Hidalgo-martinez, S., and Berelson, W.
M.: Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in
a transient state, December 2017, Sci. Rep., 1–10,
https://doi.org/10.1038/s41598-018-23925-y, 2018.
Van Hoey, G., Guilini, K., Rabaut, M., Vincx, M., and Degraer, S.:
Ecological implications of the presence of the tube-building polychaete
Lanice conchilega on soft-bottom benthic ecosystems, Mar. Biol., 154,
1009–1019, https://doi.org/10.1007/s00227-008-0992-1, 2008.
van Marlen, B., de Haan, D., van Gool, A., and Burggraaf, D.: The effect of
pulse stimulation on biota – Research in relation to ICES advice – Progress
report with preliminary results, Institute for Marine Resources and
Ecosystem Studies (IMARES), Report number C103/09, Wageningen, Netherlands,
53 pp., 2009.
Van Raaphorst, W., Kloosterhuis, H. T., Berghuis, E. M., Gieles, A. J. M.,
Malschaert, J. F. P., and Van Noort, G. J.: Nitrogen cycling in two types
of sediments of the Southern North sea (Frisian front, broad fourteens):
field data and mesocosm results, Neth. J. Sea Res., 28, 293–316,
https://doi.org/10.1016/0077-7579(92)90033-B, 1992.
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
This study gives an assessment of bottom trawling on physical, chemical, and biological...
Altmetrics
Final-revised paper
Preprint