Articles | Volume 20, issue 19
https://doi.org/10.5194/bg-20-3997-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-3997-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low cobalt inventories in the Amundsen and Ross seas driven by high demand for labile cobalt uptake among native phytoplankton communities
Rebecca J. Chmiel
MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and
Engineering, 266 Woods Hole Road, Woods Hole, MA 02543, USA
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
Riss M. Kell
MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and
Engineering, 266 Woods Hole Road, Woods Hole, MA 02543, USA
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
previously published under the name Riss M. Kellogg
Deepa Rao
MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and
Engineering, 266 Woods Hole Road, Woods Hole, MA 02543, USA
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
Dawn M. Moran
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
Giacomo R. DiTullio
Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC 29412,
USA
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
Related authors
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-2085, https://doi.org/10.5194/egusphere-2024-2085, 2024
Short summary
Short summary
Southern Ocean phytoplankton play a pivotal role in regulating the uptake and sequestration of carbon dioxide from the atmosphere. This study describes a new stable zinc isotope uptake rate measurement method used to quantify zinc and cadmium uptake rates within native Southern Ocean phytoplankton communities. This data can better inform biogeochemical model predictions of primary production, carbon export, and atmospheric carbon dioxide flux.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Thomas S. Bianchi, Madhur Anand, Chris T. Bauch, Donald E. Canfield, Luc De Meester, Katja Fennel, Peter M. Groffman, Michael L. Pace, Mak Saito, and Myrna J. Simpson
Biogeosciences, 18, 3005–3013, https://doi.org/10.5194/bg-18-3005-2021, https://doi.org/10.5194/bg-18-3005-2021, 2021
Short summary
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Kathleen M. Munson, Carl H. Lamborg, Rene M. Boiteau, and Mak A. Saito
Biogeosciences, 15, 6451–6460, https://doi.org/10.5194/bg-15-6451-2018, https://doi.org/10.5194/bg-15-6451-2018, 2018
Short summary
Short summary
Methylmercury accumulates in marine organisms and is produced by bacterial processes in sediment systems. To date, the contribution of these processes to the marine water column is poorly understood. We measured noncellular production and breakdown of methylmercury in equatorial Pacific waters. We observed enhanced production in filtered waters that suggests noncellular processes result in rapid mercury transformations and, in turn, control methylmercury concentrations in the open ocean.
Sara J. Bender, Dawn M. Moran, Matthew R. McIlvin, Hong Zheng, John P. McCrow, Jonathan Badger, Giacomo R. DiTullio, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 15, 4923–4942, https://doi.org/10.5194/bg-15-4923-2018, https://doi.org/10.5194/bg-15-4923-2018, 2018
Short summary
Short summary
Phaeocystis antarctica is an important phytoplankter of the Antarctic coastal environment where it dominates the early season bloom after sea ice retreat. Iron nutrition was found to be an important factor that results in Phaeocystis colony formation and a large restructuring of the proteome, including changes associated with the flagellate to colonial transition and adaptive responses to iron scarcity. Analysis of Phaeocystis proteins from the Ross Sea revealed the presence of both cell types.
Mak A. Saito, Abigail E. Noble, Nicholas Hawco, Benjamin S. Twining, Daniel C. Ohnemus, Seth G. John, Phoebe Lam, Tim M. Conway, Rod Johnson, Dawn Moran, and Matthew McIlvin
Biogeosciences, 14, 4637–4662, https://doi.org/10.5194/bg-14-4637-2017, https://doi.org/10.5194/bg-14-4637-2017, 2017
Short summary
Short summary
Cobalt has the smallest oceanic inventory of all known inorganic micronutrients, and hence is particularly vulnerable to influence by internal oceanic processes. The stoichiometry of cobalt was studied in the North Atlantic, and interpreted with regard to the context of Redfield theory with a focus on biological uptake, scavenging, and the coupling between dissolved and particulate phases. The stoichiometry of cobalt accelerated towards the surface due to increased biological activity and use.
Abigail E. Noble, Daniel C. Ohnemus, Nicholas J. Hawco, Phoebe J. Lam, and Mak A. Saito
Biogeosciences, 14, 2715–2739, https://doi.org/10.5194/bg-14-2715-2017, https://doi.org/10.5194/bg-14-2715-2017, 2017
Short summary
Short summary
This study examines sources and sinks of dissolved and labile cobalt in the North Atlantic Ocean. The North and South Atlantic are influenced differently by dust, coastal margin sources, biota, and suspended particles. Dissolved cobalt in both basins is driven by a coastal margin source, leading to large plumes emanating from the north and south African coasts. These plumes are comparable in size despite the high dust flux observed in the North Atlantic that is absent in the South Atlantic.
Nicholas J. Hawco, Daniel C. Ohnemus, Joseph A. Resing, Benjamin S. Twining, and Mak A. Saito
Biogeosciences, 13, 5697–5717, https://doi.org/10.5194/bg-13-5697-2016, https://doi.org/10.5194/bg-13-5697-2016, 2016
Short summary
Short summary
Cobalt is a scarce nutrient required by phytoplankton. We report more than 800 measurements of dissolved cobalt in the South Pacific Ocean, which show high cobalt concentrations in anoxic subsurface waters offshore of Peru. Coastal cobalt sources may be stronger under low oxygen and could fluctuate as climate change is expected to alter the extent of these low-oxygen regions.
Related subject area
Biogeochemistry: Organic Biogeochemistry
Results from a multi-laboratory ocean metaproteomic intercomparison: effects of LC-MS acquisition and data analysis procedures
Controls on the composition of hydroxylated isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs) in cultivated ammonia-oxidizing Thaumarchaeota
Reviews and syntheses: Opportunities for robust use of peak intensities from high-resolution mass spectrometry in organic matter studies
Elemental stoichiometry of particulate organic matter across the Atlantic Ocean
Lipid remodeling in phytoplankton exposed to multi-environmental drivers in a mesocosm experiment
Molecular-level carbon traits of fine roots: unveiling adaptation and decomposition under flooded conditions
Environmental controls on the distribution of brGDGTs and brGMGTs across the Seine River basin (NW France): implications for bacterial tetraethers as a proxy for riverine runoff
Ocean liming effects on dissolved organic matter dynamics
Latitudinal distribution of biomarkers across the western Arctic Ocean and the Bering Sea: an approach to assess sympagic and pelagic algal production
Sinking fate and carbon export of zooplankton fecal pellets: insights from time-series sediment trap observations in the northern South China Sea
Microbial strong organic ligand production is tightly coupled to iron in hydrothermal plumes
Methods to characterize type, relevance, and interactions of organic matter and microorganisms in fluids along the flow path of a geothermal facility
Potential bioavailability of representative pyrogenic organic matter compounds in comparison to natural dissolved organic matter pools
Distributions of bacteriohopanepolyols in lakes and coastal lagoons of the Azores Archipelago
Recently fixed carbon fuels microbial activity several meters below the soil surface
Environmental and hydrologic controls on sediment and organic carbon export from a subalpine catchment: insights from a time series
Climate and geology overwrite land use effects on soil organic nitrogen cycling on a continental scale
Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean
Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region)
Microbial labilization and diversification of pyrogenic dissolved organic matter
Bacterial and eukaryotic intact polar lipids point to in situ production as a key source of labile organic matter in hadal surface sediment of the Atacama Trench
What can we learn from amino acids about oceanic organic matter cycling and degradation?
Bacteriohopanetetrol-x: constraining its application as a lipid biomarker for marine anammox using the water column oxygen gradient of the Benguela upwelling system
Active and passive fluxes of carbon, nitrogen, and phosphorus in the northern South China Sea
Cyanobacteria net community production in the Baltic Sea as inferred from profiling pCO2 measurements
Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling
Revised fractional abundances and warm-season temperatures substantially improve brGDGT calibrations in lake sediments
Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas
Reproducible determination of dissolved organic matter photosensitivity
Technical note: Uncovering the influence of methodological variations on the extractability of iron-bound organic carbon
Anthropocene climate warming enhances autochthonous carbon cycling in an upland Arctic lake, Disko Island, West Greenland
Novel hydrocarbon-utilizing soil mycobacteria synthesize unique mycocerosic acids at a Sicilian everlasting fire
Alkenone isotopes show evidence of active carbon concentrating mechanisms in coccolithophores as aqueous carbon dioxide concentrations fall below 7 µmol L−1
Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake
Sediment release of dissolved organic matter to the oxygen minimum zone off Peru
Better molecular preservation of organic matter in an oxic than in a sulfidic depositional environment: evidence from Thalassiphora pelagica (Dinoflagellata, Eocene) cysts
Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England)
The nonconservative distribution pattern of organic matter in the Rajang, a tropical river with peatland in its estuary
Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication
High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling
Sterol preservation in hypersaline microbial mats
Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs)
Distribution and degradation of terrestrial organic matter in the sediments of peat-draining rivers, Sarawak, Malaysian Borneo
Validation of carbon isotope fractionation in algal lipids as a pCO2 proxy using a natural CO2 seep (Shikine Island, Japan)
Composition and cycling of dissolved organic matter from tropical peatlands of coastal Sarawak, Borneo, revealed by fluorescence spectroscopy and parallel factor analysis
Latitudinal variations in δ30Si and δ15N signatures along the Peruvian shelf: quantifying the effects of nutrient utilization versus denitrification over the past 600 years
Diapycnal dissolved organic matter supply into the upper Peruvian oxycline
Composition and vertical flux of particulate organic matter to the oxygen minimum zone of the central Baltic Sea: impact of a sporadic North Sea inflow
Main drivers of transparent exopolymer particle distribution across the surface Atlantic Ocean
Biochemical and structural controls on the decomposition dynamics of boreal upland forest moss tissues
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
Adam J. Fagan, Tatsuro Tanioka, Alyse A. Larkin, Jenna A. Lee, Nathan S. Garcia, and Adam C. Martiny
Biogeosciences, 21, 4239–4250, https://doi.org/10.5194/bg-21-4239-2024, https://doi.org/10.5194/bg-21-4239-2024, 2024
Short summary
Short summary
Climate change is anticipated to influence the biological pump by altering phytoplankton nutrient distribution. In our research, we collected measurements of particulate matter concentrations during two oceanographic field studies. We observed systematic variations in organic matter concentrations and ratios across the Atlantic Ocean. From statistical modeling, we determined that these variations are associated with differences in the availability of essential nutrients for phytoplankton growth.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Mengke Wang, Peng Zhang, Huishan Li, Guisen Deng, Deliang Kong, Sifang Kong, and Junjian Wang
Biogeosciences, 21, 2691–2704, https://doi.org/10.5194/bg-21-2691-2024, https://doi.org/10.5194/bg-21-2691-2024, 2024
Short summary
Short summary
We developed and applied complementary analyses to characterize molecular-level carbon traits for water-grown and soil-grown fine roots. The adaptive strategy of developing more labile carbon in water-grown roots accelerated root decomposition and counteracted the decelerated effects of anoxia on decomposition, highlighting an indirect effect of environmental change on belowground carbon cycling.
Zhe-Xuan Zhang, Edith Parlanti, Christelle Anquetil, Jérôme Morelle, Anniet M. Laverman, Alexandre Thibault, Elisa Bou, and Arnaud Huguet
Biogeosciences, 21, 2227–2252, https://doi.org/10.5194/bg-21-2227-2024, https://doi.org/10.5194/bg-21-2227-2024, 2024
Short summary
Short summary
Bacterial tetraethers have important implications for palaeoclimate reconstruction. However, fundamental understanding of how these lipids are transformed from land to sea and which environmental factors influence their distributions is lacking. Here, we investigate the sources of brGDGTs and brGMGTs and the factors controlling their distributions in a large dataset (n=237). We propose a novel proxy (RIX) to trace riverine runoff, which is applicable in modern systems and in paleorecord.
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
EGUsphere, https://doi.org/10.5194/egusphere-2024-625, https://doi.org/10.5194/egusphere-2024-625, 2024
Short summary
Short summary
To the best of our knowledge, there is no study investigating the impact of ocean liming on dissolved organic matter (DOM) dynamics. Given the central role played by DOM in the microbial loop, a change in its concentration and/or quality has a cascading effect the entire marine ecosystem. Our data clearly show that the addition of hydrated lime cause a reduction in DOM concentration and a change in its quality. The observed effects, detectable at pH 9, becomes significant at pH 10.
Youcheng Bai, Marie-Alexandrine Sicre, Jian Ren, Vincent Klein, Haiyan Jin, and Jianfang Chen
Biogeosciences, 21, 689–709, https://doi.org/10.5194/bg-21-689-2024, https://doi.org/10.5194/bg-21-689-2024, 2024
Short summary
Short summary
Algal biomarkers were used to assess sea ice and pelagic algal production across the western Arctic Ocean with changing sea-ice conditions. They show three distinct areas along with a marked latitudinal gradient of sea ice over pelagic algal production in surface sediments that are reflected by the H-Print index. Our data also show that efficient grazing consumption accounted for the dramatic decrease of diatom-derived biomarkers in sediments compared to that of particulate matter.
Hanxiao Wang, Zhifei Liu, Jiaying Li, Baozhi Lin, Yulong Zhao, Xiaodong Zhang, Junyuan Cao, Jingwen Zhang, Hongzhe Song, and Wenzhuo Wang
Biogeosciences, 20, 5109–5123, https://doi.org/10.5194/bg-20-5109-2023, https://doi.org/10.5194/bg-20-5109-2023, 2023
Short summary
Short summary
The sinking of zooplankton fecal pellets is a key process in the marine biological carbon pump. This study presents carbon export of four shapes of fecal pellets from two time-series sediment traps in the South China Sea. The results show that the sinking fate of fecal pellets is regulated by marine primary productivity, deep-dwelling zooplankton community, and deep-sea currents in the tropical marginal sea, thus providing a new perspective for exploring the carbon cycle in the world ocean.
Colleen L. Hoffman, Patrick J. Monreal, Justine B. Albers, Alastair J. M. Lough, Alyson E. Santoro, Travis Mellett, Kristen N. Buck, Alessandro Tagliabue, Maeve C. Lohan, Joseph A. Resing, and Randelle M. Bundy
EGUsphere, https://doi.org/10.1101/2023.01.05.522639, https://doi.org/10.1101/2023.01.05.522639, 2023
Short summary
Short summary
Hydrothermally-derived iron can be transported thousands of kilometers away from deep-sea vents, representing a significant flux of vital micronutrients to the ocean. However, the mechanisms that support the stabilization and transport of dissolved iron remain elusive. Using electrochemical methods, advanced mass spectrometry techniques, and genomic tools we demonstrate that strong microbially-produced ligands appear to exert an important control on plume iron biogeochemistry and dissemination.
Alessio Leins, Danaé Bregnard, Andrea Vieth-Hillebrand, Stefanie Poetz, Florian Eichinger, Guillaume Cailleau, Pilar Junier, and Simona Regenspurg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-159, https://doi.org/10.5194/bg-2023-159, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Organic matter and microbial fluid analyses are rarely taken into account in the geothermal industry and research. However, they can have a significant effect on the efficiency of geothermal power production. We discovered a high variety in organic compound composition in our samples and were able to differentiate it with regard to various sources (e.g. artificial and biogenic). Furthermore, the microbial diversity undergoes significant changes within the flow path of a geothermal power plant.
Emily B. Graham, Hyun-Seob Song, Samantha Grieger, Vanessa A. Garayburu-Caruso, James C. Stegen, Kevin D. Bladon, and Allison N. Myers-Pigg
Biogeosciences, 20, 3449–3457, https://doi.org/10.5194/bg-20-3449-2023, https://doi.org/10.5194/bg-20-3449-2023, 2023
Short summary
Short summary
Intensifying wildfires are increasing pyrogenic organic matter (PyOM) production and its impact on water quality. Recent work indicates that PyOM may have a greater impact on aquatic biogeochemistry than previously assumed, driven by higher bioavailability. We provide a full assessment of the potential bioavailability of PyOM across its chemical spectrum. We indicate that PyOM can be actively transformed within the river corridor and, therefore, may be a growing source of riverine C emissions.
Nora Richter, Ellen C. Hopmans, Danica Mitrović, Pedro M. Raposeiro, Vítor Gonçalves, Ana C. Costa, Linda A. Amaral-Zettler, Laura Villanueva, and Darci Rush
Biogeosciences, 20, 2065–2098, https://doi.org/10.5194/bg-20-2065-2023, https://doi.org/10.5194/bg-20-2065-2023, 2023
Short summary
Short summary
Bacteriohopanepolyols (BHPs) are a diverse class of lipids produced by bacteria across a wide range of environments. This study characterizes the diversity of BHPs in lakes and coastal lagoons in the Azores Archipelago, as well as a co-culture enriched for methanotrophs. We highlight the potential of BHPs as taxonomic markers for bacteria associated with certain ecological niches, which can be preserved in sedimentary records.
Andrea Scheibe, Carlos A. Sierra, and Marie Spohn
Biogeosciences, 20, 827–838, https://doi.org/10.5194/bg-20-827-2023, https://doi.org/10.5194/bg-20-827-2023, 2023
Short summary
Short summary
We explored carbon cycling in soils in three climate zones in Chile down to a depth of 6 m, using carbon isotopes. Our results show that microbial activity several meters below the soil surface is mostly fueled by recently fixed carbon and that strong decomposition of soil organic matter only occurs in the upper decimeters of the soils. The study shows that different layers of the critical zone are tightly connected and that processes in the deep soil depend on recently fixed carbon.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Lisa Noll, Shasha Zhang, Qing Zheng, Yuntao Hu, Florian Hofhansl, and Wolfgang Wanek
Biogeosciences, 19, 5419–5433, https://doi.org/10.5194/bg-19-5419-2022, https://doi.org/10.5194/bg-19-5419-2022, 2022
Short summary
Short summary
Cleavage of proteins to smaller nitrogen compounds allows microorganisms and plants to exploit the largest nitrogen reservoir in soils and is considered the bottleneck in soil organic nitrogen cycling. Results from soils covering a European transect show that protein turnover is constrained by soil geochemistry, shifts in climate and associated alterations in soil weathering and should be considered as a driver of soil nitrogen availability with repercussions on carbon cycle processes.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Aleksandar I. Goranov, Andrew S. Wozniak, Kyle W. Bostick, Andrew R. Zimmerman, Siddhartha Mitra, and Patrick G. Hatcher
Biogeosciences, 19, 1491–1514, https://doi.org/10.5194/bg-19-1491-2022, https://doi.org/10.5194/bg-19-1491-2022, 2022
Short summary
Short summary
Wildfire-derived molecules are ubiquitous in the aquatic environment, but their biological fate remains understudied. We have evaluated the compositional changes that occur to wildfire-derived molecules after incubation with soil microbes. We observe a significant degradation but also a production of numerous new labile molecules. Our results indicate that wildfire-derived molecules can be broken down and the carbon and nitrogen therein can be incorporated into microbial food webs.
Edgart Flores, Sebastian I. Cantarero, Paula Ruiz-Fernández, Nadia Dildar, Matthias Zabel, Osvaldo Ulloa, and Julio Sepúlveda
Biogeosciences, 19, 1395–1420, https://doi.org/10.5194/bg-19-1395-2022, https://doi.org/10.5194/bg-19-1395-2022, 2022
Short summary
Short summary
In this study, we investigate the chemical diversity and abundance of microbial lipids as markers of organic matter sources in the deepest points of the Atacama Trench sediments and compare them to similar lipid stocks in shallower surface sediments and in the overlying water column. We evaluate possible organic matter provenance and some potential chemical adaptations of the in situ microbial community to the extreme conditions of high hydrostatic pressure in hadal realm.
Birgit Gaye, Niko Lahajnar, Natalie Harms, Sophie Anna Luise Paul, Tim Rixen, and Kay-Christian Emeis
Biogeosciences, 19, 807–830, https://doi.org/10.5194/bg-19-807-2022, https://doi.org/10.5194/bg-19-807-2022, 2022
Short summary
Short summary
Amino acids were analyzed in a large number of samples of particulate and dissolved organic matter from coastal regions and the open ocean. A statistical analysis produced two new biogeochemical indicators. An indicator of sinking particle and sediment degradation (SDI) traces the degradation of organic matter from the surface waters into the sediments. A second indicator shows the residence time of suspended matter in the ocean (RTI).
Zoë R. van Kemenade, Laura Villanueva, Ellen C. Hopmans, Peter Kraal, Harry J. Witte, Jaap S. Sinninghe Damsté, and Darci Rush
Biogeosciences, 19, 201–221, https://doi.org/10.5194/bg-19-201-2022, https://doi.org/10.5194/bg-19-201-2022, 2022
Short summary
Short summary
Anaerobic ammonium oxidation (anammox) is an important nitrogen-removal process in the ocean. We assess the distribution of bacteriohopanetetrol-x (BHT-x), used to trace past anammox, along a redox gradient in the water column of the Benguela upwelling system. BHT-x / BHT ratios of >0.18 correspond to the presence of living anammox bacteria and oxygen levels <50 μmol L−1. This allows for a more robust application of BHT-x to trace past marine anammox and deoxygenation in dynamic marine systems.
Jia-Jang Hung, Ching-Han Tung, Zong-Ying Lin, Yuh-ling Lee Chen, Shao-Hung Peng, Yen-Huei Lin, and Li-Shan Tsai
Biogeosciences, 18, 5141–5162, https://doi.org/10.5194/bg-18-5141-2021, https://doi.org/10.5194/bg-18-5141-2021, 2021
Short summary
Short summary
We report measured active and passive fluxes and their controlling mechanisms in the northern South China Sea (NSCS). The total fluxes were higher than most reports in open oceans, indicating the significance of NSCS in atmospheric CO2 uptake and in storing that CO2 in the ocean’s interior. Winter cooling and extreme events enhanced nutrient availability and elevated fluxes. Global warming may have profound impacts on reducing ocean’s uptake and storage of CO2 in subtropical–tropical oceans.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Alexander Braun, Marina Spona-Friedl, Maria Avramov, Martin Elsner, Federico Baltar, Thomas Reinthaler, Gerhard J. Herndl, and Christian Griebler
Biogeosciences, 18, 3689–3700, https://doi.org/10.5194/bg-18-3689-2021, https://doi.org/10.5194/bg-18-3689-2021, 2021
Short summary
Short summary
It is known that CO2 fixation by photoautotrophic organisms is the major sink from the atmosphere. While biologists are aware that CO2 fixation also occurs in heterotrophic organisms, this route of inorganic carbon, and its quantitative role, is hardly recognized in biogeochemistry. We demonstrate that a considerable amount of CO2 is fixed annually through anaplerotic reactions in heterotrophic organisms, and a significant quantity of inorganic carbon is temporally sequestered in biomass.
Jonathan H. Raberg, David J. Harning, Sarah E. Crump, Greg de Wet, Aria Blumm, Sebastian Kopf, Áslaug Geirsdóttir, Gifford H. Miller, and Julio Sepúlveda
Biogeosciences, 18, 3579–3603, https://doi.org/10.5194/bg-18-3579-2021, https://doi.org/10.5194/bg-18-3579-2021, 2021
Short summary
Short summary
BrGDGT lipids are a proxy for temperature in lake sediments, but other parameters like pH can influence them, and seasonality can affect the temperatures they record. We find a warm-season bias at 43 new high-latitude sites. We also present a new method that deconvolves the effects of temperature, pH, and conductivity and generate global calibrations for these variables. Our study provides new paleoclimate tools, insight into brGDGTs at the biochemical level, and a new method for future study.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Alec W. Armstrong, Leanne Powers, and Michael Gonsior
Biogeosciences, 18, 3367–3390, https://doi.org/10.5194/bg-18-3367-2021, https://doi.org/10.5194/bg-18-3367-2021, 2021
Short summary
Short summary
Living things decay into organic matter, which can dissolve into water (like tea brewing). Tea receives its color by absorbing light. Similarly, this material absorbs light, which can then cause chemical reactions that change it. By measuring changes in these optical properties, we found that materials from some places are more sensitive to light than others. Comparing sensitivity to light helps us understand where these materials come from and what happens as they move through water.
Ben J. Fisher, Johan C. Faust, Oliver W. Moore, Caroline L. Peacock, and Christian März
Biogeosciences, 18, 3409–3419, https://doi.org/10.5194/bg-18-3409-2021, https://doi.org/10.5194/bg-18-3409-2021, 2021
Short summary
Short summary
Organic carbon can be protected from microbial degradation in marine sediments through association with iron minerals on 1000-year timescales. Despite the importance of this carbon sink, our spatial and temporal understanding of iron-bound organic carbon interactions globally is poor. Here we show that caution must be applied when comparing quantification of iron-bound organic carbon extracted by different methods as the extraction strength and method specificity can be highly variable.
Mark A. Stevenson, Suzanne McGowan, Emma J. Pearson, George E. A. Swann, Melanie J. Leng, Vivienne J. Jones, Joseph J. Bailey, Xianyu Huang, and Erika Whiteford
Biogeosciences, 18, 2465–2485, https://doi.org/10.5194/bg-18-2465-2021, https://doi.org/10.5194/bg-18-2465-2021, 2021
Short summary
Short summary
We link detailed stable isotope and biomarker analyses from the catchments of three Arctic upland lakes on Disko Island (West Greenland) to a recent dated sediment core to understand how carbon cycling has changed over the past ~500 years. We find that the carbon deposited in sediments in these upland lakes is predominately sourced from in-lake production due to the catchment's limited terrestrial vegetation and elevation and that recent increases in algal production link with climate change.
Nadine T. Smit, Laura Villanueva, Darci Rush, Fausto Grassa, Caitlyn R. Witkowski, Mira Holzheimer, Adriaan J. Minnaard, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 18, 1463–1479, https://doi.org/10.5194/bg-18-1463-2021, https://doi.org/10.5194/bg-18-1463-2021, 2021
Short summary
Short summary
Soils from an everlasting fire (gas seep) in Sicily, Italy, reveal high relative abundances of novel uncultivated mycobacteria and unique 13C-depleted mycocerosic acids (multi-methyl branched fatty acids) close to the main gas seep. Our results imply that mycocerosic acids in combination with their depleted δ13C values offer a new biomarker tool to study the role of soil mycobacteria as hydrocarbon consumers in the modern and past global carbon cycle.
Marcus P. S. Badger
Biogeosciences, 18, 1149–1160, https://doi.org/10.5194/bg-18-1149-2021, https://doi.org/10.5194/bg-18-1149-2021, 2021
Short summary
Short summary
Reconstructing ancient atmospheric CO2 is an important aim of palaeoclimate science in order to understand the Earth's climate system. One method, the alkenone proxy based on molecular fossils of coccolithophores, has been recently shown to be ineffective at low-to-moderate CO2 levels. In this paper I show that this is likely due to changes in the biogeochemistry of the coccolithophores when there is low carbon availability, but for much of the Cenozoic the alkenone proxy should have utility.
Loes G. J. van Bree, Francien Peterse, Allix J. Baxter, Wannes De Crop, Sigrid van Grinsven, Laura Villanueva, Dirk Verschuren, and Jaap S. Sinninghe Damsté
Biogeosciences, 17, 5443–5463, https://doi.org/10.5194/bg-17-5443-2020, https://doi.org/10.5194/bg-17-5443-2020, 2020
Short summary
Short summary
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are used as a paleothermometer based on their temperature dependence in global soils, but aquatic production complicates their use in lakes. BrGDGTs in the water column of Lake Chala, East Africa, respond to oxygen conditions and mixing. Changes in their signal can be linked to bacterial community composition rather than membrane adaptation to changing conditions. Their integrated signal in the sediment reflects mean air temperature.
Alexandra N. Loginova, Andrew W. Dale, Frédéric A. C. Le Moigne, Sören Thomsen, Stefan Sommer, David Clemens, Klaus Wallmann, and Anja Engel
Biogeosciences, 17, 4663–4679, https://doi.org/10.5194/bg-17-4663-2020, https://doi.org/10.5194/bg-17-4663-2020, 2020
Short summary
Short summary
We measured dissolved organic carbon (DOC), nitrogen (DON) and matter (DOM) optical properties in pore waters and near-bottom waters of the eastern tropical South Pacific off Peru. The difference between diffusion-driven and net fluxes of DOC and DON and qualitative changes in DOM optical properties suggested active microbial utilisation of the released DOM at the sediment–water interface. Our results suggest that the sediment release of DOM contributes to microbial processes in the area.
Gerard J. M. Versteegh, Alexander J. P. Houben, and Karin A. F. Zonneveld
Biogeosciences, 17, 3545–3561, https://doi.org/10.5194/bg-17-3545-2020, https://doi.org/10.5194/bg-17-3545-2020, 2020
Short summary
Short summary
Anoxic sediments mostly contain much more organic matter than oxic ones, and therefore organic matter in anoxic settings is often considered to be preserved better than in oxic settings. However, through the analysis of the same fossil dinoflagellate cyst species from both oxic and anoxic settings, we show that at a molecular level the preservation in the oxic sediments may be better since in the anoxic setting the cyst macromolecule has been altered by postdepositional modification.
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020, https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Short summary
The fluxes of soil organic carbon (OC) transport from land to sea are poorly constrained, mostly due to the lack of a specific tracer for soil OC. Here we evaluate the use of specific molecules derived from soil bacteria as a tracer for soil OC in a small river catchment. We find that the initial soil signal is lost upon entering the aquatic environment. However, the local environmental history of the catchment is reflected by these molecules in the lake sediments that act as their sink.
Zhuo-Yi Zhu, Joanne Oakes, Bradley Eyre, Youyou Hao, Edwin Sien Aun Sia, Shan Jiang, Moritz Müller, and Jing Zhang
Biogeosciences, 17, 2473–2485, https://doi.org/10.5194/bg-17-2473-2020, https://doi.org/10.5194/bg-17-2473-2020, 2020
Short summary
Short summary
Samples were collected in August 2016 in the Rajang River and its estuary, with tropical forest in the river basin and peatland in the estuary. Organic matter composition was influenced by transportation in the river basin, whereas peatland added clear biodegraded parts to the fluvial organic matter, which implies modification of the initial lability and/or starting points in the subsequent degradation and alternation processes after the organic matter enters the sea.
Wenjie Xiao, Yasong Wang, Yongsheng Liu, Xi Zhang, Linlin Shi, and Yunping Xu
Biogeosciences, 17, 2135–2148, https://doi.org/10.5194/bg-17-2135-2020, https://doi.org/10.5194/bg-17-2135-2020, 2020
Short summary
Short summary
The hadal zone (6–11 km depth) is the least explored habitat on Earth. We studied microbial branched glycerol dialkyl glycerol tetraethers (brGDGTs) in the Challenger Deep, Mariana Trench. One unique feature is the strong predominance of 6-methyl brGDGT, which likely reflects an adaption of brGDGT-producing bacteria to alkaline seawater and low temperature. BrGDGTs, with elemental and isotopic data, suggest an autochthonous product for brGDGT. A new approach is proposed for brGDGT sourcing.
Yuge Bai, Edisson Subdiaga, Stefan B. Haderlein, Heike Knicker, and Andreas Kappler
Biogeosciences, 17, 683–698, https://doi.org/10.5194/bg-17-683-2020, https://doi.org/10.5194/bg-17-683-2020, 2020
Short summary
Short summary
Biogeochemical processes of SOM are key for greenhouse gas emission and water quality. We extracted SOM by water or by NaOH–HCl under oxic–anoxic conditions. Chemical and anoxic extractions lead to higher SOM electron exchange capacities, resulting in stimulation of microbial Fe(III) reduction. Therefore, aqueous pH-neutral SOM extracts should be used to reflect environmental SOM redox processes, and artifacts of chemical extractions need to be considered when evaluating SOM redox processes.
Yan Shen, Volker Thiel, Pablo Suarez-Gonzalez, Sebastiaan W. Rampen, and Joachim Reitner
Biogeosciences, 17, 649–666, https://doi.org/10.5194/bg-17-649-2020, https://doi.org/10.5194/bg-17-649-2020, 2020
Short summary
Short summary
Today, sterols are widespread in plants, animals, and fungi but are almost absent in the oldest rocks. Microbial mats, representing the earliest complex ecosystems on Earth, were omnipresent in Precambrian marine environments and may have degraded the sterols at that time. Here we analyze the distribution of sterols through a microbial mat. This provides insight into how variations in biological and nonbiological factors affect the preservation of sterols in modern and ancient microbial mats.
Sarah Coffinet, Travis B. Meador, Lukas Mühlena, Kevin W. Becker, Jan Schröder, Qing-Zeng Zhu, Julius S. Lipp, Verena B. Heuer, Matthew P. Crump, and Kai-Uwe Hinrichs
Biogeosciences, 17, 317–330, https://doi.org/10.5194/bg-17-317-2020, https://doi.org/10.5194/bg-17-317-2020, 2020
Short summary
Short summary
This study deals with two membrane lipids called BDGTs and PDGTs. Membrane lipids are molecules forming the cell envelope of all organisms. Different organisms produce different lipids thus they can be used to detect the presence of specific organisms in the environment. We analyzed the structure of these new lipids and looked for potential producers. We found that they are likely made by microbes emitting methane below the sediment surface and could be used to track these specific microbes.
Ying Wu, Kun Zhu, Jing Zhang, Moritz Müller, Shan Jiang, Aazani Mujahid, Mohd Fakharuddin Muhamad, and Edwin Sien Aun Sia
Biogeosciences, 16, 4517–4533, https://doi.org/10.5194/bg-16-4517-2019, https://doi.org/10.5194/bg-16-4517-2019, 2019
Short summary
Short summary
Our understanding of terrestrial organic matter (TOM) in tropical peat-draining rivers remains limited, especially in Southeast Asia. We explored the characteristics of TOM via bulk parameters and lignin phenols of sediment in Malaysia. This showed that the most important plant source of the organic matter in these rivers is woody angiosperm C3 plants with limited diagenetic alteration. This slower degradation of TOM may be a link to higher total nitrogen content, especially for the small river.
Caitlyn R. Witkowski, Sylvain Agostini, Ben P. Harvey, Marcel T. J. van der Meer, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 16, 4451–4461, https://doi.org/10.5194/bg-16-4451-2019, https://doi.org/10.5194/bg-16-4451-2019, 2019
Short summary
Short summary
Carbon dioxide concentrations (pCO2) in the atmosphere play an integral role in Earth system dynamics, especially climate. Past climates help us understand future ones, but reconstructing pCO2 over the geologic record remains a challenge. This research demonstrates new approaches for exploring past pCO2 via the carbon isotope fractionation in general algal lipids, which we test over a high CO2 gradient from a naturally occurring CO2 seep.
Yongli Zhou, Patrick Martin, and Moritz Müller
Biogeosciences, 16, 2733–2749, https://doi.org/10.5194/bg-16-2733-2019, https://doi.org/10.5194/bg-16-2733-2019, 2019
Short summary
Short summary
We found that peatlands in coastal Sarawak, Borneo, export extremely humified organic matter, which dominates the riverine organic matter pool and conservatively mixes with seawater, while the freshly produced fraction is low and stable in concentration at all salinities. We estimated that terrigenous fractions, which showed high photolability, still account for 20 % of the coastal dissolved organic carbon pool, implying the importance of peat-derived organic matter in the coastal carbon cycle.
Kristin Doering, Claudia Ehlert, Philippe Martinez, Martin Frank, and Ralph Schneider
Biogeosciences, 16, 2163–2180, https://doi.org/10.5194/bg-16-2163-2019, https://doi.org/10.5194/bg-16-2163-2019, 2019
Alexandra N. Loginova, Sören Thomsen, Marcus Dengler, Jan Lüdke, and Anja Engel
Biogeosciences, 16, 2033–2047, https://doi.org/10.5194/bg-16-2033-2019, https://doi.org/10.5194/bg-16-2033-2019, 2019
Short summary
Short summary
High primary production in the Peruvian upwelling system is followed by rapid heterotrophic utilization of organic matter and supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world. Here, we estimated vertical fluxes of oxygen and dissolved organic matter (DOM) from the surface to the OMZ. Our results suggest that DOM remineralization substantially reduces oxygen concentration in the upper water column and controls the shape of the upper oxycline.
Carolina Cisternas-Novoa, Frédéric A. C. Le Moigne, and Anja Engel
Biogeosciences, 16, 927–947, https://doi.org/10.5194/bg-16-927-2019, https://doi.org/10.5194/bg-16-927-2019, 2019
Short summary
Short summary
We investigate the composition and vertical fluxes of POM in two deep basins of the Baltic Sea (GB: Gotland Basin and LD: Landsort Deep). The two basins showed different O2 regimes resulting from the intrusion of oxygen-rich water from the North Sea that ventilated the deep waters in GB, but not in LD.
In GB, O2 intrusions lead to a high abundance of manganese oxides that aggregate with POM, altering its composition and vertical flux and contributing to a higher POC transfer efficiency in GB.
Marina Zamanillo, Eva Ortega-Retuerta, Sdena Nunes, Pablo Rodríguez-Ros, Manuel Dall'Osto, Marta Estrada, Maria Montserrat Sala, and Rafel Simó
Biogeosciences, 16, 733–749, https://doi.org/10.5194/bg-16-733-2019, https://doi.org/10.5194/bg-16-733-2019, 2019
Short summary
Short summary
Many marine microorganisms produce polysaccharide-rich transparent exopolymer particles (TEPs) for rather unknown reasons but with important consequences for the ocean carbon cycle, sea–air gas exchange and formation of organic aerosols. Here we compare surface–ocean distributions of TEPs and physical, chemical and biological variables along a N–S transect in the Atlantic Ocean. Our data suggest that phytoplankton and not bacteria are the main TEP producers, and solar radiation acts as a sink.
Michael Philben, Sara Butler, Sharon A. Billings, Ronald Benner, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 15, 6731–6746, https://doi.org/10.5194/bg-15-6731-2018, https://doi.org/10.5194/bg-15-6731-2018, 2018
Short summary
Short summary
We explored the relationship between chemical composition and the temperature sensitivity of moss decomposition using 959-day lab incubations. Mass loss was low despite the predominance of carbohydrates, indicating the persistence of labile C. Scanning electron microscopy revealed little change in the moss cell-wall structure. These results suggest that the moss cell-wall matrix protects labile C from decomposition, contributing to the globally important stocks of moss-derived C.
Cited articles
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G.
R., Vanwoert, M., and Lizotte, M. P.: Phytoplankton community structure and
the drawdown of nutrients and CO2 in the Southern Ocean, Science, 283,
365–367, 1999.
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in
the Southern Ocean, 1997–2006, J. Geophys. Res., 113, C08004,
https://doi.org/10.1029/2007JC004551, 2008.
Arrigo, K. R., Lowry, K. E., and van Dijken, G. L.: Annual changes in sea ice
and phytoplankton in polynyas of the Amundsen Sea, Antarctica, Deep-Sea Res.
Pt. II, 71–76, 5–15, https://doi.org/10.1016/j.dsr2.2012.03.006,
2012.
Bernhardt, H. and Wilhelms, A.: The continuous determination of low level
iron, soluble phosphate and total phosphate with the AutoAnalyzer(TM), in:
Technicon Symposium, edited by: Biddle, N., Mediad Incorporated, Vol. 1, p. 386, 1967.
Bertrand, E. M., Saito, M. A., Rose, J. M., Riesselman, C. R., Lohan, M. C.,
Noble, A. E., Lee, P. A., and DiTullio, G. R.: Vitamin B12 and iron
colimitation of phytoplankton growth in the Ross Sea, Limnol. Oceanogr.,
52, 1079–1093, https://doi.org/10.4319/lo.2007.52.3.1079, 2007.
Bertrand, E. M., Saito, M. A., Lee, P. A., Dunbar, R. B., Sedwick, P. N., and
DiTullio, G. R.: Iron limitation of a springtime bacterial and phytoplankton
community in the Ross Sea: implications for vitamin B12 nutrition, Front.
Microbiol., 2, 160, https://doi.org/10.3389/fmicb.2011.00160, 2011.
Bertrand, E. M., Moran, D. M., McIlvin, M. R., Hoffman, J. M., Allen, A. E.,
and Saito, M. A.: Methionine synthase interreplacement in diatom cultures
and communities: Implications for the persistence of B12 use by eukaryotic
phytoplankton, Limnol. Oceanogr., 58, 1431–1450,
https://doi.org/10.4319/lo.2013.58.4.1431, 2013.
Bown, J., Boye, M., and Nelson, D. M.: New insights on the role of organic speciation in the biogeochemical cycle of dissolved cobalt in the southeastern Atlantic and the Southern Ocean, Biogeosciences, 9, 2719–2736, https://doi.org/10.5194/bg-9-2719-2012, 2012.
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch,
R., Bakker, D. C. E., Bowie, A. R., Buesseler, K. O., Chang, H., Charette,
M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J.,
Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M.
T., McKay, R. M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi,
K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., and
Zeldis, J.: A mesoscale phytoplankton bloom in the polar Southern Ocean
stimulated by iron fertilization, Nature, 407, 695–702,
https://doi.org/10.1038/35037500, 2000.
Brisbin, M. M., Mitarai, S., Saito, M. A., and Alexander, H.: Microbiomes of
bloom-forming Phaeocystis algae are stable and consistently recruited, with
both symbiotic and opportunistic modes, ISME J., 16, 2255–2264,
https://doi.org/10.1038/s41396-022-01263-2, 2022.
Budillon, G., Salusti, E., and Tucci, S.: The evolution of density currents
and nepheloid bottom layers in the Ross Sea (Antarctica), J. Mar. Res.,
64, 517–540, 2006.
Bundy, R. M., Tagliabue, A., Hawco, N. J., Morton, P. L., Twining, B. S., Hatta, M., Noble, A. E., Cape, M. R., John, S. G., Cullen, J. T., and Saito, M. A.: Elevated sources of cobalt in the Arctic Ocean, Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, 2020.
Caron, D. A., Dennett, M. R., Lonsdale, D. J., Moran, D. M., and Shalapyonok,
L.: Microzooplankton herbivory in the Ross Sea, Antarctica, Deep-Sea Res. Pt.
II, 47, 3249–3272, 2000.
Chandler, J. W., Lin, Y., Gainer, P. J., Post, A. F., Johnson, Z. I., and
Zinser, E. R.: Variable but persistent coexistence of Prochlorococcus
ecotypes along temperature gradients in the ocean's surface mixed layer,
Env. Microbiol. Rep., 8, 272–284, https://doi.org/10.1111/1758-2229.12378, 2016.
Chappell, P. D., Vedmati, J., Selph, K. E., Cyr, H. A., Jenkins, B. D.,
Landry, M. R., and Moffett, J. W.: Preferential depletion of zinc within
Costa Rica upwelling dome creates conditions for zinc co-limitation of
primary production, J. Plankton Res., 38, 244–255,
https://doi.org/10.1093/plankt/fbw018, 2016.
Chmiel, R., Lanning, N., Laubach, A., Lee, J.-M., Fitzsimmons, J., Hatta, M., Jenkins, W., Lam, P., McIlvin, M., Tagliabue, A., and Saito, M.: Major processes of the dissolved cobalt cycle in the North and equatorial Pacific Ocean, Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, 2022.
Church, M. J., Hutchins, D. A., and Ducklow, H. W.: Limitation of bacterial
growth by dissolved organic matter and iron in the Southern Ocean, Appl.
Environ. Microb., 66, 455–466, https://doi.org/10.1128/AEM.66.2.455-466.2000,
2000.
Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S.,
Chavez, F. P., Ferioli, L., Sakamoto, C., Rogers, P., Millero, F.,
Steinberg, Pa., Nightingale, P., Cooper, D., Cochlan, W. P., Landry, M. R.,
Constantinou, J., Rollwagen, G., Trasvina, A., and Kudela, R.: A massive
phytoplankton bloom induced by an ecosystem-scale iron fertilization
experiment in the equatorial Pacific Ocean, Nature, 383, 495–501,
1996.
Cohen, N. R., McIlvin, M. R., Moran, D. M., Held, N. A., Saunders, J. K.,
Hawco, N. J., Brosnahan, M., DiTullio, G. R., Lamborg, C., McCrow, J. P.,
Dupont, C. L., Allen, A. E., and Saito, M. A.: Dinoflagellates alter their
carbon and nutrient metabolic strategies across environmental gradients in
the central Pacific Ocean, Nat. Microbiol., 6, 173–186,
https://doi.org/10.1038/s41564-020-00814-7, 2021.
Croft, M. T., Lawrence, A. D., Raux-deery, E., Warren, M. J., and Smith, A.
G.: Algae acquire vitamin B12 through a symbiotic relationship with
bacteria, Nature, 438, 90–93, https://doi.org/10.1038/nature04056, 2005.
de Baar, H. J. W., Boyd, P. W., Coale, K. H., Landry, M. R., Tsuda, A.,
Assmy, P., Bakker, D. C. E., Bozec, Y., Barber, R. T., Brzezinski, M. A.,
Buesseler, K. O., Boyé, M., Croot, P. L., Gervais, F., Gorbunov, M. Y.,
Harrison, P. J., Hiscock, W. T., Laan, P., Lancelot, C., Law, C. S.,
Levasseur, M., Marchetti, A., Millero, F. J., Nishioka, J., Nojiri, Y., van
Oijen, T., Riebesell, U., Rijkenberg, M. J. A., Saito, H., Takeda, S.,
Timmermans, K. R., Veldhuis, M. J. W., Waite, A. M., and Wong, C. S.:
Synthesis of iron fertilization experiments: From the iron age in the age of
enlightenment, J. Geophys. Res.-Oceans, 110, 1–24,
https://doi.org/10.1029/2004JC002601, 2005.
DiTullio, G. and Geesey, M. E.: Photosynthetic Pigments in Marine Algae and
Bacteria, in: Encyclopedia of Environmental Microbiology, edited by:
Bitton, G., 2453–2470, John Wiley & Sons, Inc., New York, NY, https://doi.org/10.1002/0471263397.env185, 2003.
DiTullio, G. R. and Smith, W. O. J.: Spatial patterns in phytoplankton
biomass and pigment distributions in the Ross Sea, J. Geophys. Res., 101,
18467–18477, 1996.
DiTullio, G. R., Grebmeier, J. M., Arrigo, K. R., and Lizotte, M. P.: Rapid
and early export of Phaeocystis antarctica blooms in the Ross Sea,
Antarctica, Nature, 404, 595–598, 2000.
DiTullio, G. R., Geesey, M. E., Jones, D. R., Daly, K. L., Campbell, L., and
Smith, W. O. J.: Phytoplankton assemblage structure and primary productivity
along 170∘ W in the South Pacific Ocean, Mar. Ecol.-Prog. Ser.,
255, 55–80, 2003.
DiTullio, G. R., Garcia, N., Riseman, S. F., and Sedwick, P. N.: Effects of
iron concentration on pigment composition in Phaeocystis antarctica grown at low irradiance,
Biogeochemistry, 83, 71–81, https://doi.org/10.1007/s10533-007-9080-8, 2007.
Ducklow, H., Carlson, C., Church, M., Kirchman, D., Smith, D., and Steward,
G.: The seasonal development of the bacterioplankton bloom in the Ross Sea,
Antarctica, 1994–1997, Deep-Sea Res. Pt. II, 48, 4199–4221, 2001.
Ellwood, M. J., Van Den Berg, C. M. G., Boye, M., Veldhuis, M., de Jong, J.
T. M., de Baar, H. J. W., Croot, P. L., and Kattner, G.: Organic complexation
of cobalt across the Antarctic Polar Front in the Southern Ocean, Mar.
Freshwater Res., 56, 1069–1075, https://doi.org/10.1071/MF05097, 2005.
Emerson, D.: Biogenic iron dust: A novel approach to ocean iron
fertilization as a means of large scale removal of carbon dioxide from the
atmosphere, Front. Mar. Sci., 6, 22, https://doi.org/10.3389/fmars.2019.00022, 2019.
Fitzwater, S. E., Johnson, K. S., Gordon, R. M., Coale, K. H., and Smith, W.
O.: Trace metal concentrations in the Ross Sea and their relationship with
nutrients and phytoplankton growth, Deep-Sea Res. Pt. II, 47, 3159–3179,
2000.
Gardner, W. D., Richardson, M. J., and Mishonov, A. V.: Global assessment of
benthic nepheloid layers and linkage with upper ocean dynamics, Earth
Planet. Sc. Lett., 482, 126–134, https://doi.org/10.1016/j.epsl.2017.11.008, 2018.
Glover, D., Jenkins, W., and Doney, S.: Modeling Methods for Marine Science,
Cambridge University Press, New York, ISBN 978-0521867832, 2011.
Hawco, N. J., Ohnemus, D. C., Resing, J. A., Twining, B. S., and Saito, M. A.: A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific, Biogeosciences, 13, 5697–5717, https://doi.org/10.5194/bg-13-5697-2016, 2016.
Hawco, N. J., Lam, P. J., Lee, J., Ohnemus, D. C., Noble, A. E., Wyatt, N.
J., Lohan, M. C., and Saito, M. A.: Cobalt scavenging in the mesopelagic
ocean and its influence on global mass balance: Synthesizing water column
and sedimentary fluxes, Mar. Chem., 201, 151–166,
https://doi.org/10.1016/j.marchem.2017.09.001, 2017.
Helliwell, K. E.: The roles of B vitamins in phytoplankton nutrition: new
perspectives and prospects, New Phytol., 216, 62–68, https://doi.org/10.1111/nph.14669,
2017.
Irving, H. and Williams, R. J. P.: Order of stability of metal complexes,
Nature, 162, 746–747, 1948.
Jakuba, R. W., Moffett, J. W., and Dyhrman, S. T.: Evidence for the linked
biogeochemical cycling of zinc, cobalt, and phosphorus in the western North
Atltic Ocean, Global Biogeochem. Cy., 22, GB4012,
https://doi.org/10.1029/2007GB003119, 2008.
Jakuba, R. W., Saito, M. A., Moffett, J. W., and Xu, Y.: Dissolved zinc in
the subarctic North Pacific and Bering Sea: Its distribution, speciation,
and importance to primary producers, Global Biogeochem. Cy., 26, GB2015,
https://doi.org/10.1029/2010GB004004, 2012.
John, S. G., Geis, R. W., Saito, M. A., and Boyle, E. A.: Zinc isotope
fractionation during high-affinity and low-affinity zinc transport by the
marine diatom Thalassiosira oceanica, Limnol. Oceanogr., 52, 2710–2714,
https://doi.org/10.4319/lo.2007.52.6.2710, 2007.
Kellogg, R. M.: Assessing the potential for Zn limitation of marine primary production: proteomic characterization of the low Zn stress response in marine diatoms, Ph.D. thesis, Massachusetts Institute of Technology; the Woods Hole Oceanographic Institution, https://hdl.handle.net/1721.1/144738 (last access: 24 September 2023), 2022.
Kellogg, R. and Saito, M. A.: Total dissolved metal concentrations measured during the 2017–2018 CICLOPS expedition, Biological and Chemical Oceanography Data Management Office (BCO-DMO) [data set], https://doi.org/10.26008/1912/bco-dmo.877466.1, 2022a.
Kellogg, R. and Saito, M. A.: Total Zn and Cd uptake rates of natural phytoplankton assemblages measured during the 2017-2018 CICLOPS expedition, Biological and Chemical Oceanography Data Management Office (BCO-DMO) [data set], https://doi.org/10.26008/1912/bco-dmo.877681.1, 2022b.
Kellogg, R. M., McIlvin, M. R., Vedamati, J., Twining, B. S., Moffett, J.
W., Marchetti, A., Moran, D. M., and Saito, M. A.: Efficient zinc/cobalt
interreplacement in northeast Pacific diatoms and relationship to high
surface dissolved Co : Zn ratios, Limnol. Oceanogr., 65, 2557–2582,
https://doi.org/10.1002/lno.11471, 2020.
Kellogg, R. M., Moosburner, M. A., Cohen, N. R., Hawco, N. J., McIlvin, M.
R., Moran, D. M., DiTullio, G. R., Subhas, A. V., Allen, A. E., and Saito, M.
A.: Adaptive responses of marine diatoms to zinc scarcity and ecological
implications, Nat. Commun., 13, 1995, https://doi.org/10.1038/s41467-022-29603-y, 2022.
Lane, T. W., Saito, M. A., George, G. N., Pickering, I. J., Prince, R. C.,
and Morel, F. M. M.: A cadmium enzyme from a marine diatom, Nature, 435,
42–42, https://doi.org/10.1038/435042a, 2005.
Lee, J. G. and Morel, F. M. M.: Replacement of zinc by cadmium in marine
phytoplankton, Mar. Ecol.-Prog. Ser., 127, 305–309, https://doi.org/10.3354/meps127305,
1995.
Marsay, C. M., Sedwick, P. N., Dinniman, M. S., Barrett, P. M., Mack, S. L.,
and McGillicuddy, D. J.: Estimating the benthic efflux of dissolved iron on
the Ross Sea continental shelf, Geophys. Res. Lett., 41, 7576–7583,
https://doi.org/10.1002/2014GL061684, 2014.
Martin, J. H.: Glacial-interglacial CO2 change: the iron hypothesis,
Paleoceanography, 5, 1–13, https://doi.org/10.1029/PA005i001p00001,
1990.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M.: Iron deficiency limits
phytoplankton growth in Antarctic waters, Global Biogeochem. Cy., 4,
5–12, 1990.
Mazzotta, M. G., McIlvin, M. R., Moran, D. M., Wang, D. T., Bidle, K. D.,
Lamborg, C. H., and Saito, M. A.: Characterization of the metalloproteome of
Pseudoalteromonas (BB2-AT2): biogeochemical underpinnings for zinc,
manganese, cobalt, and nickel cycling in a ubiquitous marine heterotroph,
Metallomics, 13, mfab060, https://doi.org/10.1093/mtomcs/mfab060, 2021.
Monien, D., Monien, P., Brünjes, R., Widmer, T., Kappenberg, A., Silva
Busso, A. A., Schnetger, B., and Brumsack, H.-J.: Meltwater as a source of
potentially bioavailable iron to Antarctica waters, Antarct. Sci., 29,
277–291, https://doi.org/10.1017/S095410201600064X, 2017.
Morel, F. M. M., Reinfelder, J. R., Roberts, S. B., Chamberlain, C. P., Lee,
J. G., and Yee, D.: Zinc and carbon co-limitation of marine phytoplankton,
Nature, 369, 740–742, https://doi.org/10.1038/369740a0, 1994.
Morel, F. M. M., Lam, P. J., and Saito, M. A.: Trace Metal Substitution in
Marine Phytoplankton, Annu. Rev. Earth Pl. Sc., 48, 491–517,
https://doi.org/10.1146/annurev-earth-053018-060108, 2020.
Noble, A. E., Saito, M. A., Maiti, K., and Benitez-Nelson, C. R.: Cobalt,
manganese, and iron near the Hawaiian Islands: A potential concentrating
mechanism for cobalt within a cyclonic eddy and implications for the
hybrid-type trace metals, Deep-Sea Res. Pt. II,
55, 1473–1490, https://doi.org/10.1016/j.dsr2.2008.02.010, 2008.
Noble, A. E., Moran, D. M., Allen, A. E., and Saito, M. A.: Dissolved and
particulate trace metal micronutrients under the McMurdo Sound seasonal sea
ice: basal sea ice communities as a capacitor for iron, Front. Chem., 1, 25,
https://doi.org/10.3389/fchem.2013.00025, 2013.
Noble, A. E., Ohnemus, D. C., Hawco, N. J., Lam, P. J., and Saito, M. A.: Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03, Biogeosciences, 14, 2715–2739, https://doi.org/10.5194/bg-14-2715-2017, 2017.
Oldham, V. E., Chmiel, R., Hansel, C. M., DiTullio, G. R., Rao, D., and
Saito, M.: Inhibited manganese oxide formation hinders cobalt scavenging in
the Ross Sea, Global Biogeochem. Cy., 35, e2020GB006706,
https://doi.org/10.1029/2020GB006706, 2021.
Osman, D., Cooke, A., Young, T. R., Deery, E., Robinson, N. J., and Warren,
M. J.: The requirement for cobalt in vitamin B12: A paradigm for protein
metalation, Biochim. Biophys. Acta, 1868, 118896,
https://doi.org/10.1016/j.bbamcr.2020.118896, 2021.
Peloquin, J. A. and Smith, W. O. J.: Phytoplankton blooms in the Ross Sea,
Antarctica: Interannual variability in magnitude, temporal patterns, and
composition, J. Geophys. Res., 112, C08013, https://doi.org/10.1029/2006JC003816, 2007.
Planquette, H., Sherrell, R. M., Stammerjohn, S., and Field, M. P.:
Particulate iron delivery to the water column of the Amundsen Sea,
Antarctica, Mar. Chem., 153, 15–30, https://doi.org/10.1016/j.marchem.2013.04.006,
2013.
Price, N. M., Harrison, G. I., Hering, J. G., Hudson, R. J., Pascale, M.,
Nirel, V., Palenik, B., and Morel, F. M. M.: Preparation and Chemistry of the
Artificial Algal Culture Medium Aquil, Biol. Oceanogr., 6, 443–461, 2013.
Rao, D.: Characterizing cobalamin cycling by Antarctic marine microbes across multiple scales, Ph.D. thesis, Massachusetts Institute of Technology; the Woods Hole Oceanographic Institution, https://hdl.handle.net/1721.1/127908 (last access: 24 September 2023), 2020.
Roberts, S. B., Lane, T. W., and Morel, F. M. M.: Carbonic Anhydrase in the
Marine Diatom Thalassiosira Weissflogii (Bacillariophyceae), J. Phycol.,
33, 845–850, https://doi.org/10.1111/j.0022-3646.1997.00845.x, 1997.
Rodionov, D. A., Vitreschak, A. G., Mironov, A. A., and Gelfand, M. S.:
Comparative genomics of the vitamin B12 metabolism and regulation in
prokaryotes, J. Biol. Chem., 278, 41148–41159,
https://doi.org/10.1074/jbc.M305837200, 2003.
Rose, J. M., Feng, Y., DiTullio, G. R., Dunbar, R. B., Hare, C. E., Lee, P. A., Lohan, M., Long, M., W. O. Smith Jr., Sohst, B., Tozzi, S., Zhang, Y., and Hutchins, D. A.: Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages, Biogeosciences, 6, 3131–3147, https://doi.org/10.5194/bg-6-3131-2009, 2009.
Saito, M. A.: Total dissolved cobalt and labile dissolved cobalt distributions measured by shipboard voltammetry in the Amundsen Sea, Ross Sea, and Terra Nova Bay during the CICLOPS expedition on RVIB Nathaniel B. Palmer (NBP1801) from Dec 2017 to Feb 2018, Biological and Chemical Oceanography Data Management Office (BCO-DMO) [data set], https://doi.org/10.26008/1912/bco-dmo.893487.1, 2023.
Saito, M. A. and DiTullio, G.: Dissolved nutrient data from RVIB Nathaniel B Palmer cruise (NBP18-01) in the Amundsen and Ross Seas from December 2017 to March 2018, Biological and Chemical Oceanography Data Management Office (BCO-DMO) [data set], https://doi.org/10.26008/1912/bco-dmo.874841.1, 2022.
Saito, M. A. and Goepfert, T. J.: Zinc-cobalt colimitation of Phaeocystis
antarctica, Limnol. Oceanogr., 53, 266–275, 2008.
Saito, M. A. and Moffett, J. W.: Complexation of cobalt by natural organic
ligands in the Sargasso Sea as determined by a new high-sensitivity
electrochemical cobalt speciation method suitable for open ocean work, Mar.
Chem., 75, 49–68, https://doi.org/10.1016/S0304-4203(01)00025-1, 2001.
Saito, M. A., Rocap, G., and Moffett, J. W.: Production of cobalt binding
ligands in a Synechococcus feature at the Costa Rica upwelling dome, Limnol.
Oceanogr., 50, 279–290, 2005.
Saito, M. A., Goepfert, T. J., Noble, A. E., Bertrand, E. M., Sedwick, P. N., and DiTullio, G. R.: A seasonal study of dissolved cobalt in the Ross Sea, Antarctica: micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P, Biogeosciences, 7, 4059–4082, https://doi.org/10.5194/bg-7-4059-2010, 2010.
Saito, M. A., Noble, A. E., Hawco, N., Twining, B. S., Ohnemus, D. C., John, S. G., Lam, P., Conway, T. M., Johnson, R., Moran, D., and McIlvin, M.: The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean, Biogeosciences, 14, 4637–4662, https://doi.org/10.5194/bg-14-4637-2017, 2017.
Sañudo-Wilhelmy, S. A., Gobler, C. J., Okbamichael, M., and Taylor, G.
T.: Regulation of phytoplankton dynamics by vitamin B12, Geophys. Res.
Lett., 33, 10–13, https://doi.org/10.1029/2005GL025046, 2006.
Sedwick, P. N. and DiTullio, G. R.: Regulation of algal blooms in Antarctic
shelf waters by the release of iron from melting sea ice, Geophys. Res.
Lett., 24, 2515–2518, 1997.
Sedwick, P. N., DiTullio, G. R., and Mackey, D. J.: Iron and manganese in the
Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters, J.
Geophys. Res., 105, 11321–11336, 2000.
Sedwick, P. N., Marsay, C. M., Sohst, B. M., Aguilar-Islas, A. M., Lohan, M.
C., Long, M. C., Arrigo, K. R., Dunbar, R. B., Saito, M. A., Smith, W. O.,
and DiTullio, G. R.: Early season depletion of dissolved iron in the Ross
Sea polynya: Implications for iron dynamics on the Antarctic continental
shelf, J. Geophys. Res., 116, C12019, https://doi.org/10.1029/2010JC006553, 2011.
Smetacek, V., Klaas, C., Strass, V. H., Assmy, P., Montresor, M., Cisewski,
B., Savoye, N., Webb, A., D'Ovidio, F., Arrieta, J. M., Bathmann, U.,
Bellerby, R., Berg, G. M., Croot, P., Gonzalez, S., Henjes, J., Herndl, G.
J., Hoffmann, L. J., Leach, H., Losch, M., Mills, M. M., Neill, C., Peeken,
I., Röttgers, R., Sachs, O., Sauter, E., Schmidt, M. M., Schwarz, J.,
Terbrüggen, A., and Wolf-Gladrow, D.: Deep carbon export from a Southern
Ocean iron-fertilized diatom bloom, Nature, 487, 313–319,
https://doi.org/10.1038/nature11229, 2012.
Smith, W. O. J. and Jones, R. M.: Vertical mixing, critical depths, and
phytoplankton growth in the Ross Sea, ICES J. Mar. Sci., 72, 1952–1960,
2015.
Spackeen, J. L., Sipler, R. E., Bertrand, E. M., Xu, K., McQuaid, J. B.,
Walworth, N. G., Hutchins, D. A., Allen, A. E., and Bronk, D. A.: Impact of
temperature, CO2, and iron on nutrient uptake by a late-season microbial
community from the Ross Sea, Antarctica, Aquat. Microb. Ecol., 82, 145–159,
https://doi.org/10.3354/ame01886, 2018.
St-Laurent, P., Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., and
Dinniman, M. S.: Pathways and supply of dissolved iron in the Amundsen Sea
(Antarctica), J. Geophys. Res.-Oceans, 122, 7135–7162,
https://doi.org/10.1002/2017JC013162, 2017.
Sunda, W. G.: Trace metal interactions with marine phytoplankton, Biol.
Oceanogr., 6, 411–442, 1989.
Sunda, W. G.: Feedback interactions between trace metal nutrients and
phytoplankton in the ocean, Front. Microbiol., 3, 204,
https://doi.org/10.3389/fmicb.2012.00204, 2012.
Sunda, W. G. and Huntsman, S. A.: Regulation of cellular manganese and
manganese transport in the unicellular rates alga Chlamydomonas, Limnol.
Oceanogr., 30, 71–80, https://doi.org/10.4319/lo.1985.30.1.0071, 1985.
Sunda, W. G. and Huntsman, S. A.: Feedback interactions between zinc and
phytoplankton in seawater, Limnol. Oceanogr., 37, 25–40,
https://doi.org/10.4319/lo.1992.37.1.0025, 1992.
Sunda, W. G. and Huntsman, S. A.: Cobalt and zinc interreplacement in marine
phytoplankton: Biological and geochemical implications, Limnol. Oceanogr.,
40, 1404–1417, https://doi.org/10.4319/lo.1995.40.8.1404, 1995.
Sunda, W. G. and Huntsman, S. A.: Antagonisms between cadmium and zinc
toxicity and manganese limitation in a coastal diatom, Limnol. Oceanogr.,
41, 373–387, 1996.
Sunda, W. G. and Huntsman, S. A.: Effect of Zn, Mn, and Fe on Cd
accumulation in phytoplankton: Implications for oceanic Cd cycling, Limnol.
Oceanogr., 45, 1501–1516, 2000.
Taylor, G. T. and Sullivan, C. W.: Vitamin B12 and cobalt cycling among
diatoms and bacteria in Antarctic sea ice microbial communities, Limnol.
Oceanogr., 53, 1862–1877, 2008.
Warren, M. J., Raux, E., Schubert, H. L., and Escalante-Semerena, J. C.: The
biosynthesis of adenosylcobalamin (vitamin B12), Nat. Prod. Rep., 19,
390–412, https://doi.org/10.1039/B108967F, 2002.
Westerlund, S. and Öhman, P.: Cadmium, copper, cobalt, nickel, lead, and
zinc in the water column of the Weddell Sea, Antarctica, Geochim. Cosmochim.
Ac., 55, 2127–2146, https://doi.org/10.1016/0016-7037(91)90092-J, 1991.
Zhu, Z., Xu, K., Fu, F., Spackeen, J. L., Bronk, D. A., and Hutchins, D. A.:
A comparative study of iron and temperature interactive effects on diatoms
and Phaeocystis antarctica from the Ross Sea, Antarctica, Mar. Ecol.-Prog.
Ser., 550, 39–51, https://doi.org/10.3354/meps11732, 2016.
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans....
Altmetrics
Final-revised paper
Preprint