Articles | Volume 20, issue 8
https://doi.org/10.5194/bg-20-1649-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1649-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Local environmental context drives heterogeneity of early succession dynamics in alpine glacier forefields
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
Bradley Z. Carlson
Centre de Recherches sur les Écosystèmes d'Altitude (CREA), Observatoire du Mont-Blanc, 74400 Chamonix, France
Anaïs Zimmer
Department of Geography and the Environment, The University of Texas at Austin, Austin, Texas, USA
Sophie Vallée
Conservatoire Botanique National Alpin (CBNA), 73000 Chambéry, France
Antoine Rabatel
Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l'Environnement (IGE, UMR 5001), 38000 Grenoble, France
Edoardo Cremonese
Environmental Protection Agency of Aosta Valley, Climate Change Unit, Loc. La Maladière, 48, 11020 Saint Christophe (AO), Italy
Gianluca Filippa
Environmental Protection Agency of Aosta Valley, Climate Change Unit, Loc. La Maladière, 48, 11020 Saint Christophe (AO), Italy
Cédric Dentant
Parc National des Ecrins, Domaine de Charance, Gap, France
Christophe Randin
Dept. of Ecology & Evolution/Interdisciplinary Centre for Mountain Research (CIRM), Univ. Lausanne, Biophore, 1015 Lausanne, Switzerland
Andrea Mainetti
Biodiversity Service and Scientific Research, Gran Paradiso National Park, fraz. Valnontey 44, 11012, Cogne, Aosta, Italy
Erwan Roussel
Université Clermont Auvergne, CNRS, GEOLAB, 63000 Clermont-Ferrand, France
Simon Gascoin
CESBIO, Université de Toulouse, CNES/CNRS/IRD/INRAE/UPS, 31000 Toulouse, France
Dov Corenblit
Université Clermont Auvergne, CNRS, GEOLAB, 63000 Clermont-Ferrand, France
Philippe Choler
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
Related authors
No articles found.
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024, https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 65 % by 2100.
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3505, https://doi.org/10.5194/egusphere-2024-3505, 2024
Short summary
Short summary
We generated annual maps of snow melt-out day at 20 m resolution over a period of 38 years from ten different satellites. This study fills a knowledge gap on the evolution of mountain snow in Europe by covering a much longer period and by characterizing trends at much higher resolution than previous studies. We found a trend for earlier melt-out with an average reduction of 5.51 days per decade over the French Alps and of 4.04 day per decade over the Pyrenees over the period 1986–2023.
Etienne Ducasse, Romain Millan, Jonas Kvist Andersen, and Antoine Rabatel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2662, https://doi.org/10.5194/egusphere-2024-2662, 2024
Short summary
Short summary
Our study examines glacier movement in the tropical Andes from 2013 to 2022 using satellite data. Despite challenges like small glacier size and frequent cloud cover, we tracked annual speeds and seasonal changes. We found stable annual speeds but significant shifts between wet and dry seasons, likely due to changes in meltwater production and glacier-bedrock conditions. This research enhances understanding of how tropical glaciers react to climate change.
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024, https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Short summary
High-accuracy precision maps of the surface temperature of snow were acquired with an uncooled thermal-infrared camera during winter 2021–2022 and spring 2023. The accuracy – i.e., mean absolute error – improved from 1.28 K to 0.67 K between the seasons thanks to an improved camera setup and temperature stabilization. The dataset represents a major advance in the validation of satellite measurements and physical snow models over a complex topography.
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
EGUsphere, https://doi.org/10.5194/egusphere-2024-2370, https://doi.org/10.5194/egusphere-2024-2370, 2024
Short summary
Short summary
This study estimated the water balance of Lake Titicaca using an integrated modeling framework that considers natural hydrological processes and net irrigation consumption. The proposed approach was implemented at a daily scale for a period of 35 years. This framework is able to simulate lake water levels with good accuracy over a wide range of hydroclimatic conditions. The findings demonstrate that a simple representation of hydrological processes is suitable for use in poorly-gauged regions.
Ange Haddjeri, Matthieu Baron, Matthieu Lafaysse, Louis Le Toumelin, César Deschamps-Berger, Vincent Vionnet, Simon Gascoin, Matthieu Vernay, and Marie Dumont
The Cryosphere, 18, 3081–3116, https://doi.org/10.5194/tc-18-3081-2024, https://doi.org/10.5194/tc-18-3081-2024, 2024
Short summary
Short summary
Our study addresses the complex challenge of evaluating distributed alpine snow simulations with snow transport against snow depths from Pléiades stereo imagery and snow melt-out dates from Sentinel-2 and Landsat-8 satellites. Additionally, we disentangle error contributions between blowing snow, precipitation heterogeneity, and unresolved subgrid variability. Snow transport enhances the snow simulations at high elevations, while precipitation biases are the main error source in other areas.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-1733, https://doi.org/10.5194/egusphere-2024-1733, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60-70% and that accounting for this effect results in less ice loss by the end of the century.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Laura Sourp, Simon Gascoin, Lionel Jarlan, Vanessa Pedinotti, Kat J. Bormann, and Mohamed Wassim Baba
EGUsphere, https://doi.org/10.5194/egusphere-2024-791, https://doi.org/10.5194/egusphere-2024-791, 2024
Short summary
Short summary
An accurate knowledge of the spatial distribution of the snow mass across the landscape is important for water management in mountain catchments. We present a new tool to estimate the snow water resources without ground measurements. We evaluate the output of this tool using accurate airborne measurements in the Sierra Nevada and find that it provides realistic estimates of the snow mass and snow depth at the catchment scale.
Lahoucine Hanich, Ouiaam Lahnik, Simon Gascoin, Adnane Chakir, and Vincent Simonneaux
Proc. IAHS, 385, 387–391, https://doi.org/10.5194/piahs-385-387-2024, https://doi.org/10.5194/piahs-385-387-2024, 2024
Short summary
Short summary
Using a dataset measured with the eddy covariance system (EC) for a period from September 2020 to January 2021 at the Tazaghart plateau, located in the High Atlas of Marrakech, the sublimation was estimated. The average daily sublimation rate measured was 0.41 mm per day. Measured sublimation accounted for 42 % and 40 % of snow ablation, based on the energy and water balances, respectively.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Flavio Pignone, Giulia Bruno, Luca Pulvirenti, Giuseppe Squicciarino, Elisabetta Fiori, Lauro Rossi, Silvia Puca, Alexander Toniazzo, Pietro Giordano, Marco Falzacappa, Sara Ratto, Hervè Stevenin, Antonio Cardillo, Matteo Fioletti, Orietta Cazzuli, Edoardo Cremonese, Umberto Morra di Cella, and Luca Ferraris
Earth Syst. Sci. Data, 15, 639–660, https://doi.org/10.5194/essd-15-639-2023, https://doi.org/10.5194/essd-15-639-2023, 2023
Short summary
Short summary
Snow cover has profound implications for worldwide water supply and security, but knowledge of its amount and distribution across the landscape is still elusive. We present IT-SNOW, a reanalysis comprising daily maps of snow amount and distribution across Italy for 11 snow seasons from September 2010 to August 2021. The reanalysis was validated using satellite images and snow measurements and will provide highly needed data to manage snow water resources in a warming climate.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Rubén Basantes-Serrano, Antoine Rabatel, Bernard Francou, Christian Vincent, Alvaro Soruco, Thomas Condom, and Jean Carlo Ruíz
The Cryosphere, 16, 4659–4677, https://doi.org/10.5194/tc-16-4659-2022, https://doi.org/10.5194/tc-16-4659-2022, 2022
Short summary
Short summary
We assessed the volume variation of 17 glaciers on the Antisana ice cap, near the Equator. We used aerial and satellite images for the period 1956–2016. We highlight very negative changes in 1956–1964 and 1979–1997 and slightly negative or even positive conditions in 1965–1978 and 1997–2016, the latter despite the recent increase in temperatures. Glaciers react according to regional climate variability, while local humidity and topography influence the specific behaviour of each glacier.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Short summary
Precipitation tends to increase with elevation, but the magnitude and distribution of this enhancement remain poorly understood. By leveraging over 11 000 spatially distributed, manual measurements of snow depth (snow courses) upstream of two reservoirs in the western European Alps, we show that these courses bear a characteristic signature of orographic precipitation. This opens a window of opportunity for improved modeling accuracy and, ultimately, our understanding of the water budget.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Christian Vincent, Diego Cusicanqui, Bruno Jourdain, Olivier Laarman, Delphine Six, Adrien Gilbert, Andrea Walpersdorf, Antoine Rabatel, Luc Piard, Florent Gimbert, Olivier Gagliardini, Vincent Peyaud, Laurent Arnaud, Emmanuel Thibert, Fanny Brun, and Ugo Nanni
The Cryosphere, 15, 1259–1276, https://doi.org/10.5194/tc-15-1259-2021, https://doi.org/10.5194/tc-15-1259-2021, 2021
Short summary
Short summary
In situ glacier point mass balance data are crucial to assess climate change in different regions of the world. Unfortunately, these data are rare because huge efforts are required to conduct in situ measurements on glaciers. Here, we propose a new approach from remote sensing observations. The method has been tested on the Argentière and Mer de Glace glaciers (France). It should be possible to apply this method to high-spatial-resolution satellite images and on numerous glaciers in the world.
Vincent Vionnet, Christopher B. Marsh, Brian Menounos, Simon Gascoin, Nicholas E. Wayand, Joseph Shea, Kriti Mukherjee, and John W. Pomeroy
The Cryosphere, 15, 743–769, https://doi.org/10.5194/tc-15-743-2021, https://doi.org/10.5194/tc-15-743-2021, 2021
Short summary
Short summary
Mountain snow cover provides critical supplies of fresh water to downstream users. Its accurate prediction requires inclusion of often-ignored processes. A multi-scale modelling strategy is presented that efficiently accounts for snow redistribution. Model accuracy is assessed via airborne lidar and optical satellite imagery. With redistribution the model captures the elevation–snow depth relation. Redistribution processes are required to reproduce spatial variability, such as around ridges.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez
Earth Syst. Sci. Data, 12, 1973–1983, https://doi.org/10.5194/essd-12-1973-2020, https://doi.org/10.5194/essd-12-1973-2020, 2020
Short summary
Short summary
We present a dataset of annual glacier mass changes for all the 661 glaciers in the French Alps for the 1967–2015 period, reconstructed using deep learning (i.e. artificial intelligence). We estimate an average annual mass loss of –0.69 ± 0.21 m w.e., the highest being in the Chablais, Ubaye and Champsaur massifs and the lowest in the Mont Blanc, Oisans and Haute Tarentaise ranges. This dataset can be of interest to hydrology and ecology studies on glacierized catchments in the French Alps.
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary
Short summary
In mountain areas high-quality meteorological data to drive snow models are rarely available, so coarse-resolution data from spatial interpolation of the available in situ measurements or reanalyses are typically employed. We perform 12 experiments using six snow models with different degrees of complexity to show the impact of the accuracy of the forcing on snow depth and snow water equivalent simulations at the Alpine site of Torgnon, discussing the results in relation to the model complexity.
Frank Paul, Philipp Rastner, Roberto Sergio Azzoni, Guglielmina Diolaiuti, Davide Fugazza, Raymond Le Bris, Johanna Nemec, Antoine Rabatel, Mélanie Ramusovic, Gabriele Schwaizer, and Claudio Smiraglia
Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, https://doi.org/10.5194/essd-12-1805-2020, 2020
Short summary
Short summary
We have used Sentinel-2 satellite data from 2015 and 2016 to create a new glacier inventory for the European Alps. Outlines from earlier national inventories were used to guide manual corrections (e.g. ice in shadow or under debris cover) of the automatically mapped clean ice. We mapped 4395 glaciers, covering 1806 km2, an area loss of about 14 % (or −1.2 % per year) compared to the last inventory of 2003. We conclude that glacier shrinkage in the Alps has continued unabated since the mid-1980s.
C. Abou Chakra, J. Somma, S. Gascoin, P. Fanise, and L. Drapeau
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 119–125, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-119-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-119-2020, 2020
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Abbas Fayad and Simon Gascoin
Hydrol. Earth Syst. Sci., 24, 1527–1542, https://doi.org/10.5194/hess-24-1527-2020, https://doi.org/10.5194/hess-24-1527-2020, 2020
Short summary
Short summary
Seasonal snowpack is an essential water resource in Mediterranean mountains. Here, we look at the role of water percolation in simulating snow mass (SWE), for the first time, in Mount Lebanon. We use SnowModel, a distributed snow model, forced by station data. The main sources of uncertainty were attributed to rain–snow partitioning, transient winter snowmelt, and the subpixel snow cover. Yet, we show that a process-based model is suitable to simulate wet snowpack in Mediterranean mountains.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet
The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, https://doi.org/10.5194/tc-14-565-2020, 2020
Short summary
Short summary
We introduce a novel approach for simulating glacier mass balances using a deep artificial neural network (i.e. deep learning) from climate and topographical data. This has been added as a component of a new open-source parameterized glacier evolution model. Deep learning is found to outperform linear machine learning methods, mainly due to its nonlinearity. Potential applications range from regional mass balance reconstructions from observations to simulations for past and future climates.
Marion Réveillet, Shelley MacDonell, Simon Gascoin, Christophe Kinnard, Stef Lhermitte, and Nicole Schaffer
The Cryosphere, 14, 147–163, https://doi.org/10.5194/tc-14-147-2020, https://doi.org/10.5194/tc-14-147-2020, 2020
S. Ferrant, A. Selles, M. Le Page, A. AlBitar, S. Mermoz, S. Gascoin, A. Bouvet, S. Ahmed, and Y. Kerr
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 285–292, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, 2019
Simon Gascoin, Manuel Grizonnet, Marine Bouchet, Germain Salgues, and Olivier Hagolle
Earth Syst. Sci. Data, 11, 493–514, https://doi.org/10.5194/essd-11-493-2019, https://doi.org/10.5194/essd-11-493-2019, 2019
Short summary
Short summary
The Sentinel-2 satellite mission allows the observation of the land surface at unprecedented resolutions (20 m every 5 days). The frequency of observations can be further increased with Landsat-8. Here we describe a new collection of snow maps made from Sentinel-2 and Landsat-8 and evaluate their accuracy. The data are routinely produced over several mountain areas and freely distributed via http://theia.cnes.fr. These new data could unlock advances in our understanding of mountain ecosystems.
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019, https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Short summary
The snow albedo reduction due to dust from arid regions alters the melting dynamics of the snowpack, resulting in earlier snowmelt. We estimate up to 38 days of anticipated snow disappearance for a season that was characterized by a strong dust deposition event. This process has a series of further impacts. For example, earlier snowmelts may alter the hydrological cycle in the Alps, induce higher sensitivity to late summer drought, and finally impact vegetation and animal phenology.
Adrien Gilbert, Silvan Leinss, Jeffrey Kargel, Andreas Kääb, Simon Gascoin, Gregory Leonard, Etienne Berthier, Alina Karki, and Tandong Yao
The Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-2018, https://doi.org/10.5194/tc-12-2883-2018, 2018
Short summary
Short summary
In Tibet, two glaciers suddenly collapsed in summer 2016 and produced two gigantic ice avalanches, killing nine people. This kind of phenomenon is extremely rare. By combining a detailed modelling study and high-resolution satellite observations, we show that the event was triggered by an increasing meltwater supply in the fine-grained material underneath the two glaciers. Contrary to what is often thought, this event is not linked to a change in the thermal condition at the glacier base.
Thomas Condom, Marie Dumont, Lise Mourre, Jean Emmanuel Sicart, Antoine Rabatel, Alessandra Viani, and Alvaro Soruco
Geosci. Instrum. Method. Data Syst., 7, 169–178, https://doi.org/10.5194/gi-7-169-2018, https://doi.org/10.5194/gi-7-169-2018, 2018
Short summary
Short summary
This study presents a new instrument called a low-cost albedometer (LCA) composed of two illuminance sensors. The ratio between reflected vs. incident illuminances is called the albedo index and can be compared with actual albedo values. We demonstrate that our system performs well and thus provides relevant opportunities to document spatiotemporal changes in the surface albedo from direct observations at the scale of an entire catchment at a low cost.
Marion Réveillet, Delphine Six, Christian Vincent, Antoine Rabatel, Marie Dumont, Matthieu Lafaysse, Samuel Morin, Vincent Vionnet, and Maxime Litt
The Cryosphere, 12, 1367–1386, https://doi.org/10.5194/tc-12-1367-2018, https://doi.org/10.5194/tc-12-1367-2018, 2018
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Esteban Alonso-González, J. Ignacio López-Moreno, Simon Gascoin, Matilde García-Valdecasas Ojeda, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Jesús Revuelto, Antonio Ceballos, María Jesús Esteban-Parra, and Richard Essery
Earth Syst. Sci. Data, 10, 303–315, https://doi.org/10.5194/essd-10-303-2018, https://doi.org/10.5194/essd-10-303-2018, 2018
Short summary
Short summary
We present a new daily gridded snow depth and snow water equivalent database over the Iberian Peninsula from 1980 to 2014 structured in common elevation bands. The data have proved their consistency with in situ observations and remote sensing data (MODIS). The presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism and risk management.
Lucas Davaze, Antoine Rabatel, Yves Arnaud, Pascal Sirguey, Delphine Six, Anne Letreguilly, and Marie Dumont
The Cryosphere, 12, 271–286, https://doi.org/10.5194/tc-12-271-2018, https://doi.org/10.5194/tc-12-271-2018, 2018
Short summary
Short summary
About 150 of the 250 000 inventoried glaciers are currently monitored with surface mass balance (SMB) measurements. To increase this number, we propose a method to retrieve annual and summer SMB from optical satellite imagery, with an application over 30 glaciers in the French Alps. Computing the glacier-wide averaged albedo allows us to reconstruct annual and summer SMB of most of the studied glaciers, highlighting the potential of this method to retrieve SMB of unmonitored glaciers.
Jordi Etchanchu, Vincent Rivalland, Simon Gascoin, Jérôme Cros, Tiphaine Tallec, Aurore Brut, and Gilles Boulet
Hydrol. Earth Syst. Sci., 21, 5693–5708, https://doi.org/10.5194/hess-21-5693-2017, https://doi.org/10.5194/hess-21-5693-2017, 2017
Short summary
Short summary
This study assesses the contribution of vegetation dynamics and land use products from high-resolution remote sensing data in the soil–vegetation–atmosphere Transfer ISBA model. We used a field-scale approach (each field is a computation cell) to take advantage of the resolution. The simulations done over an agricultural area in southwestern France showed that integrating such products leads to an improvement of the hydrometeorological fluxes like evapotranspiration or drainage.
Jesús Revuelto, Grégoire Lecourt, Matthieu Lafaysse, Isabella Zin, Luc Charrois, Vincent Vionnet, Marie Dumont, Antoine Rabatel, Delphine Six, Thomas Condom, Samuel Morin, Alessandra Viani, and Pascal Sirguey
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-184, https://doi.org/10.5194/tc-2017-184, 2017
Revised manuscript not accepted
Short summary
Short summary
We evaluated distributed and semi-distributed modeling approaches to simulating the spatial and temporal evolution of snow and ice over an extended mountain catchment, using the Crocus snowpack model. The distributed approach simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain shadowing effects. The semi-distributed approach simulated the snowpack dynamics for discrete topographic classes characterized by elevation range, aspect, and slope.
Abbas Fayad, Simon Gascoin, Ghaleb Faour, Pascal Fanise, Laurent Drapeau, Janine Somma, Ali Fadel, Ahmad Al Bitar, and Richard Escadafal
Earth Syst. Sci. Data, 9, 573–587, https://doi.org/10.5194/essd-9-573-2017, https://doi.org/10.5194/essd-9-573-2017, 2017
Short summary
Short summary
Snowmelt plays a key role in the replenishment of the karst groundwater in Lebanon. The proper estimation of the water contained in the snowpack is one of Lebanon's most challenging questions. In this paper, we present continuous meteorological and snow course observations for the first time in the snow-dominated regions of Mount Lebanon. This new dataset can be used to feed an advanced snowpack model and is the first step towards a better evaluation of the snowmelt in Lebanon.
Louise Steffensen Schmidt, Guðfinna Aðalgeirsdóttir, Sverrir Guðmundsson, Peter L. Langen, Finnur Pálsson, Ruth Mottram, Simon Gascoin, and Helgi Björnsson
The Cryosphere, 11, 1665–1684, https://doi.org/10.5194/tc-11-1665-2017, https://doi.org/10.5194/tc-11-1665-2017, 2017
Short summary
Short summary
The regional climate model HIRHAM5 is evaluated over Vatnajökull, Iceland, using automatic weather stations and mass balance observations from 1995 to 2014. From this we asses whether the model can be used to reconstruct the mass balance of the glacier. We find that the simulated energy balance is underestimated overall, but it has been improved by using a new albedo scheme. The specific mass balance is reconstructed back to 1980, thus expanding on the observational records of the mass balance.
Paul Hublart, Denis Ruelland, Inaki García de Cortázar-Atauri, Simon Gascoin, Stef Lhermitte, and Antonio Ibacache
Hydrol. Earth Syst. Sci., 20, 3691–3717, https://doi.org/10.5194/hess-20-3691-2016, https://doi.org/10.5194/hess-20-3691-2016, 2016
Short summary
Short summary
Our paper explores the reliability of conceptual catchment models in the dry Andes. First, we show that explicitly accounting for irrigation water use improves streamflow predictions during dry years. Second, we show that sublimation losses can be easily incorporated into temperature-based melt models without increasing model complexity too much. Our work also highlights areas requiring additional research, including the need for a better conceptualization of runoff generation processes.
R. Marti, S. Gascoin, E. Berthier, M. de Pinel, T. Houet, and D. Laffly
The Cryosphere, 10, 1361–1380, https://doi.org/10.5194/tc-10-1361-2016, https://doi.org/10.5194/tc-10-1361-2016, 2016
Short summary
Short summary
To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. We used very-high-resolution stereo satellites imagery (Pléiades) to generate a map of snow depth in a small Pyrenean catchment. The validation results are promising and open the possibility to retrieve the snow depth at a metric horizontal resolution in remote mountainous areas, even when no field data are available.
L. Maisincho, V. Favier, P. Wagnon, V. Jomelli, R. Basantes Serrano, B. Francou, M. Villacis, A. Rabatel, M. Ménégoz, L. Mourre, and B. Cáceres
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-105, https://doi.org/10.5194/tc-2016-105, 2016
Revised manuscript not accepted
Short summary
Short summary
Studies performed in the outer tropics suggested that Positive Degree-Day (PDD) model should be used with caution in tropical areas because temperature is not directly linked to the main local melting processes. Using an enhanced PDD model in the inner tropics during nine years allowed an accurate modelling of the glacier-wide mass balances and ablation on the Antizana glacier. This proves the high sensitivity of glaciers to temperature changes in Ecuador.
L. Wingate, J. Ogée, E. Cremonese, G. Filippa, T. Mizunuma, M. Migliavacca, C. Moisy, M. Wilkinson, C. Moureaux, G. Wohlfahrt, A. Hammerle, L. Hörtnagl, C. Gimeno, A. Porcar-Castell, M. Galvagno, T. Nakaji, J. Morison, O. Kolle, A. Knohl, W. Kutsch, P. Kolari, E. Nikinmaa, A. Ibrom, B. Gielen, W. Eugster, M. Balzarolo, D. Papale, K. Klumpp, B. Köstner, T. Grünwald, R. Joffre, J.-M. Ourcival, M. Hellstrom, A. Lindroth, C. George, B. Longdoz, B. Genty, J. Levula, B. Heinesch, M. Sprintsin, D. Yakir, T. Manise, D. Guyon, H. Ahrends, A. Plaza-Aguilar, J. H. Guan, and J. Grace
Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, https://doi.org/10.5194/bg-12-5995-2015, 2015
Short summary
Short summary
The timing of plant development stages and their response to climate and management were investigated using a network of digital cameras installed across different European ecosystems. Using the relative red, green and blue content of images we showed that the green signal could be used to estimate the length of the growing season in broadleaf forests. We also developed a model that predicted the seasonal variations of camera RGB signals and how they relate to leaf pigment content and area well.
R. Marti, S. Gascoin, T. Houet, O. Ribière, D. Laffly, T. Condom, S. Monnier, M. Schmutz, C. Camerlynck, J. P. Tihay, J. M. Soubeyroux, and P. René
The Cryosphere, 9, 1773–1795, https://doi.org/10.5194/tc-9-1773-2015, https://doi.org/10.5194/tc-9-1773-2015, 2015
Short summary
Short summary
Pyrenean glaciers are currently the southernmost glaciers in Europe. Using an exceptional archive of historical data sets and recent accurate observations, we propose the reconstruction of the length, area, elevation, and mass balance of Ossoue Glacier (French Pyrenees) since the Little Ice Age. We show that its evolution is in good agreement with climatic data. Assuming that the current ablation rate stays constant, Ossoue Glacier will disappear midway through the 21st century.
P. Choler
Biogeosciences, 12, 3885–3897, https://doi.org/10.5194/bg-12-3885-2015, https://doi.org/10.5194/bg-12-3885-2015, 2015
Short summary
Short summary
It is shown that inter-annual variations in the primary productivity of mountain grasslands are primarily governed by variations in the length of the snow-free period and to a much lesser extent by temperature and precipitation during the growing season. Meteorological variables controlling snow cover dynamics are thus of paramount importance to understand and model the amount and timing of biomass production in mountain pastures.
S. Gascoin, O. Hagolle, M. Huc, L. Jarlan, J.-F. Dejoux, C. Szczypta, R. Marti, and R. Sánchez
Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015, https://doi.org/10.5194/hess-19-2337-2015, 2015
Short summary
Short summary
There is a good agreement between the MODIS snow products and observations from automatic stations and Landsat snow maps in the Pyrenees. The optimal thresholds for which a MODIS pixel is marked as snow-covered are 40mm in water equivalent and 150mm in snow depth.
We generate a gap-filled snow cover climatology for the Pyrenees. We compute the mean snow cover duration by elevation and aspect classes. We show anomalous snow patterns in 2012 and consequences on hydropower production.
P. Pogliotti, M. Guglielmin, E. Cremonese, U. Morra di Cella, G. Filippa, C. Pellet, and C. Hauck
The Cryosphere, 9, 647–661, https://doi.org/10.5194/tc-9-647-2015, https://doi.org/10.5194/tc-9-647-2015, 2015
Short summary
Short summary
This study presents the thermal state and recent evolution of permafrost at Cime Bianche.
The analysis reveals that (i) spatial variability of MAGST is greater than its interannual variability and is controlled by snow duration and air temperature during the snow-free period, (ii) the ALT has a pronounced spatial variability caused by a different subsurface ice and water content, and (iii) permafrost is warming at significant rates below 8m of depth.
S. Ferrant, S. Gascoin, A. Veloso, J. Salmon-Monviola, M. Claverie, V. Rivalland, G. Dedieu, V. Demarez, E. Ceschia, J.-L. Probst, P. Durand, and V. Bustillo
Hydrol. Earth Syst. Sci., 18, 5219–5237, https://doi.org/10.5194/hess-18-5219-2014, https://doi.org/10.5194/hess-18-5219-2014, 2014
Short summary
Short summary
A set of high spatial and temporal satellite images have been used to spatially calibrate crop growth within an agro-hydrological model dedicated to nitrogen contamination of stream water. This type of spatial calibration greatly improved the simulation of nitrogen plant uptake and better constrained nutrient fluxes in the river. This is an example of the benefit of the forthcoming Sentinel-2 high resolution optical image series that will be acquired every 4/5 days over continental surfaces.
A. Rabatel, B. Francou, A. Soruco, J. Gomez, B. Cáceres, J. L. Ceballos, R. Basantes, M. Vuille, J.-E. Sicart, C. Huggel, M. Scheel, Y. Lejeune, Y. Arnaud, M. Collet, T. Condom, G. Consoli, V. Favier, V. Jomelli, R. Galarraga, P. Ginot, L. Maisincho, J. Mendoza, M. Ménégoz, E. Ramirez, P. Ribstein, W. Suarez, M. Villacis, and P. Wagnon
The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, https://doi.org/10.5194/tc-7-81-2013, 2013
Related subject area
Remote Sensing: Terrestrial
Field heterogeneity of soil texture controls leaf water potential spatial distribution in non-irrigated vineyards
Remote sensing reveals fire-driven enhancement of a C4 invasive alien grass on a small Mediterranean volcanic island
Divergent biophysical responses of western United States forests to wildfire driven by eco-climatic gradients
Synergistic use of Sentinel-2 and UAV-derived data for plant fractional cover distribution mapping of coastal meadows with digital elevation models
Data-based investigation of the effects of canopy structure and shadows on chlorophyll fluorescence in a deciduous oak forest
Evaluation of five models for constructing forest NPP–age relationships in China based on 3121 field survey samples
Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America
Dune belt restoration effectiveness assessed by UAV topographic surveys (northern Adriatic coast, Italy)
High-resolution data reveal a surge of biomass loss from temperate and Atlantic pine forests, contextualizing the 2022 fire season distinctiveness in France
Louis Delval, Jordan Bates, François Jonard, and Mathieu Javaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-2555, https://doi.org/10.5194/egusphere-2024-2555, 2024
Short summary
Short summary
The accurate quantification of grapevine water status is crucial for winemakers as it significantly impacts wine quality. It is acknowledged that within a single vineyard, the variability of grapevine water status can be significant. Within-field spatial distribution of soil hydraulic conductance and weather conditions are the primary factors governing the leaf water potential spatial heterogeneity and extent observed in non-irrigated vineyards, and their effects are concomitants.
Riccardo Guarino, Daniele Cerra, Renzo Zaia, Alessandro Chiarucci, Pietro Lo Cascio, Duccio Rocchini, Piero Zannini, and Salvatore Pasta
Biogeosciences, 21, 2717–2730, https://doi.org/10.5194/bg-21-2717-2024, https://doi.org/10.5194/bg-21-2717-2024, 2024
Short summary
Short summary
The severity and the extent of a large fire event that occurred on the small volcanic island of Stromboli (Aeolian archipelago, Italy) on 25–26 May 2022 were evaluated through remotely sensed data to assess the short-term effect of fire on local plant communities. For the first time, we documented the outstanding after-fire resilience of an invasive alien species, Saccharum biflorum, which is a rhizomatous C4 perennial grass introduced on the island in the nineteenth century.
Surendra Shrestha, Christopher A. Williams, Brendan M. Rogers, John Rogan, and Dominik Kulakowski
Biogeosciences, 21, 2207–2226, https://doi.org/10.5194/bg-21-2207-2024, https://doi.org/10.5194/bg-21-2207-2024, 2024
Short summary
Short summary
Here, we generated chronosequences of leaf area index (LAI) and surface albedo as a function of time since fire to demonstrate the differences in the characteristic trajectories of post-fire biophysical changes among seven forest types and 21 level III ecoregions of the western United States (US) using satellite data from different sources. We also demonstrated how climate played the dominant role in the recovery of LAI and albedo 10 and 20 years after wildfire events in the western US.
Ricardo Martínez Prentice, Miguel Villoslada, Raymond D. Ward, Thaisa F. Bergamo, Chris B. Joyce, and Kalev Sepp
Biogeosciences, 21, 1411–1431, https://doi.org/10.5194/bg-21-1411-2024, https://doi.org/10.5194/bg-21-1411-2024, 2024
Short summary
Short summary
Despite hosting a wide range of ecosystem services, coastal wetlands face threats from global changes. This study models the plant fractional cover of plant communities in Estonian coastal meadows with a synergistic use of drone, satellite imagery and digital elevation models. This approach highlights the significant contribution of digital elevation models to multispectral data, enabling the modelling of heterogeneous plant community distributions in such wetlands.
Hamadou Balde, Gabriel Hmimina, Yves Goulas, Gwendal Latouche, Abderrahmane Ounis, and Kamel Soudani
Biogeosciences, 21, 1259–1276, https://doi.org/10.5194/bg-21-1259-2024, https://doi.org/10.5194/bg-21-1259-2024, 2024
Short summary
Short summary
We show that FyieldLIF was not correlated with SIFy at the diurnal timescale, and the diurnal patterns in SIF and PAR did not match under clear-sky conditions due to canopy structure. Φk was sensitive to canopy structure. RF models show that Φk can be predicted using reflectance in different bands. RF models also show that FyieldLIF was more sensitive to reflectance and radiation than SIF and SIFy, indicating that the combined effect of reflectance bands could hide the SIF physiological trait.
Peng Li, Rong Shang, Jing M. Chen, Mingzhu Xu, Xudong Lin, Guirui Yu, Nianpeng He, and Li Xu
Biogeosciences, 21, 625–639, https://doi.org/10.5194/bg-21-625-2024, https://doi.org/10.5194/bg-21-625-2024, 2024
Short summary
Short summary
The amount of carbon that forests gain from the atmosphere, called net primary productivity (NPP), changes a lot with age. These forest NPP–age relationships could be modeled from field survey data, but we are not sure which model works best. Here we tested five different models using 3121 field survey samples in China, and the semi-empirical mathematical (SEM) function was determined as the optimal. The relationships built by SEM can improve China's forest carbon modeling and prediction.
Lammert Kooistra, Katja Berger, Benjamin Brede, Lukas Valentin Graf, Helge Aasen, Jean-Louis Roujean, Miriam Machwitz, Martin Schlerf, Clement Atzberger, Egor Prikaziuk, Dessislava Ganeva, Enrico Tomelleri, Holly Croft, Pablo Reyes Muñoz, Virginia Garcia Millan, Roshanak Darvishzadeh, Gerbrand Koren, Ittai Herrmann, Offer Rozenstein, Santiago Belda, Miina Rautiainen, Stein Rune Karlsen, Cláudio Figueira Silva, Sofia Cerasoli, Jon Pierre, Emine Tanır Kayıkçı, Andrej Halabuk, Esra Tunc Gormus, Frank Fluit, Zhanzhang Cai, Marlena Kycko, Thomas Udelhoven, and Jochem Verrelst
Biogeosciences, 21, 473–511, https://doi.org/10.5194/bg-21-473-2024, https://doi.org/10.5194/bg-21-473-2024, 2024
Short summary
Short summary
We reviewed optical remote sensing time series (TS) studies for monitoring vegetation productivity across ecosystems. Methods were categorized into trend analysis, land surface phenology, and assimilation into statistical or dynamic vegetation models. Due to progress in machine learning, TS processing methods will diversify, while modelling strategies will advance towards holistic processing. We propose integrating methods into a digital twin to improve the understanding of vegetation dynamics.
Thomas D. Hessilt, Brendan M. Rogers, Rebecca C. Scholten, Stefano Potter, Thomas A. J. Janssen, and Sander Veraverbeke
Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, https://doi.org/10.5194/bg-21-109-2024, 2024
Short summary
Short summary
In boreal North America, snow and frozen ground prevail in winter, while fires occur in summer. Over the last 20 years, the northwestern parts have experienced earlier snow disappearance and more ignitions. This is opposite to the southeastern parts. However, earlier ignitions following earlier snow disappearance timing led to larger fires across the region. Snow disappearance timing may be a good proxy for ignition timing and may also influence important atmospheric conditions related to fires.
Regine Anne Faelga, Luigi Cantelli, Sonia Silvestri, and Beatrice Maria Sole Giambastiani
Biogeosciences, 20, 4841–4855, https://doi.org/10.5194/bg-20-4841-2023, https://doi.org/10.5194/bg-20-4841-2023, 2023
Short summary
Short summary
A dune restoration project on the northern Adriatic coast (Ravenna, Italy) was assessed using UAV monitoring. Structure-from-motion photogrammetry, elevation differencing, and statistical analysis were used to quantify dune development in terms of sand volume and vegetation cover change. Results show that the installed fence has been effective as there was significant sand accumulation, embryo dune development, and a decrease in blowout features due to increased vegetation colonization.
Lilian Vallet, Martin Schwartz, Philippe Ciais, Dave van Wees, Aurelien de Truchis, and Florent Mouillot
Biogeosciences, 20, 3803–3825, https://doi.org/10.5194/bg-20-3803-2023, https://doi.org/10.5194/bg-20-3803-2023, 2023
Short summary
Short summary
This study analyzes the ecological impact of the 2022 summer fire season in France by using high-resolution satellite data. The total biomass loss was 2.553 Mt, equivalent to a 17 % increase of the average natural mortality of all French forests. While Mediterranean forests had a lower biomass loss, there was a drastic increase in burned area and biomass loss over the Atlantic pine forests and temperate forests. This result revisits the distinctiveness of the 2022 fire season.
Cited articles
Anthelme, F., Cauvy-Fraunié, S., Francou, B., Cáceres, B., and Dangles, O.:
Living at the Edge: Increasing Stress for Plants 2–13 Years After the Retreat of a Tropical Glacier, Frontiers in Ecology and Evolution, 9, 584872, https://doi.org/10.3389/fevo.2021.584872, 2021.
Bakker, J. P., Poschlod, P., Strykstra, R. J., Bekker, R. M., and Thompson, K.:
Seed banks and seed dispersal: important topics in restoration ecology, Acta Bot. Neerl., 45, 461–490, 1996.
Barrou Dumont, Z., Gascoin, S., Hagolle, O., Ablain, M., Jugier, R., Salgues, G., Marti, F., Dupuis, A., Dumont, M., and Morin, S.:
Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow; Ice Monitoring Service, The Cryosphere, 15, 4975–4980, 2021.
Bayle, A.:
A recent history of deglaciation and vegetation establishment in a contrasted geomorphological context, Glacier Blanc, French Alps, J. Maps, 16, 766–775, 2020.
Bayle, A., Roussel, E., Carlson, B. Z., Vautier, F., Brossard, C., Fovet, E., De Bouchard D'Aubeterre, G., and Corenblit, D.: Sensitivity of Landsat NDVI to subpixel vegetation and topographic components in glacier forefields: assessment from high-resolution multispectral UAV imagery, J. Appl. Remote Sens., 15, 044508, https://doi.org/10.1117/1.JRS.15.044508, 2021.
Bayle, A., Roy, A., Dedieu, J.-P., Boudreau, S., Choler, P., and Lévesque, E.:
Two distinct waves of greening in northeastern Canada: summer warming does not tell the whole story, Environ. Res. Lett., 17, 064051, https://doi.org/10.1088/1748-9326/ac74d6, 2022.
Bayle, A., Carlson, B. Z., Zimmer, A., Vallée, S., Rabatel, A., Cremonese, E., Filippa, G., Dentant, C., Randin, C., Mainetti, A., Roussel, E., Gascoin, S., Corenblit, D., and Choler, P.: Vegetation table in 8 glacier forefields, Zenodo [data set], https://doi.org/10.5281/zenodo.7698378, 2023.
Barton, K.:
MuMIn: Multi-Model Inference, R package version 1.47.2/r505, https://R-Forge.R-project.org/projects/mumin/, last access: 24 April 2023.
Berner, L. T.,
Massey, R.,
Jantz, P.,
Forbes, B. C.,
Macias-Fauria, M.,
Myers-Smith, I.,
Kumpula, T.,
Gauthier, G.,
Andreu-Hayles, L.,
Gaglioti, B. V.,
Burns, P.,
Zetterberg, P.,
D'Arrigo, R., and
Goetz, S. J.: Summer warming explains widespread but not uniform greening in the Arctic tundra biome, Nat. Commun., 11, 4621, https://doi.org/10.1038/s41467-020-18479-5, 2020.
Bradshaw, A. D.:
Restoration Ecology as a Science, Restor. Ecol., 1, 71–73, 1993.
Breen, K. and Lévesque, E.:
The Influence of Biological Soil Crusts on Soil Characteristics along a High Arctic Glacier Foreland, Nunavut, Canada, Arct. Antarct. Alp. Res., 40, 287–297, 2008.
Breiman, L.:
Random Forests, Mach. Learn., 45, 5–32, 2001.
Burga, C. A., Krüsi, B., Egli, M., Wernli, M., Elsener, S., Ziefle, M., Fischer, T., and Mavris, C.:
Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight forward or chaotic? Flora – Morphology, Distribution, Functional Ecology of Plants, 205, 561–576, 2010.
Cannone, N., Sgorbati, S., and Guglielmin, M.:
Unexpected impacts of climate change on alpine vegetation, Front. Ecol. Environ., 5, 360–364, 2007.
Carlson, B. Z., Choler, P., Renaud, J., Dedieu, J. P., and Thuiller, W.:
Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities, Ann. Bot-Londom, 116, 1023–1034, 2015.
Carlson, B. Z., Corona, M. C., Dentant, C., Bonet, R., Thuiller, W., and Choler, P.:
Observed long-term greening of alpine vegetation – a case study in the French Alps, Environ. Res. Lett., 12, 114006, https://doi.org/10.1088/1748-9326/aa84bd, 2017.
Cauvy-Fraunie, S. and Dangles, O.:
A global synthesis of biodiversity responses to glacier retreat, Nature Ecology and Evolution, 3, 1675–1685, 2019.
Chapin, F. S., Walker, L. R., Fastie, C. L., and Sharman, L. C.:
Mechanisms of Primary Succession Following Deglaciation at Glacier Bay, Alaska, Ecol. Monogr., 64, 149–175, 1994.
Chase, J. M. and Myers, J. A.:
Disentangling the importance of ecological niches from stochastic processes across scales, Philos. T. Roy. Soc. B, 366, 2351–63, 2011.
Choler, P.:
Consistent Shifts in Alpine Plant Traits along a Mesotopographical Gradient, Arct. Antarct. Alp. Res., 37, 444–453, 2005.
Choler, P.:
Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration, Biogeosciences, 12, 3885–3897, https://doi.org/10.5194/bg-12-3885-2015, 2015.
Choler, P.:
Winter soil temperature dependence of alpine plant distribution: Implications for anticipating vegetation changes under a warming climate, Perspect. Plant Ecol., 30, 6–15, 2018.
Choler, P., Bayle, A., Carlson, B. Z., Randin, C., Filippa, G., and Cremonese, E.:
The tempo of greening in the European Alps: Spatial variations on a common theme, Glob. Change Biol., 27, 5614–5628, 2021.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.:
System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Del Moral, R.:
Increasing deterministic control of primary succession on Mount St. Helens, Washington, J. Veg. Sci., 20, 1145–1154, 2009.
Desmet, P. J. J. and Govers, G.:
A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units, J. Soil Water Conserv., 51, 427–433, 1996.
Dini-Andreote, F., Stegen, J. C., Van Elsas, J. D., and Salles, J. F.:
Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession, P. Natl. Acad. Sci. USA, 112, E1326–E1332, 2015.
Eastman, J., Sangermano, F., Ghimire, B., Zhu, H., Chen, H., Neeti, N., Cai, Y., Machado, E. A., and Crema, S. C.:
Seasonal trend analysis of image time series, Int. J. Remote Sens., 30, 2721–2726, 2009.
Eichel, J.: Vegetation Succession and Biogeomorphic Interactions in Glacier Forelands, Springer, Cham, 327–349, https://doi.org/10.1007/978-3-319-94184-4_19, 2019.
Eichel, J., Krautblatter, M., Schmidtlein, S., and Dikau, R.:
Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland, Geomorphology, 201, 98–110, 2013.
Eichel, J., Corenblit, D., and Dikau, R.:
Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window, Earth Surf. Proc. Land., 41, 406–419, 2016.
Eichel, J., Draebing, D., and Meyer, N.:
From active to stable: Paraglacial transition of Alpine lateral moraine slopes, Land Degrad. Dev., 29, 4158–4172, 2018.
Eichel, J., Draebing, D., Kattenborn, T., Senn, J. A., Klingbeil, L., Wieland, M., and Heinz, E.:
Unmanned aerial vehicle-based mapping of turf-banked solifluction lobe movement and its relation to material, geomorphometric, thermal and vegetation properties, Permafrost Periglac., 31, 97–109, 2020.
Erschbamer, B., Kneringer, E., and Schlag, R. N.:
Seed rain, soil seed bank, seedling recruitment, and survival of seedlings on a glacier foreland in the Central Alps, Flora, 196, 304–312, 2001.
Ficetola, G. F., Marta, S., Guerrieri, A., Gobbi, M., Ambrosini, R., Fontaneto, D., Zerboni, A., Poulenard, J., Caccianiga, M., and Thuiller, W.:
Dynamics of Ecological Communities Following Current Retreat of Glaciers, Annu. Rev. Ecol. Evol. S., 52, 405–426, 2021.
Fickert, T. and Grüninger, F.:
High-speed colonization of bare ground-Permanent plot studies on primary succession of plants in recently deglaciated glacier forelands, Land Degrad. Dev., 29, 2668–2680, 2018.
Fischer, A., Fickert, T., Schwaizer, G., Patzelt, G., and Gross, G.:
Vegetation dynamics in Alpine glacier forelands tackled from space, Sci. Rep.-UK, 9, 13918, https://doi.org/10.1038/s41598-019-50273-2, 2019.
Franzén, M., Dieker, P., Schrader, J., and Helm, A.:
Rapid plant colonization of the forelands of a vanishing glacier is strongly associated with species traits, Arct. Antarct. Alp. Res., 51, 366–378, 2019.
Fretwell, P. T., Convey, P., Fleming, A. H., Peat, H. J., and Hughes, K. A.:
Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data, Polar Biol., 34, 273–281, 2011.
Garbarino, M., Lingua, E., Nagel, T. A., Godone, D., Motta, R.:
Patterns of larch establishment following deglaciation of Ventina glacier, central Italian Alps, Forest Ecol Manag., 259, 583–590, 2010.
Gardent, M., Rabatel, A., Dedieu, J.-P., and Deline, P.:
Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s, Global Planet. Change, 120, 24–37, 2014.
Garibotti, I. A., Pissolito, C. I., and Villalba, R.:
Spatiotemporal Pattern of Primary Succession in Relation to Meso-topographic Gradients on Recently Deglaciated Terrains in the Patagonian Andes, Arct. Antarct. Alp. Res., 43, 555–567, 2011.
Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., and Hagolle, O.:
Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data, Earth Syst. Sci. Data, 11, 493–514, https://doi.org/10.5194/essd-11-493-2019, 2019.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.:
21st century climate change in the European Alps–a review, Sci. Total Environ., 493, 1138–1151, 2014.
Górniak, D., Marszałek, H., Kwaśniak-Kominek, M., Rzepa, G., and Manecki, M.:
Soil formation and initial microbiological activity on a foreland of an Arctic glacier (SW Svalbard), Appl. Soil Ecol., 114, 34–44, 2017.
Greenwell, B. M.:
pdp: An R Package for Constructing Partial Dependence Plots, R J., 9, 421–436, https://doi.org/10.32614/RJ-2017-016, 2017.
Gurnell, A. M., Edwards, P. J., Petts, G. E., and Ward, J. V.:
A conceptual model for alpine proglacial river channel evolution under changing climatic conditions, Catena, 38, 223–242, 2000.
Gurnell, A. M., Petts, G. E., Hannah, D. M., Smith, B. P. G., Edwards, P. J., Kollmann, J., Ward, J. V., and Tockner, K.:
Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy, Earth Surf. Proc. Land., 26, 31–62, 2001.
Haeberli, W., Schaub, Y., and Huggel, C.:
Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges, Geomorphology, 293, 405–417, 2017.
Healy, S. M. and Khan, A. L.:
Mapping glacier ablation with a UAV in the North Cascades: A structure-from-motion approach, Frontiers in Remote Sensing, 57, 764765, https://doi.org/10.3389/frsen.2021.764765, 2022.
Heckmann, T., Mccoll, S., and Morche, D.:
Retreating ice: research in pro-glacial areas matters, Earth Surf. Proc. Land., 41, 271–276, 2016.
Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., Mark, B. G., Milner, A. M., Weingartner, R., and Winder, M.:
Toward mountains without permanent snow and ice, Earths Future, 5, 418–435, 2017.
Hutchinson, M. F., Xu, T., and Stein, J. A.:
Recent progress in the ANUDEM elevation gridding procedure, Geomorphometry, 2011.
Johnson, E. A. and Miyanishi, K.:
Testing the assumptions of chronosequences in succession, Ecol. Lett., 11, 419–431, 2008.
Joly, D. and Brossard, T.:
Contribution of environmental factors to temperature distribution at different resolution levels on the forefield of the Loven Glaciers, Svalbard, Polar Rec., 43, 353–359, 2007.
Khedim, N., Cecillon, L., Poulenard, J., Barre, P., Baudin, F., Marta, S., Rabatel, A., Dentant, C., Cauvy-Fraunie, S., Anthelme, F., Gielly, L., Ambrosini, R., Franzetti, A., Azzoni, R. S., Caccianiga, M. S., Compostella, C., Clague, J., Tielidze, L., Messager, E., Choler, P., and Ficetola, G. F.:
Topsoil organic matter build-up in glacier forelands around the world, Glob. Change Biol., 27, 1662–1677, 2021.
Klaar, M. J., Kidd, C., Malone, E., Bartlett, R., Pinay, G., Chapin, F. S., and Milner, A.:
Vegetation succession in deglaciated landscapes: implications for sediment and landscape stability, Earth Surf. Proc. Land., 40, 1088–1100, 2015.
Knoflach, B., Ramskogler, K., Talluto, M., Hofmeister, F., Haas, F., Heckmann, T., Pfeiffer, M., Piermattei, L., Ressl, C., Wimmer, M. H., Geitner, C., Erschbamer, B., and Stötter, J.:
Modelling of Vegetation Dynamics from Satellite Time Series to Determine Proglacial Primary Succession in the Course of Global Warming – A Case Study in the Upper Martell Valley (Eastern Italian Alps), Remote Sens.-Basel, 13, 4450, https://doi.org/10.3390/rs13214450, 2021.
Lane, S. N., Borgeaud, L., and Vittoz, P.:
Emergent geomorphic-vegetation interactions on a subalpine alluvial fan, Earth Surf. Proc. Land., 41, 72–86, 2016.
Lang, N., Irniger, A., Rozniak, A., Hunziker, R., Wegner, J. D., and Schindler, K.:
GRAINet: mapping grain size distributions in river beds from UAV images with convolutional neural networks, Hydrol. Earth Syst. Sci., 25, 2567–2597, https://doi.org/10.5194/hess-25-2567-2021, 2021.
Langhammer, L., Grab, M., Bauder, A., and Maurer, H.:
Glacier thickness estimations of alpine glaciers using data and modeling constraints, The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, 2019.
Lardeux, P., Glasser, N., Holt, T., and Hubbard, B.:
Glaciological and geomorphological map of Glacier Noir and Glacier Blanc, French Alps, J. Maps, 12, 582–596, 2015.
Legendre, P. and Gallagher, E. D.:
Ecologically meaningful transformations for ordination of species data, Oecologia, 129, 271–280, 2001.
Liaw, A. and Wiener, M.:
Classification and regression by randomForest, R News, 2, 2002.
Linsbauer, A., Huss, M., Hodel, E., Bauder, A., Fischer, M., Weidmann, Y., Bärtschi, H., and Schmassmann, E.:
The New Swiss Glacier Inventory SGI2016: From a Topographical to a Glaciological Dataset, Front. Earth Sci., 9, 704189, https://doi.org/10.3389/feart.2021.704189, 2021.
Mainetti, A., D'amico, M., Probo, M., Quaglia, E., Ravetto Enri, S., Celi, L., and Lonati, M.:
Successional Herbaceous Species Affect Soil Processes in a High-Elevation Alpine Proglacial Chronosequence, Frontiers in Environmental Science, 8, 615499, https://doi.org/10.3389/fenvs.2020.615499, 2021.
Markham, B. L. and Helder, D. L.:
Forty-year calibrated record of earth-reflected radiance from Landsat: A review, Remote Sens. Environ., 122, 30–40, 2012.
Marta, S., Azzoni, R. S., Fugazza, D., Tielidze, L., Chand, P., Sieron, K., Almond, P., Ambrosini, R., Anthelme, F., Alviz Gazitúa, P., Bhambri, R., Bonin, A., Caccianiga, M., Cauvy-Fraunié, S., Ceballos Lievano, J. L., Clague, J., Cochachín Rapre, J. A., Dangles, O., Deline, P., Eger, A., Cruz Encarnación, R., Erokhin, S., Franzetti, A., Gielly, L., Gili, F., Gobbi, M., Guerrieri, A., Hågvar, S., Khedim, N., Kinyanjui, R., Messager, E., Morales-Martínez, M. A., Peyre, G., Pittino, F., Poulenard, J., Seppi, R., Chand Sharma, M., Urseitova, N., Weissling, B., Yang, Y., Zaginaev, V., Zimmer, A., Diolaiuti, G. A., Rabatel, A., and Ficetola, G. F.:
The Retreat of Mountain Glaciers since the Little Ice Age: A Spatially Explicit Database, Data, 6, 107, https://doi.org/10.3390/data6100107, 2021.
Marteinsdóttir, B., Svavarsdóttir, K., and Thórhallsdóttir, T. E.:
Development of vegetation patterns in early primary succession, J. Veg. Sci., 21, 531–540, 2010.
Martín-Ortega, P., García-Montero, L. G., and Sibelet, N.:
Temporal Patterns in Illumination Conditions and Its Effect on Vegetation Indices Using Landsat on Google Earth Engine, Remote Sens.-Basel, 12, 211, https://doi.org/10.3390/rs12020211, 2020.
Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Gao, F., Kutler, J., and Lim, T. K.:
A Landsat Surface Reflectance Dataset for North America, 1990–2000, IEEE Geosci. Remote S., 3, 68–72, 2006.
Matthews, J. A. and Briffa, K. R.:
The “little ice age”: re-evaluation of an evolving concept, Geogr. Ann. A, 87, 17–36, 2005.
Miller, H. R. and Lane, S. N.:
Biogeomorphic feedbacks and the ecosystem engineering of recently deglaciated terrain, Progress in Physical Geography: Earth and Environment, 43, 24–45, 2018.
Minchin, P. R.:
An evaluation of the relative robustness of techniques for ecological ordination, Vegetatio, 69, 89–107, 1987.
Mong, C. E. and Vetaas, O. R.:
Establishment of Pinus Wallichiana on a Himalayan Glacier Foreland: Stochastic Distribution or Safe Sites?, Arct. Antarct. Alp. Res., 38, 584–592, 2006.
Moreau, M., Mercier, D., Laffly, D., and Roussel, E.:
Impacts of recent paraglacial dynamics on plant colonization: A case study on Midtre Lovénbreen foreland, Spitsbergen (79∘ N), Geomorphology, 95, 48–60, 2008.
Nagol, J. R., Sexton, J. O., Kim, D.-H., Anand, A., Morton, D., Vermote, E., and Townshend, J. R.:
Bidirectional effects in Landsat reflectance estimates: Is there a problem to solve?, ISPRS J. Photogramm., 103, 129–135, 2015.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P. R., O'hara, R. B., Simpson, G. L., Solymos, P., Henry, M., H. Stevens, Szoecs, E., and Wagner, H.:
vegan: Community Ecology Package, http://CRAN.R-project.org/package=vegan (last access: 24 April 2023), 2020.
Ormsby, J. P., Choudhury, B. J., and Owe, M.:
Vegetation spatial variability and its effect on vegetation indices, Int. J. Remote Sens., 8, 1301–1306, 1987.
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., Vancuren, R. A., and Abdalati, W.:
End of the Little Ice Age in the Alps forced by industrial black carbon, P. Natl. Acad. Sci. USA, 110, 15216–21, 2013.
Pickett, S. T. A.:
Space-for-Time Substitution as an Alternative to Long-Term Studies, in: Long-Term Studies in Ecology, edited by: Likens, G. E., Springer, New York, NY, https://doi.org/10.1007/978-1-4615-7358-6_5, 1989.
Pinheiro, J., Bates, D., and R Core Team: R Core Team: Nlme: Linear and Nonlinear Mixed Effects Models R package version 3.1-160, https://CRAN.R-project.org/package=nlme (last access: 24 April 2023), 2022.
Qiu, S., He, B., Zhu, Z., Liao, Z., and Quan, X.:
Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 4–8 images, Remote Sens. Environ., 199, 107–119, 2017.
Qiu, S., Lin, Y., Shang, R., Zhang, J., Ma, L., and Zhu, Z.:
Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data, Remote Sens.-Basel, 11, 51, https://doi.org/10.3390/rs11010051, 2019a.
Qiu, S., Zhu, Z., and He, B.:
Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery, Remote Sens. Environ., 231, 111205, https://doi.org/10.1016/j.rse.2019.05.024, 2019b.
Raffl, C., Mallaun, M., Mayer, R., and Erschbamer, B.:
Vegetation Succession Pattern and Diversity Changes in a Glacier Valley, Central Alps, Austria, Arct. Antarct. Alp. Res., 38, 421–428, 2006.
Robbins, J. A. and Matthews, J. A.:
Regional Variation in Successional Trajectories and Rates of Vegetation Change on Glacier Forelands in South-Central Norway, Arct. Antarct. Alp. Res., 42, 351–361, 2010.
Robbins, J. A. and Matthews, J. A.:
Use of ecological indicator values to investigate successional change in boreal to high-alpine glacier-foreland chronosequences, southern Norway, Holocene, 24, 1453–1464, 2014.
Rosero, P., Crespo-Pérez, V., Espinosa, R., Andino, P., Barragán, Á., Moret, P., Gobbi, M., Ficetola, G. F., Jaramillo, R., Muriel, P., Anthelme, F., Jacobsen, D., Dangles, O., Condom, T., Gielly, L., Poulenard, J., Rabatel, A., Basantes, R., Cáceres Correa, B., and Cauvy-Fraunié, S.:
Multi-taxa colonisation along the foreland of a vanishing equatorial glacier, Ecography, 44, 1010–1021, 2021.
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., and Egorov, A.:
Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity, Remote Sens. Environ., 185, 57–70, 2016a.
Roy, D. P., Zhang, H. K., Ju, J., Gomez-Dans, J. L., Lewis, P. E., Schaaf, C. B., Sun, Q., Li, J., Huang, H., and Kovalskyy, V.:
A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance, Remote Sens. Environ., 176, 255–271, 2016b.
Rydgren, K., Halvorsen, R., Töpper, J. P., Njøs, J. M., and Del Moral, R.:
Glacier foreland succession and the fading effect of terrain age, J. Veg. Sci., 25, 1367–1380, 2014.
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., D'entremont, R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.:
First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83, 135–148, 2002.
Scherrer, D. and Körner, C.:
Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming, J. Biogeogr., 38, 406–416, 2011.
Schumann, K., Gewolf, S., and Tackenberg, O.:
Factors affecting primary succession of glacier foreland vegetation in the European Alps, Alpine Bot., 126, 105–117, 2016.
Sigl, M., Abram, N. J., Gabrieli, J., Jenk, T. M., Osmont, D., and Schwikowski, M.:
19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers, The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, 2018.
Soenen, S. A., Peddle, D. R., and Coburn, C. A.:
SCS + C: a modified Sun-canopy-sensor topographic correction in forested terrain, IEEE T. Geosci. S., 43, 2148–2159, 2005.
Sola, I., González-Audícana, M., and Álvarez-Mozos, J.:
Multi-criteria evaluation of topographic correction methods, Remote Sens. Environ., 184, 247–262, 2016.
Steven, M. D., Malthus, T. J., Baret, F., Xu, H., and Chopping, M. J.:
Intercalibration of vegetation indices from different sensor systems, Remote Sens. Environ., 88, 412–422, 2003.
Stöcklin, J. and Bäumler, E.:
Seed rain, seedling establishment and clonal growth strategies on a glacier foreland, J. Veg. Sci., 7, 45–56, 1996.
Tackenberg, O. and Stöcklin, J.:
Wind dispersal of alpine plant species: A comparison with lowland species, J. Veg. Sci., 19, 109–118, 2008.
Temme, A. J. A. M. and Lange, K.:
Pro-glacial soil variability and geomorphic activity – the case of three Swiss valleys, Earth Surf. Proc. Land., 39, 1492–1499, https://doi.org/10.1002/esp.3553, 2014.
Todd, S. W., Hoffer, R. M., and Milchunas, D. G.:
Biomass estimation on grazed and ungrazed rangelands using spectral indices, Int. J. Remote Sens., 19, 427–438, 1998.
Tucker, C. J. and Sellers, P. J.:
Satellite remote sensing of primary production, Int. J. Remote Sens., 7, 1395–1416, 1986.
Vázquez-Tarrío, D., Borgniet, L., Liébault, F., and Recking, A.:
Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps), Geomorphology, 285, 94–105, 2017.
Vernay, M., Lafaysse, M., Monteiro, D., Hagenmuller, P., Nheili, R., Samacoïts, R., Verfaillie, D., and Morin, S.:
The S2M meteorological and snow cover reanalysis over the French mountainous areas: description and evaluation (1958–2021), Earth Syst. Sci. Data, 14, 1707–1733, https://doi.org/10.5194/essd-14-1707-2022, 2022.
Vincent, C., Le Meur, E., Six, D., and Funk, M.:
Solving the paradox of the end of the Little Ice Age in the Alps, Geophys. Res. Lett., 32, L09706, https://doi.org/10.1029/2005GL022552, 2005.
Vincent, C., Harter, M., Gilbert, A., Berthier, E., and Six, D.:
Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes, Ann. Glaciol., 55, 15–24, 2014.
Walker, L. R. and Wardle, D. A.:
Plant succession as an integrator of contrasting ecological time scales, Trends in Ecology and Evolution, 29, 504–10, 2014.
Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Marrero, S. M., Winter, K., and Sugden, D. E.:
Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry, J. Glaciol, 61, 1088–1102, 2017.
Wittich, K.-P. and Hansing, O.:
Area-averaged vegetative cover fraction estimated from satellite data, Int. J. Biometeorol., 38, 209–215, 1995.
Woellner, R. and Wagner, T. C.:
Saving species, time and money: Application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve, Biol. Conserv., 233, 162–175, 2019.
Wojcik, R., Donhauser, J., Frey, B., and Benning, L. G.:
Time since deglaciation and geomorphological disturbances determine the patterns of geochemical, mineralogical and microbial successions in an Icelandic foreland, Geoderma, 379, 114578, https://doi.org/10.1016/j.geoderma.2020.114578, 2020.
Wojcik, R., Eichel, J., Bradley, J. A., and Benning, L. G.:
How allogenic factors affect succession in glacier forefields, Earth-Sci. Rev., 218, 103642, https://doi.org/10.1016/j.earscirev.2021.103642, 2021.
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., Johnson, D. M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., Mccorkel, J., Pahlevan, N., Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J., White, J. C., Wynne, R. H., and Zhu, Z.:
Current status of Landsat program, science, and applications, Remote Sens. Environ., 225, 127–147, 2019.
Zhang, H. K., Roy, D. P., and Kovalskyy, V.:
Optimal Solar Geometry Definition for Global Long-Term Landsat Time-Series Bidirectional Reflectance Normalization, IEEE T. Geosci. S., 54, 1410–1418, 2016.
Zhang, Y., Woodcock, C. E., Arévalo, P., Olofsson, P., Tang, X., Stanimirova, R., Bullock, E., Tarrio, K. R., Zhu, Z., and Friedl, M. A.: A Global Analysis of the Spatial and Temporal Variability of Usable Landsat Observations at the Pixel Scale, Front. Remote Sens., 3, 894618, https://doi.org/10.3389/frsen.2022.894618, 2022.
Zhu, Z. and Woodcock, C. E.:
Object-based cloud and cloud shadow detection in Landsat imagery, Remote Sens. Environ., 118, 83–94, 2012.
Zhu, Z. and Woodcock, C. E.:
Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change, Remote Sens. Environ., 152, 217–234, 2014.
Zimmer, A., Meneses, R. I., Rabatel, A., Soruco, A., Dangles, O., and Anthelme, F.:
Time lag between glacial retreat and upward migration alters tropical alpine communities, Perspect. Plant Ecol., 30, 89–102, 2018.
Short summary
Glacier forefields have long provided ecologists with a model to study patterns of plant succession following glacier retreat. We used remote sensing approaches to study early succession dynamics as it allows to analyze the deglaciation, colonization, and vegetation growth within a single framework. We found that the heterogeneity of early succession dynamics is deterministic and can be explained well by local environmental context. This work has been done by an international consortium.
Glacier forefields have long provided ecologists with a model to study patterns of plant...
Altmetrics
Final-revised paper
Preprint