Articles | Volume 20, issue 19
https://doi.org/10.5194/bg-20-4213-2023
https://doi.org/10.5194/bg-20-4213-2023
Research article
 | Highlight paper
 | 
13 Oct 2023
Research article | Highlight paper |  | 13 Oct 2023

Soil-biodegradable plastic films do not decompose in a lake sediment over 9 months of incubation

Sigrid van Grinsven and Carsten Schubert

Related authors

Methane oxidation in the waters of a humic-rich boreal lake stimulated by photosynthesis, nitrite, Fe(III) and humics
Sigrid van Grinsven, Kirsten Oswald, Bernhard Wehrli, Corinne Jegge, Jakob Zopfi, Moritz F. Lehmann, and Carsten J. Schubert
Biogeosciences, 18, 3087–3101, https://doi.org/10.5194/bg-18-3087-2021,https://doi.org/10.5194/bg-18-3087-2021, 2021
Short summary

Related subject area

Biogeochemistry: Limnology
Tracing rate and extent of human induced hypoxia during the last 200 years in the mesotrophic lake Tiefer See (NE Germany)
Ido Sirota, Rik Tjallingii, Sylvia Pinkerneil, Birgit Schroeder, Marlen Albert, Rebecca Kearney, Oliver Heiri, Simona Breu, and Achim Brauer
EGUsphere, https://doi.org/10.5194/egusphere-2024-835,https://doi.org/10.5194/egusphere-2024-835, 2024
Short summary
Thermal stratification and meromixis in four dilute temperate zone lakes
Elizabeth D. Swanner, Chris Harding, Sajjad A. Akam, Ioan Lascu, Gabrielle Ledesma, Pratik Poudel, Heeyeon Sun, Samuel Duncanson, Karly Bandy, Alex Branham, Liza Bryant-Tapper, Tanner Conwell, Omri Jamison, and Lauren Netz
Biogeosciences, 21, 1549–1562, https://doi.org/10.5194/bg-21-1549-2024,https://doi.org/10.5194/bg-21-1549-2024, 2024
Short summary
Mercury records covering the past 90 000 years from lakes Prespa and Ohrid, SE Europe
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024,https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake
Thomas A. Davidson, Martin Søndergaard, Joachim Audet, Eti Levi, Chiara Esposito, Tuba Bucak, and Anders Nielsen
Biogeosciences, 21, 93–107, https://doi.org/10.5194/bg-21-93-2024,https://doi.org/10.5194/bg-21-93-2024, 2024
Short summary
The influence of carbon cycling on oxygen depletion in north-temperate lakes
Austin Delany, Robert Ladwig, Cal Buelo, Ellen Albright, and Paul C. Hanson
Biogeosciences, 20, 5211–5228, https://doi.org/10.5194/bg-20-5211-2023,https://doi.org/10.5194/bg-20-5211-2023, 2023
Short summary

Cited articles

Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., and Kubo, M.: Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms, J. Agric. Chem. Environ., 5, 23–34, https://doi.org/10.4236/jacen.2016.51003, 2016. 
Briassoulis, D., Pikasi, A., Papardaki, N. G., and Mistriotis, A.: Aerobic biodegradation of bio-based plastics in the seawater/sediment interface (sublittoral) marine environment of the coastal zone – Test method under controlled laboratory conditions, Sci. Total Environ., 722, 137748, https://doi.org/10.1016/j.scitotenv.2020.137748, 2020. 
Dris, R., Imhof, H., Sanchez, W., Gasperi, J., Galgani, F., Tassin, B., Laforsch, C., Dris, R., Imhof, H., Sanchez, W., Gasperi, J., Galgani, F., Tassin, B., and Laforsch, C.: Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles, Environ. Chem., 12, 539–550, https://doi.org/10.1071/EN14172, 2015. 
Egessa, R., Nankabirwa, A., Basooma, R., and Nabwire, R.: Occurrence, distribution and size relationships of plastic debris along shores and sediment of northern Lake Victoria, Environ. Pollut., 257, 113442, https://doi.org/10.1016/j.envpol.2019.113442, 2020. 
Eich, A., Mildenberger, T., Laforsch, C., and Weber, M.: Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: Early signs of degradation in the pelagic and benthic zone?, PLoS One, 10, 1–16, https://doi.org/10.1371/journal.pone.0137201, 2015. 
Download
Co-editor-in-chief
The findings of this study are interesting to a broader audience as it demonstrates that supposedly biodegradable mulch films used for agricultural purposes remain unchanged in lake sediments over several months. The results indicate that lake sediments are a place of long-term storage rather than a place of degradation for this form of plastic.
Short summary
Agriculture relies heavily on plastic mulch films, which may be transported to aquatic environments. We investigated the breakdown of soil-biodegradable agricultural mulch films in lake sediments. After 40 weeks, films were intact, and no significant CO2 or CH4 was produced from the biodegradable mulch films. We conclude that the mulch films we used have a low biodegradability in lake sediments. The sediment lacks the microbes needed to break down the biodegradable plastics that were used here.
Altmetrics
Final-revised paper
Preprint