Articles | Volume 20, issue 19
https://doi.org/10.5194/bg-20-4213-2023
https://doi.org/10.5194/bg-20-4213-2023
Research article
 | Highlight paper
 | 
13 Oct 2023
Research article | Highlight paper |  | 13 Oct 2023

Soil-biodegradable plastic films do not decompose in a lake sediment over 9 months of incubation

Sigrid van Grinsven and Carsten Schubert

Related authors

Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics
Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, and Carsten J. Schubert
Biogeosciences, 18, 3087–3101, https://doi.org/10.5194/bg-18-3087-2021,https://doi.org/10.5194/bg-18-3087-2021, 2021
Short summary

Related subject area

Biogeochemistry: Limnology
Anthropogenic activities significantly increase annual greenhouse gas (GHG) fluxes from temperate headwater streams in Germany
Ricky Mwangada Mwanake, Gretchen Maria Gettel, Elizabeth Gachibu Wangari, Clarissa Glaser, Tobias Houska, Lutz Breuer, Klaus Butterbach-Bahl, and Ralf Kiese
Biogeosciences, 20, 3395–3422, https://doi.org/10.5194/bg-20-3395-2023,https://doi.org/10.5194/bg-20-3395-2023, 2023
Short summary
Role of formation and decay of seston organic matter in the fate of methylmercury within the water column of a eutrophic lake
Laura Balzer, Carluvy Baptista-Salazar, Sofi Jonsson, and Harald Biester
Biogeosciences, 20, 1459–1472, https://doi.org/10.5194/bg-20-1459-2023,https://doi.org/10.5194/bg-20-1459-2023, 2023
Short summary
Contrasting activation energies of litter-associated respiration and P uptake drive lower cumulative P uptake at higher temperatures
Nathan J. Tomczyk, Amy D. Rosemond, Anna Kaz, and Jonathan P. Benstead
Biogeosciences, 20, 191–204, https://doi.org/10.5194/bg-20-191-2023,https://doi.org/10.5194/bg-20-191-2023, 2023
Short summary
Conceptual models of dissolved carbon fluxes considering interannual typhoon responses under extreme climates in a two-layer stratified lake
Hao-Chi Lin, Keisuke Nakayama, Jeng-Wei Tsai, and Chih-Yu Chiu
EGUsphere, https://doi.org/10.5194/egusphere-2022-852,https://doi.org/10.5194/egusphere-2022-852, 2022
Short summary
Rapidly increasing sulfate concentration: a hidden promoter of eutrophication in shallow lakes
Chuanqiao Zhou, Yu Peng, Li Chen, Miaotong Yu, Muchun Zhou, Runze Xu, Lanqing Zhang, Siyuan Zhang, Xiaoguang Xu, Limin Zhang, and Guoxiang Wang
Biogeosciences, 19, 4351–4360, https://doi.org/10.5194/bg-19-4351-2022,https://doi.org/10.5194/bg-19-4351-2022, 2022
Short summary

Cited articles

Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., and Kubo, M.: Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms, J. Agric. Chem. Environ., 5, 23–34, https://doi.org/10.4236/jacen.2016.51003, 2016. 
Briassoulis, D., Pikasi, A., Papardaki, N. G., and Mistriotis, A.: Aerobic biodegradation of bio-based plastics in the seawater/sediment interface (sublittoral) marine environment of the coastal zone – Test method under controlled laboratory conditions, Sci. Total Environ., 722, 137748, https://doi.org/10.1016/j.scitotenv.2020.137748, 2020. 
Dris, R., Imhof, H., Sanchez, W., Gasperi, J., Galgani, F., Tassin, B., Laforsch, C., Dris, R., Imhof, H., Sanchez, W., Gasperi, J., Galgani, F., Tassin, B., and Laforsch, C.: Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles, Environ. Chem., 12, 539–550, https://doi.org/10.1071/EN14172, 2015. 
Egessa, R., Nankabirwa, A., Basooma, R., and Nabwire, R.: Occurrence, distribution and size relationships of plastic debris along shores and sediment of northern Lake Victoria, Environ. Pollut., 257, 113442, https://doi.org/10.1016/j.envpol.2019.113442, 2020. 
Eich, A., Mildenberger, T., Laforsch, C., and Weber, M.: Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: Early signs of degradation in the pelagic and benthic zone?, PLoS One, 10, 1–16, https://doi.org/10.1371/journal.pone.0137201, 2015. 
Download
Co-editor-in-chief
The findings of this study are interesting to a broader audience as it demonstrates that supposedly biodegradable mulch films used for agricultural purposes remain unchanged in lake sediments over several months. The results indicate that lake sediments are a place of long-term storage rather than a place of degradation for this form of plastic.
Short summary
Agriculture relies heavily on plastic mulch films, which may be transported to aquatic environments. We investigated the breakdown of soil-biodegradable agricultural mulch films in lake sediments. After 40 weeks, films were intact, and no significant CO2 or CH4 was produced from the biodegradable mulch films. We conclude that the mulch films we used have a low biodegradability in lake sediments. The sediment lacks the microbes needed to break down the biodegradable plastics that were used here.
Altmetrics
Final-revised paper
Preprint